Skip to main content
Erschienen in: Biomass Conversion and Biorefinery 1/2024

01.02.2022 | Original Article

Efficient extraction of lipids from magnetically separated microalgae using ionic liquids and their transesterification to biodiesel

verfasst von: Dan Egesa, Pawel Plucinski

Erschienen in: Biomass Conversion and Biorefinery | Ausgabe 1/2024

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this work, the efficiency of extracting lipids from magnetically separated microalgae using ionic liquids (ILs) with subsequent recycling of ILs and magnetic nanoparticles (MNPs) was fully demonstrated for the first time. MNPs were used to separate microalgae from the aqueous phase at a separation efficiency of 99%. The separated microalgae/MNPs slurry was subjected to IL treatment to lyse the microalgae cell wall thereby exposing lipids for efficient solvent extraction using hexane. The lysed cells were mixed with hexane for 2 h to extract the lipids. The extraction efficiency of 99% was achieved when ILs/hexane was used compared to only 5% with hexane only. The extracted lipids were analyzed using gas chromatography-mass spectrometry (GC–MS), Fourier-transform infrared spectroscopy (FT-IR), and nuclear magnetic resonance (1H NMR). These then were transesterified to biodiesel. The MNPs were recovered from cell biomass by sonicating in de-ionized (DI) water and recycled via magnetic separation to harvest more microalgae at a separation efficiency of 96%. Thermogravimetric analysis (TGA) of recycled MNPs confirmed the absence of algal biomass attached to the particles. The ILs were also recycled and analyzed using 1H NMR, mass spectrometry, and FT-IR analysis. All these confirmed the absence of structural alteration in the recycled ILs. Magnetic separation can potentially lower the cost of microalgae harvesting and IL extraction can lower the cost of lipid extraction by 30–50%. A combination of the two processes implies that the extraction of lipids from magnetically separated microalgae could potentially lower the processing cost of biofuels and essential compounds. Recycling MNPs and ILs and extraction of essential compounds alongside microalgae lipids could further lower the processing costs potentially culminating in a lower cost of biofuels compared to petroleum-derived fuels.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Orr VC, Plechkova NV, Seddon KR, Rehmann L (2015) Disruption and wet extraction of the microalgae Chlorella vulgaris using room-temperature ionic liquids. ACS Sustain Chem Eng 4:591–600CrossRef Orr VC, Plechkova NV, Seddon KR, Rehmann L (2015) Disruption and wet extraction of the microalgae Chlorella vulgaris using room-temperature ionic liquids. ACS Sustain Chem Eng 4:591–600CrossRef
2.
Zurück zum Zitat Siddiki SYA, Mofijur M, Kumar PS, Ahmed SF, Inayat A, Kusumo F et al (2022) Microalgae biomass as a sustainable source for biofuel, biochemical and biobased value-added products: an integrated biorefinery concept. Fuel 307:121782CrossRef Siddiki SYA, Mofijur M, Kumar PS, Ahmed SF, Inayat A, Kusumo F et al (2022) Microalgae biomass as a sustainable source for biofuel, biochemical and biobased value-added products: an integrated biorefinery concept. Fuel 307:121782CrossRef
3.
Zurück zum Zitat Egesa D, Chuck CJ, Plucinski P (2017) Multifunctional role of magnetic nanoparticles in efficient microalgae separation and catalytic hydrothermal liquefaction. ACS Sustain Chem Eng 6:991–999CrossRef Egesa D, Chuck CJ, Plucinski P (2017) Multifunctional role of magnetic nanoparticles in efficient microalgae separation and catalytic hydrothermal liquefaction. ACS Sustain Chem Eng 6:991–999CrossRef
4.
Zurück zum Zitat Safarik I, Prochazkova G, Pospiskova K, Branyik T (2016) Magnetically modified microalgae and their applications. Crit Rev Biotechnol 36:931–941CrossRef Safarik I, Prochazkova G, Pospiskova K, Branyik T (2016) Magnetically modified microalgae and their applications. Crit Rev Biotechnol 36:931–941CrossRef
5.
Zurück zum Zitat Teixeira RE (2012) Energy-efficient extraction of fuel and chemical feedstocks from algae. Green Chem 14:419–427CrossRef Teixeira RE (2012) Energy-efficient extraction of fuel and chemical feedstocks from algae. Green Chem 14:419–427CrossRef
6.
Zurück zum Zitat Singh J, Gu S (2010) Commercialization potential of microalgae for biofuels production. Renew Sustain Energy Rev 14:2596–2610CrossRef Singh J, Gu S (2010) Commercialization potential of microalgae for biofuels production. Renew Sustain Energy Rev 14:2596–2610CrossRef
7.
Zurück zum Zitat Boli E, Savvidou M, Logothetis D, Louli V, Pappa G, Voutsas E et al (2021) Magnetic harvesting of marine algae Nannochloropsis oceanica. Sep Sci Technol 56:730–737CrossRef Boli E, Savvidou M, Logothetis D, Louli V, Pappa G, Voutsas E et al (2021) Magnetic harvesting of marine algae Nannochloropsis oceanica. Sep Sci Technol 56:730–737CrossRef
8.
Zurück zum Zitat Li X, Liu B, Lao Y, Wan P, Mao X, Chen F (2021) Efficient magnetic harvesting of microalgae enabled by surface-initiated formation of iron nanoparticles. Chem Eng J 408:127252CrossRef Li X, Liu B, Lao Y, Wan P, Mao X, Chen F (2021) Efficient magnetic harvesting of microalgae enabled by surface-initiated formation of iron nanoparticles. Chem Eng J 408:127252CrossRef
9.
Zurück zum Zitat Markeb AA, Llimós-Turet J, Ferrer I, Blánquez P, Alonso A, Sánchez A et al (2019) The use of magnetic iron oxide based nanoparticles to improve microalgae harvesting in real wastewater. Water Res 159:490–500CrossRef Markeb AA, Llimós-Turet J, Ferrer I, Blánquez P, Alonso A, Sánchez A et al (2019) The use of magnetic iron oxide based nanoparticles to improve microalgae harvesting in real wastewater. Water Res 159:490–500CrossRef
10.
Zurück zum Zitat Almomani F (2020) Algal cells harvesting using cost-effective magnetic nano-particles. Sci Total Environ 720:137621CrossRef Almomani F (2020) Algal cells harvesting using cost-effective magnetic nano-particles. Sci Total Environ 720:137621CrossRef
11.
Zurück zum Zitat Bharte S, Desai K (2019) Harvesting Chlorella species using magnetic iron oxide nanoparticles. Phycol Res 67:128–133CrossRef Bharte S, Desai K (2019) Harvesting Chlorella species using magnetic iron oxide nanoparticles. Phycol Res 67:128–133CrossRef
12.
Zurück zum Zitat Prochazkova G, Podolova N, Safarik I, Zachleder V, Branyik T (2013) Physicochemical approach to freshwater microalgae harvesting with magnetic particles. Colloids Surf, B 112:213–218CrossRef Prochazkova G, Podolova N, Safarik I, Zachleder V, Branyik T (2013) Physicochemical approach to freshwater microalgae harvesting with magnetic particles. Colloids Surf, B 112:213–218CrossRef
13.
Zurück zum Zitat Kothari R, Tyagi VV, Pathak VV (2020) Algal biofuel. The Energy and Resources Institute (TERI), Mithapur Kothari R, Tyagi VV, Pathak VV (2020) Algal biofuel. The Energy and Resources Institute (TERI), Mithapur
14.
Zurück zum Zitat Allnutt FT, Kessler BA (2015) Harvesting and downstream processing—and their economics. Biomass and Biofuels from Microalgae. Springer, Berlin, pp 289–310CrossRef Allnutt FT, Kessler BA (2015) Harvesting and downstream processing—and their economics. Biomass and Biofuels from Microalgae. Springer, Berlin, pp 289–310CrossRef
15.
Zurück zum Zitat Prochazkova G, Safarik I, Branyik T (2013) Harvesting microalgae with microwave synthesized magnetic microparticles. Biores Technol 130:472–477CrossRef Prochazkova G, Safarik I, Branyik T (2013) Harvesting microalgae with microwave synthesized magnetic microparticles. Biores Technol 130:472–477CrossRef
16.
Zurück zum Zitat Uduman N, Qi Y, Danquah MK, Forde GM, Hoadley A (2010) Dewatering of microalgal cultures: a major bottleneck to algae-based fuels. J Renew Sustain Energy 2:012701CrossRef Uduman N, Qi Y, Danquah MK, Forde GM, Hoadley A (2010) Dewatering of microalgal cultures: a major bottleneck to algae-based fuels. J Renew Sustain Energy 2:012701CrossRef
17.
Zurück zum Zitat Halim R, Harun R, Danquah MK, Webley PA (2012) Microalgal cell disruption for biofuel development. Appl Energy 91:116–121CrossRef Halim R, Harun R, Danquah MK, Webley PA (2012) Microalgal cell disruption for biofuel development. Appl Energy 91:116–121CrossRef
18.
Zurück zum Zitat Grøgaard HC (2011) Extraction and analysis of marine lipids with emphasis on phospholipids-evaluation and improvement of methods. Institutt for bioteknologi Grøgaard HC (2011) Extraction and analysis of marine lipids with emphasis on phospholipids-evaluation and improvement of methods. Institutt for bioteknologi
19.
Zurück zum Zitat Medina AR, Grima EM, Giménez AG, González MI (1998) Downstream processing of algal polyunsaturated fatty acids. Biotechnol Adv 16:517–580CrossRef Medina AR, Grima EM, Giménez AG, González MI (1998) Downstream processing of algal polyunsaturated fatty acids. Biotechnol Adv 16:517–580CrossRef
20.
Zurück zum Zitat Grima EM, González MJI, Giménez AG (2013) Solvent extraction for microalgae lipids. Algae for biofuels and energy. Springer, Berlin, pp 187–205CrossRef Grima EM, González MJI, Giménez AG (2013) Solvent extraction for microalgae lipids. Algae for biofuels and energy. Springer, Berlin, pp 187–205CrossRef
21.
Zurück zum Zitat Kapoore R, Butler T, Pandhal J, Vaidyanathan S (2018) Microwave-assisted extraction for microalgae: from biofuels to biorefinery. Biology 7:18CrossRef Kapoore R, Butler T, Pandhal J, Vaidyanathan S (2018) Microwave-assisted extraction for microalgae: from biofuels to biorefinery. Biology 7:18CrossRef
22.
Zurück zum Zitat Theegala CS (2015) Algal cell disruption and lipid extraction: a review on current technologies and limitations. Algal biorefineries. pp 419–441CrossRef Theegala CS (2015) Algal cell disruption and lipid extraction: a review on current technologies and limitations. Algal biorefineries. pp 419–441CrossRef
23.
Zurück zum Zitat Al Hattab M, Ghaly A, Hammouda A (2015) Microalgae harvesting methods for industrial production of biodiesel: critical review and comparative analysis. J Fundam Renew Energy Appl 5:1000154CrossRef Al Hattab M, Ghaly A, Hammouda A (2015) Microalgae harvesting methods for industrial production of biodiesel: critical review and comparative analysis. J Fundam Renew Energy Appl 5:1000154CrossRef
24.
Zurück zum Zitat Pinkert A, Marsh KN, Pang S, Staiger MP (2009) Ionic liquids and their interaction with cellulose. Chem Rev 109:6712–6728CrossRef Pinkert A, Marsh KN, Pang S, Staiger MP (2009) Ionic liquids and their interaction with cellulose. Chem Rev 109:6712–6728CrossRef
25.
Zurück zum Zitat Plechkova NV, Seddon KR (2008) Applications of ionic liquids in the chemical industry. Chem Soc Rev 37:123–150CrossRef Plechkova NV, Seddon KR (2008) Applications of ionic liquids in the chemical industry. Chem Soc Rev 37:123–150CrossRef
26.
Zurück zum Zitat Tadesse H, Luque R (2011) Advances on biomass pretreatment using ionic liquids: an overview. Energy Environ Sci 4:3913–3929CrossRef Tadesse H, Luque R (2011) Advances on biomass pretreatment using ionic liquids: an overview. Energy Environ Sci 4:3913–3929CrossRef
27.
Zurück zum Zitat Earle MJ, Esperança JM, Gilea MA, Lopes JNC, Rebelo LP, Magee JW et al (2006) The distillation and volatility of ionic liquids. Nature 439:831CrossRef Earle MJ, Esperança JM, Gilea MA, Lopes JNC, Rebelo LP, Magee JW et al (2006) The distillation and volatility of ionic liquids. Nature 439:831CrossRef
28.
Zurück zum Zitat Wishart JF (2009) Energy applications of ionic liquids. Energy Environ Sci 2:956–961CrossRef Wishart JF (2009) Energy applications of ionic liquids. Energy Environ Sci 2:956–961CrossRef
29.
Zurück zum Zitat Tian M, Fang L, Yan X, Xiao W, Row KH (2019) Determination of heavy metal ions and organic pollutants in water samples using ionic liquids and ionic liquid-modified sorbents. J Anal Meth Chem 2019:1CrossRef Tian M, Fang L, Yan X, Xiao W, Row KH (2019) Determination of heavy metal ions and organic pollutants in water samples using ionic liquids and ionic liquid-modified sorbents. J Anal Meth Chem 2019:1CrossRef
30.
Zurück zum Zitat Merone GM, Tartaglia A, Rosato E, D’Ovidio C, Kabir A, Ulusoy HI et al (2021) Ionic liquids in analytical chemistry: applications and recent trends. Curr Anal Chem 17:1340–1355CrossRef Merone GM, Tartaglia A, Rosato E, D’Ovidio C, Kabir A, Ulusoy HI et al (2021) Ionic liquids in analytical chemistry: applications and recent trends. Curr Anal Chem 17:1340–1355CrossRef
31.
Zurück zum Zitat Zavrel M, Bross D, Funke M, Büchs J, Spiess AC (2009) High-throughput screening for ionic liquids dissolving (ligno-) cellulose. Biores Technol 100:2580–2587CrossRef Zavrel M, Bross D, Funke M, Büchs J, Spiess AC (2009) High-throughput screening for ionic liquids dissolving (ligno-) cellulose. Biores Technol 100:2580–2587CrossRef
32.
Zurück zum Zitat Kadokawa R, Endo T, Yasaka Y, Ninomiya K, Takahashi K, Kuroda K (2021) Cellulose preferentially dissolved over xylan in ionic liquids through precise anion interaction regulated by bulky cations. ACS Sustain Chem Eng 9:8686–8691CrossRef Kadokawa R, Endo T, Yasaka Y, Ninomiya K, Takahashi K, Kuroda K (2021) Cellulose preferentially dissolved over xylan in ionic liquids through precise anion interaction regulated by bulky cations. ACS Sustain Chem Eng 9:8686–8691CrossRef
33.
Zurück zum Zitat Mazza M, Catana D-A, Vaca-Garcia C, Cecutti C (2009) Influence of water on the dissolution of cellulose in selected ionic liquids. Cellulose 16:207–215CrossRef Mazza M, Catana D-A, Vaca-Garcia C, Cecutti C (2009) Influence of water on the dissolution of cellulose in selected ionic liquids. Cellulose 16:207–215CrossRef
34.
Zurück zum Zitat Egesa D, Mulindwa P, Mubiru E, Kyomuhimbo HD, Aturagaba G (2021) Hydrothermal liquefaction of water hyacinth: effect of process conditions and magnetite nanoparticles on biocrude yield and composition. J Sustain Bioenergy Syst 11:157–186CrossRef Egesa D, Mulindwa P, Mubiru E, Kyomuhimbo HD, Aturagaba G (2021) Hydrothermal liquefaction of water hyacinth: effect of process conditions and magnetite nanoparticles on biocrude yield and composition. J Sustain Bioenergy Syst 11:157–186CrossRef
35.
Zurück zum Zitat Egesa D, Chuck CJ, Plucinski P (2018) Multifunctional role of magnetic nanoparticles in efficient microalgae separation and catalytic hydrothermal liquefaction. ACS Sustain Chem Eng 6:991–999CrossRef Egesa D, Chuck CJ, Plucinski P (2018) Multifunctional role of magnetic nanoparticles in efficient microalgae separation and catalytic hydrothermal liquefaction. ACS Sustain Chem Eng 6:991–999CrossRef
36.
Zurück zum Zitat Shankar M, Chhotaray PK, Agrawal A, Gardas RL, Tamilarasan K, Rajesh M (2017) Protic ionic liquid-assisted cell disruption and lipid extraction from fresh water Chlorella and Chlorococcum microalgae. Algal Res 25:228–236CrossRef Shankar M, Chhotaray PK, Agrawal A, Gardas RL, Tamilarasan K, Rajesh M (2017) Protic ionic liquid-assisted cell disruption and lipid extraction from fresh water Chlorella and Chlorococcum microalgae. Algal Res 25:228–236CrossRef
37.
Zurück zum Zitat Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917CrossRef Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917CrossRef
38.
Zurück zum Zitat Christie WW (1973) Lipid analysis, vol 167. Pergamon press, Oxford Christie WW (1973) Lipid analysis, vol 167. Pergamon press, Oxford
39.
Zurück zum Zitat Duvekot C (2019) Determination of total FAME and linoleic acid methyl esters in biodiesel according to EN-14103 Duvekot C (2019) Determination of total FAME and linoleic acid methyl esters in biodiesel according to EN-14103
40.
Zurück zum Zitat Lardon L, Helias A, Sialve B, Steyer J-P, Bernard O (2009) Life-cycle assessment of biodiesel production from microalgae. ACS Publications, Washington DCCrossRef Lardon L, Helias A, Sialve B, Steyer J-P, Bernard O (2009) Life-cycle assessment of biodiesel production from microalgae. ACS Publications, Washington DCCrossRef
41.
Zurück zum Zitat Yoo G, Park W-K, Kim CW, Choi Y-E, Yang J-W (2012) Direct lipid extraction from wet Chlamydomonas reinhardtii biomass using osmotic shock. Biores Technol 123:717–722CrossRef Yoo G, Park W-K, Kim CW, Choi Y-E, Yang J-W (2012) Direct lipid extraction from wet Chlamydomonas reinhardtii biomass using osmotic shock. Biores Technol 123:717–722CrossRef
42.
Zurück zum Zitat Olkiewicz M, Caporgno MP, Font J, Legrand J, Lepine O, Plechkova NV et al (2015) A novel recovery process for lipids from microalgæ for biodiesel production using a hydrated phosphonium ionic liquid. Green Chem 17:2813–2824CrossRef Olkiewicz M, Caporgno MP, Font J, Legrand J, Lepine O, Plechkova NV et al (2015) A novel recovery process for lipids from microalgæ for biodiesel production using a hydrated phosphonium ionic liquid. Green Chem 17:2813–2824CrossRef
43.
Zurück zum Zitat Fujita K, Kobayashi D, Nakamura N, Ohno H (2013) Direct dissolution of wet and saliferous marine microalgae by polar ionic liquids without heating. Enzyme Microb Technol 52:199–202CrossRef Fujita K, Kobayashi D, Nakamura N, Ohno H (2013) Direct dissolution of wet and saliferous marine microalgae by polar ionic liquids without heating. Enzyme Microb Technol 52:199–202CrossRef
44.
Zurück zum Zitat Choi S-A, Oh Y-K, Jeong M-J, Kim SW, Lee J-S, Park J-Y (2014) Effects of ionic liquid mixtures on lipid extraction from Chlorella vulgaris. Renew Energy 65:169–174CrossRef Choi S-A, Oh Y-K, Jeong M-J, Kim SW, Lee J-S, Park J-Y (2014) Effects of ionic liquid mixtures on lipid extraction from Chlorella vulgaris. Renew Energy 65:169–174CrossRef
45.
Zurück zum Zitat Young G, Nippgen F, Titterbrandt S, Cooney MJ (2010) Lipid extraction from biomass using co-solvent mixtures of ionic liquids and polar covalent molecules. Sep Purif Technol 72:118–121CrossRef Young G, Nippgen F, Titterbrandt S, Cooney MJ (2010) Lipid extraction from biomass using co-solvent mixtures of ionic liquids and polar covalent molecules. Sep Purif Technol 72:118–121CrossRef
46.
Zurück zum Zitat Yoo B, Jing B, Jones SE, Lamberti GA, Zhu Y, Shah JK et al (2016) Molecular mechanisms of ionic liquid cytotoxicity probed by an integrated experimental and computational approach. Sci Rep 6:19889CrossRef Yoo B, Jing B, Jones SE, Lamberti GA, Zhu Y, Shah JK et al (2016) Molecular mechanisms of ionic liquid cytotoxicity probed by an integrated experimental and computational approach. Sci Rep 6:19889CrossRef
47.
Zurück zum Zitat Weerachanchai P, Chen Z, Leong SSJ, Chang MW, Lee J-M (2012) Hildebrand solubility parameters of ionic liquids: effects of ionic liquid type, temperature and DMA fraction in ionic liquid. Chem Eng J 213:356–362CrossRef Weerachanchai P, Chen Z, Leong SSJ, Chang MW, Lee J-M (2012) Hildebrand solubility parameters of ionic liquids: effects of ionic liquid type, temperature and DMA fraction in ionic liquid. Chem Eng J 213:356–362CrossRef
48.
Zurück zum Zitat Fink JK (2013) Unsaturated polyester resins. Reactive Polymers Fundamentals and Applications. Elsevier, Amsterdam, pp 1–48 Fink JK (2013) Unsaturated polyester resins. Reactive Polymers Fundamentals and Applications. Elsevier, Amsterdam, pp 1–48
49.
Zurück zum Zitat Swiderski K, McLean A, Gordon CM, Vaughan DH (2004) Estimates of internal energies of vaporisation of some room temperature ionic liquids. Chem Commun 19:2178–2179CrossRef Swiderski K, McLean A, Gordon CM, Vaughan DH (2004) Estimates of internal energies of vaporisation of some room temperature ionic liquids. Chem Commun 19:2178–2179CrossRef
50.
Zurück zum Zitat Zhao D, Wu M, Kou Y, Min E (2002) Ionic liquids: applications in catalysis. Catal Today 74:157–189CrossRef Zhao D, Wu M, Kou Y, Min E (2002) Ionic liquids: applications in catalysis. Catal Today 74:157–189CrossRef
51.
Zurück zum Zitat Remsing RC, Swatloski RP, Rogers RD, Moyna G (2006) “Mechanism of cellulose dissolution in the ionic liquid 1-n-butyl-3-methylimidazolium chloride: a 13 C and 35/37 Cl NMR relaxation study on model systems. Chem Commun 12:1271–1273CrossRef Remsing RC, Swatloski RP, Rogers RD, Moyna G (2006) “Mechanism of cellulose dissolution in the ionic liquid 1-n-butyl-3-methylimidazolium chloride: a 13 C and 35/37 Cl NMR relaxation study on model systems. Chem Commun 12:1271–1273CrossRef
52.
Zurück zum Zitat Al Hattab M, Ghaly A, Hammoud A (2015) Microalgae harvesting methods for industrial production of biodiesel: critical review and comparative analysis. J Fundam Renew Energy Appl 5:1000154CrossRef Al Hattab M, Ghaly A, Hammoud A (2015) Microalgae harvesting methods for industrial production of biodiesel: critical review and comparative analysis. J Fundam Renew Energy Appl 5:1000154CrossRef
53.
Zurück zum Zitat Ab Rani M, Brant A, Crowhurst L, Dolan A, Lui M, Hassan NH et al (2011) Understanding the polarity of ionic liquids”. Phys Chem Chem Phys 13:16831–16840CrossRef Ab Rani M, Brant A, Crowhurst L, Dolan A, Lui M, Hassan NH et al (2011) Understanding the polarity of ionic liquids”. Phys Chem Chem Phys 13:16831–16840CrossRef
54.
Zurück zum Zitat Fukaya Y, Hayashi K, Wada M, Ohno H (2008) Cellulose dissolution with polar ionic liquids under mild conditions: required factors for anions. Green Chem 10:44–46CrossRef Fukaya Y, Hayashi K, Wada M, Ohno H (2008) Cellulose dissolution with polar ionic liquids under mild conditions: required factors for anions. Green Chem 10:44–46CrossRef
55.
Zurück zum Zitat Balasubramanian RK, Doan TTY, Obbard JP (2013) Factors affecting cellular lipid extraction from marine microalgae. Chem Eng J 215:929–936CrossRef Balasubramanian RK, Doan TTY, Obbard JP (2013) Factors affecting cellular lipid extraction from marine microalgae. Chem Eng J 215:929–936CrossRef
56.
Zurück zum Zitat Kim Y-H, Park S, Kim MH, Choi Y-K, Yang Y-H, Kim HJ et al (2013) Ultrasound-assisted extraction of lipids from Chlorella vulgaris using [Bmim][MeSO4]. Biomass Bioenerg 56:99–103CrossRef Kim Y-H, Park S, Kim MH, Choi Y-K, Yang Y-H, Kim HJ et al (2013) Ultrasound-assisted extraction of lipids from Chlorella vulgaris using [Bmim][MeSO4]. Biomass Bioenerg 56:99–103CrossRef
57.
Zurück zum Zitat Halim R, Danquah MK, Webley PA (2012) Extraction of oil from microalgae for biodiesel production: a review. Biotechnol Adv 30:709–732CrossRef Halim R, Danquah MK, Webley PA (2012) Extraction of oil from microalgae for biodiesel production: a review. Biotechnol Adv 30:709–732CrossRef
58.
Zurück zum Zitat Sarpal A, Costa I, Teixeira C, Filocomo D, Candido R (2016) Investigation of biodiesel potential of biomasses of microalgaes Chlorella, Spirulina and Tetraselmis by NMR and GC-MS techniques. J Biotechnol Biomater 6:2 Sarpal A, Costa I, Teixeira C, Filocomo D, Candido R (2016) Investigation of biodiesel potential of biomasses of microalgaes Chlorella, Spirulina and Tetraselmis by NMR and GC-MS techniques. J Biotechnol Biomater 6:2
59.
Zurück zum Zitat Pistorius AM, DeGrip WJ, Egorova-Zachernyuk TA (2009) Monitoring of biomass composition from microbiological sources by means of FT-IR spectroscopy. Biotechnol Bioeng 103:123–129CrossRef Pistorius AM, DeGrip WJ, Egorova-Zachernyuk TA (2009) Monitoring of biomass composition from microbiological sources by means of FT-IR spectroscopy. Biotechnol Bioeng 103:123–129CrossRef
Metadaten
Titel
Efficient extraction of lipids from magnetically separated microalgae using ionic liquids and their transesterification to biodiesel
verfasst von
Dan Egesa
Pawel Plucinski
Publikationsdatum
01.02.2022
Verlag
Springer Berlin Heidelberg
Erschienen in
Biomass Conversion and Biorefinery / Ausgabe 1/2024
Print ISSN: 2190-6815
Elektronische ISSN: 2190-6823
DOI
https://doi.org/10.1007/s13399-022-02377-5

Weitere Artikel der Ausgabe 1/2024

Biomass Conversion and Biorefinery 1/2024 Zur Ausgabe