Skip to main content
Top

2011 | OriginalPaper | Chapter

20. Efficient Strategies for Analysis of Low Abundance Proteins in Plant Proteomics

Authors : Olga A. Koroleva, Laurence V. Bindschedler

Published in: Sample Preparation in Biological Mass Spectrometry

Publisher: Springer Netherlands

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Proteomic studies alongside with other post-genomic approaches are rapidly progressing in plant biology. This trend is reflected by the increased number of publications related to plant proteomics in the last several years. While proteomic studies span from the global characterisation of proteomes (the protein complements) in whole plants and organs to the more detailed characterisation of particular proteins, there is an increasing demand for methods allowing sophisticated (and preferably quantitative) analysis of a variety of cells, compartments and organelles, post-translational protein modifications, protein complexes and their dynamics. The common problem is the high dynamic range of the proteome, and many researchers are looking for the ways to improve the recovery of naturally low-abundant plant proteins. The aim of this chapter is to provide a review of a variety of approaches, rather than specific protocols, established for the isolation of specific fractions of proteins suitable for analysis by mass spectrometry. We focus on the sample preparation methodology from general to specific applications in plant proteomics and on advances made in the characterisation of global plant proteomes and plant-specific compartments. We also describe the advantages of metabolic labeling techniques suited for quantitative plant proteomic studies and discuss tandem affinity purification of plant protein complexes and perspectives of single-cell proteomics in plants.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
go back to reference Aki, T., Shigyo, M., Nakano, R., Yoneyama, T., and Yanagisawa, S. (2008). Nano scale proteomics revealed the presence of regulatory proteins including three FT-Like proteins in phloem and xylem saps from rice. Plant Cell Physiol 49, 767–790.CrossRef Aki, T., Shigyo, M., Nakano, R., Yoneyama, T., and Yanagisawa, S. (2008). Nano scale proteomics revealed the presence of regulatory proteins including three FT-Like proteins in phloem and xylem saps from rice. Plant Cell Physiol 49, 767–790.CrossRef
go back to reference Albenne, C., Canut, H., Boudart, G., Zhang, Y., San Clemente, H., Pont-Lezica, R., and Jamet, E. (2009). Plant cell wall proteomics: mass spectrometry data, a trove for research on protein structure/function relationships. Mol Plant 2, 977–989.CrossRef Albenne, C., Canut, H., Boudart, G., Zhang, Y., San Clemente, H., Pont-Lezica, R., and Jamet, E. (2009). Plant cell wall proteomics: mass spectrometry data, a trove for research on protein structure/function relationships. Mol Plant 2, 977–989.CrossRef
go back to reference Alvarez, S., Goodger, J.Q., Marsh, E.L., Chen, S., Asirvatham, V.S., and Schachtman, D.P. (2006). Characterization of the maize xylem sap proteome. J Proteome Res 5, 963–972.CrossRef Alvarez, S., Goodger, J.Q., Marsh, E.L., Chen, S., Asirvatham, V.S., and Schachtman, D.P. (2006). Characterization of the maize xylem sap proteome. J Proteome Res 5, 963–972.CrossRef
go back to reference Arabidopsis Genome Initiative (2000). Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408, 796–815. Arabidopsis Genome Initiative (2000). Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408, 796–815.
go back to reference Bae, M.S., Cho, E.J., Choi, E.Y., and Park, O.K. (2003). Analysis of the Arabidopsis nuclear proteome and its response to cold stress. Plant J 36, 652–663.CrossRef Bae, M.S., Cho, E.J., Choi, E.Y., and Park, O.K. (2003). Analysis of the Arabidopsis nuclear proteome and its response to cold stress. Plant J 36, 652–663.CrossRef
go back to reference Baerenfaller, K., Grossmann, J., Grobei, M.A., Hull, R., Hirsch-Hoffmann, M., Yalovsky, S., Zimmermann, P., Grossniklaus, U., Gruissem, W., and Baginsky, S. (2008). Genome-scale proteomics reveals Arabidopsis thaliana gene models and proteome dynamics. Science 320, 938–941.CrossRef Baerenfaller, K., Grossmann, J., Grobei, M.A., Hull, R., Hirsch-Hoffmann, M., Yalovsky, S., Zimmermann, P., Grossniklaus, U., Gruissem, W., and Baginsky, S. (2008). Genome-scale proteomics reveals Arabidopsis thaliana gene models and proteome dynamics. Science 320, 938–941.CrossRef
go back to reference Bayer, E.M., Bottrill, A.R., Walshaw, J., Vigouroux, M., Naldrett, M.J., Thomas, C.L., and Maule, A.J. (2006). Arabidopsis cell wall proteome defined using multidimensional protein identification technology. Proteomics 6, 301–311.CrossRef Bayer, E.M., Bottrill, A.R., Walshaw, J., Vigouroux, M., Naldrett, M.J., Thomas, C.L., and Maule, A.J. (2006). Arabidopsis cell wall proteome defined using multidimensional protein identification technology. Proteomics 6, 301–311.CrossRef
go back to reference Bayer, E., Thomas, C.L., and Maule, A.J. (2004). Plasmodesmata in Arabidopsis thaliana suspension cells. Protoplasma 223, 93–102.CrossRef Bayer, E., Thomas, C.L., and Maule, A.J. (2004). Plasmodesmata in Arabidopsis thaliana suspension cells. Protoplasma 223, 93–102.CrossRef
go back to reference Bindschedler, L.V., Palmblad, M., and Cramer, R. (2008). Hydroponic isotope labelling of entire plants (HILEP) for quantitative plant proteomics; An oxidative stress case study. Phytochemistry 69, 1962–1972.CrossRef Bindschedler, L.V., Palmblad, M., and Cramer, R. (2008). Hydroponic isotope labelling of entire plants (HILEP) for quantitative plant proteomics; An oxidative stress case study. Phytochemistry 69, 1962–1972.CrossRef
go back to reference Bortiri, E., Coleman-Derr, D., Lazo, G.R., Anderson, O.D., and Gu, Y.Q. (2008). The complete chloroplast genome sequence of Brachypodium distachyon: Sequence comparison and phylogenetic analysis of eight grass plastomes. BMC Res Notes 1, 61.CrossRef Bortiri, E., Coleman-Derr, D., Lazo, G.R., Anderson, O.D., and Gu, Y.Q. (2008). The complete chloroplast genome sequence of Brachypodium distachyon: Sequence comparison and phylogenetic analysis of eight grass plastomes. BMC Res Notes 1, 61.CrossRef
go back to reference Boschetti, E., Bindschedler, L.V., Tang, C., Fasoli, E., and Righetti, P.G. (2009). Combinatorial peptide ligand libraries and plant proteomics: A winning strategy at a price. J Chromatogr A 1216, 1215–1222.CrossRef Boschetti, E., Bindschedler, L.V., Tang, C., Fasoli, E., and Righetti, P.G. (2009). Combinatorial peptide ligand libraries and plant proteomics: A winning strategy at a price. J Chromatogr A 1216, 1215–1222.CrossRef
go back to reference Brechenmacher, L., Lee, J., Sachdev, S., Song, Z., Nguyen, T.H., Joshi, T., Oehrle, N., Libault, M., Mooney, B., Xu, D., et al. (2009). Establishment of a protein reference map for soybean root hair cells. Plant Physiol 149, 670–682.CrossRef Brechenmacher, L., Lee, J., Sachdev, S., Song, Z., Nguyen, T.H., Joshi, T., Oehrle, N., Libault, M., Mooney, B., Xu, D., et al. (2009). Establishment of a protein reference map for soybean root hair cells. Plant Physiol 149, 670–682.CrossRef
go back to reference Burckstummer, T., Bennett, K.L., Preradovic, A., Schutze, G., Hantschel, O., Superti-Furga, G., and Bauch, A. (2006). An efficient tandem affinity purification procedure for interaction proteomics in mammalian cells. Nat Methods 3, 1013–1019.CrossRef Burckstummer, T., Bennett, K.L., Preradovic, A., Schutze, G., Hantschel, O., Superti-Furga, G., and Bauch, A. (2006). An efficient tandem affinity purification procedure for interaction proteomics in mammalian cells. Nat Methods 3, 1013–1019.CrossRef
go back to reference Calikowski, T.T., Meulia, T., and Meier, I. (2003). A proteomic study of the arabidopsis nuclear matrix. J Cell Biochem 90, 361–378.CrossRef Calikowski, T.T., Meulia, T., and Meier, I. (2003). A proteomic study of the arabidopsis nuclear matrix. J Cell Biochem 90, 361–378.CrossRef
go back to reference Carpentier, S.C., Panis, B., Vertommen, A., Swennen, R., Sergeant, K., Renaut, J., Laukens, K., Witters, E., Samyn, B., and Devreese, B. (2008). Proteome analysis of non-model plants: A challenging but powerful approach. Mass Spectrom Rev 27, 354–377.CrossRef Carpentier, S.C., Panis, B., Vertommen, A., Swennen, R., Sergeant, K., Renaut, J., Laukens, K., Witters, E., Samyn, B., and Devreese, B. (2008). Proteome analysis of non-model plants: A challenging but powerful approach. Mass Spectrom Rev 27, 354–377.CrossRef
go back to reference Carter, C., Pan, S., Zouhar, J., Avila, E.L., Girke, T., and Raikhel, N.V. (2004). The vegetative vacuole proteome of Arabidopsis thaliana reveals predicted and unexpected proteins. Plant Cell 16, 3285–3303.CrossRef Carter, C., Pan, S., Zouhar, J., Avila, E.L., Girke, T., and Raikhel, N.V. (2004). The vegetative vacuole proteome of Arabidopsis thaliana reveals predicted and unexpected proteins. Plant Cell 16, 3285–3303.CrossRef
go back to reference Castellana, N.E., Payne, S.H., Shen, Z., Stanke, M., Bafna, V., and Briggs, S.P. (2008). Discovery and revision of Arabidopsis genes by proteogenomics. Proc Natl Acad Sci USA 105, 21034–21038.CrossRef Castellana, N.E., Payne, S.H., Shen, Z., Stanke, M., Bafna, V., and Briggs, S.P. (2008). Discovery and revision of Arabidopsis genes by proteogenomics. Proc Natl Acad Sci USA 105, 21034–21038.CrossRef
go back to reference Cellar, N.A., Kuppannan, K., Langhorst, M.L., Ni, W., Xu, P., and Young, S.A. (2008). Cross species applicability of abundant protein depletion columns for ribulose-1,5-bisphosphate carboxylase/oxygenase. J Chromatogr B Anal Technol Biomed Life Sci 861, 29–39.CrossRef Cellar, N.A., Kuppannan, K., Langhorst, M.L., Ni, W., Xu, P., and Young, S.A. (2008). Cross species applicability of abundant protein depletion columns for ribulose-1,5-bisphosphate carboxylase/oxygenase. J Chromatogr B Anal Technol Biomed Life Sci 861, 29–39.CrossRef
go back to reference Charmont, S., Jamet, E., Pont-Lezica, R., and Canut, H. (2005). Proteomic analysis of secreted proteins from Arabidopsis thaliana seedlings: Improved recovery following removal of phenolic compounds. Phytochemistry 66, 453–461.CrossRef Charmont, S., Jamet, E., Pont-Lezica, R., and Canut, H. (2005). Proteomic analysis of secreted proteins from Arabidopsis thaliana seedlings: Improved recovery following removal of phenolic compounds. Phytochemistry 66, 453–461.CrossRef
go back to reference Childs, K.L., Hamilton, J.P., Zhu, W., Ly, E., Cheung, F., Wu, H., Rabinowicz, P.D., Town, C.D., Buell, C.R., and Chan, A.P. (2007). The TIGR plant transcript assemblies database. Nucleic Acids Res 35, D846–851. Childs, K.L., Hamilton, J.P., Zhu, W., Ly, E., Cheung, F., Wu, H., Rabinowicz, P.D., Town, C.D., Buell, C.R., and Chan, A.P. (2007). The TIGR plant transcript assemblies database. Nucleic Acids Res 35, D846–851.
go back to reference Chivasa, S., Simon, W.J., Yu, X.L., Yalpani, N., and Slabas, A.R. (2005). Pathogen elicitor-induced changes in the maize extracellular matrix proteome. Proteomics 5, 4894–4904.CrossRef Chivasa, S., Simon, W.J., Yu, X.L., Yalpani, N., and Slabas, A.R. (2005). Pathogen elicitor-induced changes in the maize extracellular matrix proteome. Proteomics 5, 4894–4904.CrossRef
go back to reference Cho, W.K., Chen, X.Y., Chu, H., Rim, Y., Kim, S., Kim, S.T., Kim, S.W., Park, Z.Y., and Kim, J.Y. (2009). Proteomic analysis of the secretome of rice calli. Physiol Plant 135, 331–341.CrossRef Cho, W.K., Chen, X.Y., Chu, H., Rim, Y., Kim, S., Kim, S.T., Kim, S.W., Park, Z.Y., and Kim, J.Y. (2009). Proteomic analysis of the secretome of rice calli. Physiol Plant 135, 331–341.CrossRef
go back to reference Choudhary, M.K., Basu, D., Datta, A., Chakraborty, N., and Chakraborty, S. (2009). Dehydration-responsive nuclear proteome of rice (Oryza sativa L.) illustrates protein network, novel regulators of cellular adaptation, and evolutionary perspective. Mol Cell Proteomics 8, 1579–1598.CrossRef Choudhary, M.K., Basu, D., Datta, A., Chakraborty, N., and Chakraborty, S. (2009). Dehydration-responsive nuclear proteome of rice (Oryza sativa L.) illustrates protein network, novel regulators of cellular adaptation, and evolutionary perspective. Mol Cell Proteomics 8, 1579–1598.CrossRef
go back to reference Deeken, R., Geiger, D., Fromm, J., Koroleva, O., Ache, P., Langenfeld-Heyser, R., Sauer, N., May, S.T., and Hedrich, R. (2002). Loss of the AKT2/3 potassium channel affects sugar loading into the phloem of Arabidopsis. Planta 216, 334–344.CrossRef Deeken, R., Geiger, D., Fromm, J., Koroleva, O., Ache, P., Langenfeld-Heyser, R., Sauer, N., May, S.T., and Hedrich, R. (2002). Loss of the AKT2/3 potassium channel affects sugar loading into the phloem of Arabidopsis. Planta 216, 334–344.CrossRef
go back to reference Dembinsky, D., Woll, K., Saleem, M., Liu, Y., Fu, Y., Borsuk, L.A., Lamkemeyer, T., Fladerer, C., Madlung, J., Barbazuk, B., et al. (2007). Transcriptomic and proteomic analyses of pericycle cells of the maize primary root. Plant Physiol 145, 575–588.CrossRef Dembinsky, D., Woll, K., Saleem, M., Liu, Y., Fu, Y., Borsuk, L.A., Lamkemeyer, T., Fladerer, C., Madlung, J., Barbazuk, B., et al. (2007). Transcriptomic and proteomic analyses of pericycle cells of the maize primary root. Plant Physiol 145, 575–588.CrossRef
go back to reference Dunkley, T.P., Hester, S., Shadforth, I.P., Runions, J., Weimar, T., Hanton, S.L., Griffin, J.L., Bessant, C., Brandizzi, F., Hawes, C., et al. (2006). Mapping the Arabidopsis organelle proteome. Proc Natl Acad Sci USA 103, 6518–6523.CrossRef Dunkley, T.P., Hester, S., Shadforth, I.P., Runions, J., Weimar, T., Hanton, S.L., Griffin, J.L., Bessant, C., Brandizzi, F., Hawes, C., et al. (2006). Mapping the Arabidopsis organelle proteome. Proc Natl Acad Sci USA 103, 6518–6523.CrossRef
go back to reference Dunkley, T.P., Watson, R., Griffin, J.L., Dupree, P., and Lilley, K.S. (2004). Localization of organelle proteins by isotope tagging (LOPIT). Mol Cell Proteomics 3, 1128–1134.CrossRef Dunkley, T.P., Watson, R., Griffin, J.L., Dupree, P., and Lilley, K.S. (2004). Localization of organelle proteins by isotope tagging (LOPIT). Mol Cell Proteomics 3, 1128–1134.CrossRef
go back to reference Eubel, H., Meyer, E.H., Taylor, N.L., Bussell, J.D., O’Toole, N., Heazlewood, J.L., Castleden, I., Small, I.D., Smith, S.M., and Millar, A.H. (2008). Novel proteins, putative membrane transporters, and an integrated metabolic network are revealed by quantitative proteomic analysis of Arabidopsis cell culture peroxisomes. Plant Physiol 148, 1809–1829.CrossRef Eubel, H., Meyer, E.H., Taylor, N.L., Bussell, J.D., O’Toole, N., Heazlewood, J.L., Castleden, I., Small, I.D., Smith, S.M., and Millar, A.H. (2008). Novel proteins, putative membrane transporters, and an integrated metabolic network are revealed by quantitative proteomic analysis of Arabidopsis cell culture peroxisomes. Plant Physiol 148, 1809–1829.CrossRef
go back to reference Fasoli, E., D’Amato, A., Kravchuk, A.V., Boschetti, E., Bachi, A., Righetti, P.G. (2011). Popeye strikes again: The deep proteome of spinach leaves. J Proteomics 1, 74(1):127–36. Epub 2010 Nov 5. Fasoli, E., D’Amato, A., Kravchuk, A.V., Boschetti, E., Bachi, A., Righetti, P.G. (2011). Popeye strikes again: The deep proteome of spinach leaves. J Proteomics 1, 74(1):127–36. Epub 2010 Nov 5.
go back to reference Friso, G., Giacomelli, L., Ytterberg, A.J., Peltier, J.-B., Rudella, A., Sun, Q., and Wijk, K.J.v. (2004). In-depth analysis of the Thylakoid membrane proteome of Arabidopsis thaliana chloroplasts: New proteins, new functions, and a plastid proteome database. Plant Cell 16, 478–499.CrossRef Friso, G., Giacomelli, L., Ytterberg, A.J., Peltier, J.-B., Rudella, A., Sun, Q., and Wijk, K.J.v. (2004). In-depth analysis of the Thylakoid membrane proteome of Arabidopsis thaliana chloroplasts: New proteins, new functions, and a plastid proteome database. Plant Cell 16, 478–499.CrossRef
go back to reference Gaupels, F., Buhtz, A., Knauer, T., Deshmukh, S., Waller, F., van Bel, A.J., Kogel, K.H., and Kehr, J. (2008). Adaptation of aphid stylectomy for analyses of proteins and mRNAs in barley phloem sap. J Exp Bot 59, 3297–3306.CrossRef Gaupels, F., Buhtz, A., Knauer, T., Deshmukh, S., Waller, F., van Bel, A.J., Kogel, K.H., and Kehr, J. (2008). Adaptation of aphid stylectomy for analyses of proteins and mRNAs in barley phloem sap. J Exp Bot 59, 3297–3306.CrossRef
go back to reference Giavalisco, P., Kapitza, K., Kolasa, A., Buhtz, A., and Kehr, J. (2006). Towards the proteome of Brassica napus phloem sap. Proteomics 6, 896–909.CrossRef Giavalisco, P., Kapitza, K., Kolasa, A., Buhtz, A., and Kehr, J. (2006). Towards the proteome of Brassica napus phloem sap. Proteomics 6, 896–909.CrossRef
go back to reference Groen, A.J., de Vries, S.C., and Lilley, K.S. (2008). A proteomics approach to membrane trafficking. Plant Physiol 147, 1584–1589.CrossRef Groen, A.J., de Vries, S.C., and Lilley, K.S. (2008). A proteomics approach to membrane trafficking. Plant Physiol 147, 1584–1589.CrossRef
go back to reference Heazlewood, J.L., Verboom, R.E., Tonti-Filippini, J., Small, I., and Millar, A.H. (2007). SUBA: The Arabidopsis subcellular database. Nucleic Acids Res 35, D213–218. Heazlewood, J.L., Verboom, R.E., Tonti-Filippini, J., Small, I., and Millar, A.H. (2007). SUBA: The Arabidopsis subcellular database. Nucleic Acids Res 35, D213–218.
go back to reference Huang, S., Li, R., Zhang, Z., Li, L., Gu, X., Fan, W., Lucas, W.J., Wang, X., Xie, B., Ni, P., et al. (2009a). The genome of the cucumber, Cucumis sativus L. Nat Genet. Advance online publication. Huang, S., Li, R., Zhang, Z., Li, L., Gu, X., Fan, W., Lucas, W.J., Wang, X., Xie, B., Ni, P., et al. (2009a). The genome of the cucumber, Cucumis sativus L. Nat Genet. Advance online publication.
go back to reference Huang, S., Taylor, N.L., Narsai, R., Eubel, H., Whelan, J., and Millar, A.H. (2009b). Experimental analysis of the rice mitochondrial proteome, its biogenesis, and heterogeneity. Plant Physiol 149, 719–734.CrossRef Huang, S., Taylor, N.L., Narsai, R., Eubel, H., Whelan, J., and Millar, A.H. (2009b). Experimental analysis of the rice mitochondrial proteome, its biogenesis, and heterogeneity. Plant Physiol 149, 719–734.CrossRef
go back to reference Huo, N., Lazo, G.R., Vogel, J.P., You, F.M., Ma, Y., Hayden, D.M., Coleman-Derr, D., Hill, T.A., Dvorak, J., Anderson, O.D., et al. (2008). The nuclear genome of Brachypodium distachyon: analysis of BAC end sequences. Funct Integr Genomics 8, 135–147.CrossRef Huo, N., Lazo, G.R., Vogel, J.P., You, F.M., Ma, Y., Hayden, D.M., Coleman-Derr, D., Hill, T.A., Dvorak, J., Anderson, O.D., et al. (2008). The nuclear genome of Brachypodium distachyon: analysis of BAC end sequences. Funct Integr Genomics 8, 135–147.CrossRef
go back to reference International Rice Genome Sequencing Project (2005). The map-based sequence of the rice genome. Nature 436, 793–800. International Rice Genome Sequencing Project (2005). The map-based sequence of the rice genome. Nature 436, 793–800.
go back to reference Irshad, M., Canut, H., Borderies, G., Pont-Lezica, R., and Jamet, E. (2008). A new picture of cell wall protein dynamics in elongating cells of Arabidopsis thaliana: Confirmed actors and newcomers. BMC Plant Biol 8, 94.CrossRef Irshad, M., Canut, H., Borderies, G., Pont-Lezica, R., and Jamet, E. (2008). A new picture of cell wall protein dynamics in elongating cells of Arabidopsis thaliana: Confirmed actors and newcomers. BMC Plant Biol 8, 94.CrossRef
go back to reference Ishikawa, M., Fujiwara, M., Sonoike, K., and Sato, N. (2009). Orthogenomics of photosynthetic organisms: bioinformatic and experimental analysis of chloroplast proteins of endosymbiont origin in Arabidopsis and their counterparts in Synechocystis. Plant Cell Physiol 50, 773–788.CrossRef Ishikawa, M., Fujiwara, M., Sonoike, K., and Sato, N. (2009). Orthogenomics of photosynthetic organisms: bioinformatic and experimental analysis of chloroplast proteins of endosymbiont origin in Arabidopsis and their counterparts in Synechocystis. Plant Cell Physiol 50, 773–788.CrossRef
go back to reference Jamet, E., Albenne, C., Boudart, G., Irshad, M., Canut, H., and Pont-Lezica, R. (2008a). Recent advances in plant cell wall proteomics. Proteomics 8, 893–908.CrossRef Jamet, E., Albenne, C., Boudart, G., Irshad, M., Canut, H., and Pont-Lezica, R. (2008a). Recent advances in plant cell wall proteomics. Proteomics 8, 893–908.CrossRef
go back to reference Jamet, E., Boudart, G., Borderies, G., Charmont, S., Lafitte, C., Rossignol, M., Canut, H., and Pont-Lezica, R. (2008b). Isolation of plant cell wall proteins. Methods Mol Biol 425, 187–201.CrossRef Jamet, E., Boudart, G., Borderies, G., Charmont, S., Lafitte, C., Rossignol, M., Canut, H., and Pont-Lezica, R. (2008b). Isolation of plant cell wall proteins. Methods Mol Biol 425, 187–201.CrossRef
go back to reference Kalluri, U.C., Hurst, G.B., Lankford, P.K., Ranjan, P., and Pelletier, D.A. (2009). Shotgun proteome profile of Populus developing xylem. Proteomics 9, 4871–4880.CrossRef Kalluri, U.C., Hurst, G.B., Lankford, P.K., Ranjan, P., and Pelletier, D.A. (2009). Shotgun proteome profile of Populus developing xylem. Proteomics 9, 4871–4880.CrossRef
go back to reference Kato, Y., Hazama, A., Yamagami, M., and Uozumi, N. (2003). Addition of a peptide tag at the C terminus of AtHKT1 inhibits its Na+ transport. Biosci Biotechnol Biochem 67, 2291–2293.CrossRef Kato, Y., Hazama, A., Yamagami, M., and Uozumi, N. (2003). Addition of a peptide tag at the C terminus of AtHKT1 inhibits its Na+ transport. Biosci Biotechnol Biochem 67, 2291–2293.CrossRef
go back to reference Kehr, J., Buhtz, A., and Giavalisco, P. (2005). Analysis of xylem sap proteins from Brassica napus. BMC Plant Biol 5, 11.CrossRef Kehr, J., Buhtz, A., and Giavalisco, P. (2005). Analysis of xylem sap proteins from Brassica napus. BMC Plant Biol 5, 11.CrossRef
go back to reference Kehr, J., and Rep, M. (2007). Protein extraction from xylem and phloem sap. Methods Mol Biol 355, 27–35. Kehr, J., and Rep, M. (2007). Protein extraction from xylem and phloem sap. Methods Mol Biol 355, 27–35.
go back to reference Khan, M.M., and Komatsu, S. (2004). Rice proteomics: Recent developments and analysis of nuclear proteins. Phytochemistry 65, 1671–1681.CrossRef Khan, M.M., and Komatsu, S. (2004). Rice proteomics: Recent developments and analysis of nuclear proteins. Phytochemistry 65, 1671–1681.CrossRef
go back to reference Kleffmann, T., von Zychlinski, A., Russenberger, D., Hirsch-Hoffmann, M., Gehrig, P., Gruissem, W., and Baginsky, S. (2007). Proteome dynamics during plastid differentiation in rice. Plant Physiol 143, 912–923.CrossRef Kleffmann, T., von Zychlinski, A., Russenberger, D., Hirsch-Hoffmann, M., Gehrig, P., Gruissem, W., and Baginsky, S. (2007). Proteome dynamics during plastid differentiation in rice. Plant Physiol 143, 912–923.CrossRef
go back to reference Kondo, T., Sawa, S., Kinoshita, A., Mizuno, S., Kakimoto, T., Fukuda, H., and Sakagami, Y. (2006). A plant peptide encoded by CLV3 identified by in situ MALDI-TOF MS analysis. Science 313, 845–848.CrossRef Kondo, T., Sawa, S., Kinoshita, A., Mizuno, S., Kakimoto, T., Fukuda, H., and Sakagami, Y. (2006). A plant peptide encoded by CLV3 identified by in situ MALDI-TOF MS analysis. Science 313, 845–848.CrossRef
go back to reference Koroleva, O.A., Calder, G., Pendle, A.F., Kim, S.H., Lewandowska, D., Simpson, C.G., Jones, I.M., Brown, J.W., and Shaw, P.J. (2009). Dynamic behavior of Arabidopsis eIF4A-III, putative core protein of exon junction complex: fast relocation to nucleolus and splicing speckles under hypoxia. Plant Cell 21, 1592–1606.CrossRef Koroleva, O.A., Calder, G., Pendle, A.F., Kim, S.H., Lewandowska, D., Simpson, C.G., Jones, I.M., Brown, J.W., and Shaw, P.J. (2009). Dynamic behavior of Arabidopsis eIF4A-III, putative core protein of exon junction complex: fast relocation to nucleolus and splicing speckles under hypoxia. Plant Cell 21, 1592–1606.CrossRef
go back to reference Koroleva, O.A., Davies, A., Deeken, R., Thorpe, M.R., Tomos, A.D., and Hedrich, R. (2000). Identification of a new glucosinolate-rich cell type in Arabidopsis flower stalk. Plant Physiol 124, 599–608.CrossRef Koroleva, O.A., Davies, A., Deeken, R., Thorpe, M.R., Tomos, A.D., and Hedrich, R. (2000). Identification of a new glucosinolate-rich cell type in Arabidopsis flower stalk. Plant Physiol 124, 599–608.CrossRef
go back to reference Koroleva, O.A., Farrar, J.F., Deri Tomos, A., and Pollock, C.J. (1998). Carbohydrates in individual cells of epidermis, mesophyll, and bundle sheath in barley leaves with changed export or photosynthetic rate. Plant Physiol 118, 1525–1532.CrossRef Koroleva, O.A., Farrar, J.F., Deri Tomos, A., and Pollock, C.J. (1998). Carbohydrates in individual cells of epidermis, mesophyll, and bundle sheath in barley leaves with changed export or photosynthetic rate. Plant Physiol 118, 1525–1532.CrossRef
go back to reference Koroleva, O., McKeown, P., Pendle, A.F., and Shaw, P. (2007). Proteomic Analysis of the Plant Nucleolus. In Plant Proteomics, J. Šamaj, J. Thelen, eds. (Berlin, Heidelberg, New York, Springer), pp. 247–269. Koroleva, O., McKeown, P., Pendle, A.F., and Shaw, P. (2007). Proteomic Analysis of the Plant Nucleolus. In Plant Proteomics, J. Šamaj, J. Thelen, eds. (Berlin, Heidelberg, New York, Springer), pp. 247–269.
go back to reference Koroleva, O.A., Tomlinson, M., Parinyapong, P., Sakvarelidze, L., Leader, D., Shaw, P., and Doonan, J.H. (2004). CycD1, a putative G1 cyclin from Antirrhinum majus, accelerates the cell cycle in cultured tobacco BY-2 cells by enhancing both G1/S entry and progression through S and G2 phases. Plant Cell 16, 2364–2379.CrossRef Koroleva, O.A., Tomlinson, M., Parinyapong, P., Sakvarelidze, L., Leader, D., Shaw, P., and Doonan, J.H. (2004). CycD1, a putative G1 cyclin from Antirrhinum majus, accelerates the cell cycle in cultured tobacco BY-2 cells by enhancing both G1/S entry and progression through S and G2 phases. Plant Cell 16, 2364–2379.CrossRef
go back to reference Kwon, H.K., Yokoyama, R., and Nishitani, K. (2005). A proteomic approach to apoplastic proteins involved in cell wall regeneration in protoplasts of Arabidopsis suspension-cultured cells. Plant Cell Physiol 46, 843–857.CrossRef Kwon, H.K., Yokoyama, R., and Nishitani, K. (2005). A proteomic approach to apoplastic proteins involved in cell wall regeneration in protoplasts of Arabidopsis suspension-cultured cells. Plant Cell Physiol 46, 843–857.CrossRef
go back to reference Li, C., Hong, Y., Tan, Y.X., Zhou, H., Ai, J.H., Li, S.J., Zhang, L., Xia, Q.C., Wu, J.R., Wang, H.Y., et al. (2004). Accurate qualitative and quantitative proteomic analysis of clinical hepatocellular carcinoma using laser capture microdissection coupled with isotope-coded affinity tag and two-dimensional liquid chromatography mass spectrometry. Mol Cell Proteomics 3, 399–409.CrossRef Li, C., Hong, Y., Tan, Y.X., Zhou, H., Ai, J.H., Li, S.J., Zhang, L., Xia, Q.C., Wu, J.R., Wang, H.Y., et al. (2004). Accurate qualitative and quantitative proteomic analysis of clinical hepatocellular carcinoma using laser capture microdissection coupled with isotope-coded affinity tag and two-dimensional liquid chromatography mass spectrometry. Mol Cell Proteomics 3, 399–409.CrossRef
go back to reference Lin, M.K., Lee, Y.J., Lough, T.J., Phinney, B.S., and Lucas, W.J. (2009). Analysis of the pumpkin phloem proteome provides insights into angiosperm sieve tube function. Mol Cell Proteomics 8, 343–356. Lin, M.K., Lee, Y.J., Lough, T.J., Phinney, B.S., and Lucas, W.J. (2009). Analysis of the pumpkin phloem proteome provides insights into angiosperm sieve tube function. Mol Cell Proteomics 8, 343–356.
go back to reference Mano, S., Miwa, T., Nishikawa, S.-i., Mimura, T., and Nishimura, M. (2008). The plant organelles database (PODB): A collection of visualized plant organelles and protocols for plant organelle research. Nucl Acids Res 36, D929–937. Mano, S., Miwa, T., Nishikawa, S.-i., Mimura, T., and Nishimura, M. (2008). The plant organelles database (PODB): A collection of visualized plant organelles and protocols for plant organelle research. Nucl Acids Res 36, D929–937.
go back to reference McCabe, M.S., Garratt, L.C., Schepers, F., Jordi, W.J., Stoopen, G.M., Davelaar, E., van Rhijn, J.H., Power, J.B., and Davey, M.R. (2001). Effects of P(SAG12)-IPT gene expression on development and senescence in transgenic lettuce. Plant Physiol 127, 505–516.CrossRef McCabe, M.S., Garratt, L.C., Schepers, F., Jordi, W.J., Stoopen, G.M., Davelaar, E., van Rhijn, J.H., Power, J.B., and Davey, M.R. (2001). Effects of P(SAG12)-IPT gene expression on development and senescence in transgenic lettuce. Plant Physiol 127, 505–516.CrossRef
go back to reference Millar, A.H., Sweetlove, L.J., Giege, P., and Leaver, C.J. (2001). Analysis of the Arabidopsis mitochondrial proteome. Plant Physiol 127, 1711–1727.CrossRef Millar, A.H., Sweetlove, L.J., Giege, P., and Leaver, C.J. (2001). Analysis of the Arabidopsis mitochondrial proteome. Plant Physiol 127, 1711–1727.CrossRef
go back to reference Millar, D.J., Whitelegge, J.P., Bindschedler, L.V., Rayon, C., Boudet, A.M., Rossignol, M., Borderies, G., and Bolwell, G.P. (2009). The cell wall and secretory proteome of a tobacco cell line synthesising secondary wall. Proteomics 9, 2355–2372.CrossRef Millar, D.J., Whitelegge, J.P., Bindschedler, L.V., Rayon, C., Boudet, A.M., Rossignol, M., Borderies, G., and Bolwell, G.P. (2009). The cell wall and secretory proteome of a tobacco cell line synthesising secondary wall. Proteomics 9, 2355–2372.CrossRef
go back to reference Ni, R.J., Shen, Z., Yang, C.P., Wu, Y.D., Bi, Y.D., and Wang, B.C. (2010). Identification of low abundance polyA-binding proteins in Arabidopsis chloroplast using polyA-affinity column. Mol Biol Rep 37, 637–641. Ni, R.J., Shen, Z., Yang, C.P., Wu, Y.D., Bi, Y.D., and Wang, B.C. (2010). Identification of low abundance polyA-binding proteins in Arabidopsis chloroplast using polyA-affinity column. Mol Biol Rep 37, 637–641.
go back to reference Ong, S.E., and Mann, M. (2005). Mass spectrometry-based proteomics turns quantitative. Nat Chem Biol 1, 252–262.CrossRef Ong, S.E., and Mann, M. (2005). Mass spectrometry-based proteomics turns quantitative. Nat Chem Biol 1, 252–262.CrossRef
go back to reference Ong, S.E., and Mann, M. (2006). A practical recipe for stable isotope labeling by amino acids in cell culture (SILAC). Nat Protoc 1, 2650–2660.CrossRef Ong, S.E., and Mann, M. (2006). A practical recipe for stable isotope labeling by amino acids in cell culture (SILAC). Nat Protoc 1, 2650–2660.CrossRef
go back to reference Palmblad, M., Bindschedler, L.V., and Cramer, R. (2007). Quantitative proteomics using uniform (15)N-labeling, MASCOT, and the trans-proteomic pipeline. Proteomics 7, 3462–3469.CrossRef Palmblad, M., Bindschedler, L.V., and Cramer, R. (2007). Quantitative proteomics using uniform (15)N-labeling, MASCOT, and the trans-proteomic pipeline. Proteomics 7, 3462–3469.CrossRef
go back to reference Pandey, A., Chakraborty, S., Datta, A., and Chakraborty, N. (2008). Proteomics approach to identify dehydration responsive nuclear proteins from chickpea (Cicer arietinum L.). Mol Cell Proteomics 7, 88–107. Pandey, A., Chakraborty, S., Datta, A., and Chakraborty, N. (2008). Proteomics approach to identify dehydration responsive nuclear proteins from chickpea (Cicer arietinum L.). Mol Cell Proteomics 7, 88–107.
go back to reference Parry, M.A., Andralojc, P.J., Mitchell, R.A., Madgwick, P.J., and Keys, A.J. (2003). Manipulation of rubisco: The amount, activity, function and regulation. J Exp Bot 54, 1321–1333.CrossRef Parry, M.A., Andralojc, P.J., Mitchell, R.A., Madgwick, P.J., and Keys, A.J. (2003). Manipulation of rubisco: The amount, activity, function and regulation. J Exp Bot 54, 1321–1333.CrossRef
go back to reference Peckham, G.D., Bugos, R.C., and Su, W.W. (2006). Purification of GFP fusion proteins from transgenic plant cell cultures. Protein Expr Purif 49, 183–189.CrossRef Peckham, G.D., Bugos, R.C., and Su, W.W. (2006). Purification of GFP fusion proteins from transgenic plant cell cultures. Protein Expr Purif 49, 183–189.CrossRef
go back to reference Pendle, A.F., Clark, G.P., Boon, R., Lewandowska, D., Lam, Y.W., Andersen, J., Mann, M., Lamond, A.I., Brown, J.W., and Shaw, P.J. (2005). Proteomic analysis of the Arabidopsis nucleolus suggests novel nucleolar functions. Mol Biol Cell 16, 260–269.CrossRef Pendle, A.F., Clark, G.P., Boon, R., Lewandowska, D., Lam, Y.W., Andersen, J., Mann, M., Lamond, A.I., Brown, J.W., and Shaw, P.J. (2005). Proteomic analysis of the Arabidopsis nucleolus suggests novel nucleolar functions. Mol Biol Cell 16, 260–269.CrossRef
go back to reference Qi, Y., and Katagiri, F. (2009). Purification of low-abundance Arabidopsis plasma-membrane protein complexes and identification of candidate components. Plant J 57, 932–944.CrossRef Qi, Y., and Katagiri, F. (2009). Purification of low-abundance Arabidopsis plasma-membrane protein complexes and identification of candidate components. Plant J 57, 932–944.CrossRef
go back to reference Rigaut, G., Shevchenko, A., Rutz, B., Wilm, M., Mann, M., and Seraphin, B. (1999). A generic protein purification method for protein complex characterization and proteome exploration. Nat Biotechnol 17, 1030–1032.CrossRef Rigaut, G., Shevchenko, A., Rutz, B., Wilm, M., Mann, M., and Seraphin, B. (1999). A generic protein purification method for protein complex characterization and proteome exploration. Nat Biotechnol 17, 1030–1032.CrossRef
go back to reference Rivas, S., Romeis, T., and Jones, J.D. (2002). The Cf-9 disease resistance protein is present in an approximately 420-kilodalton heteromultimeric membrane-associated complex at one molecule per complex. Plant Cell 14, 689–702.CrossRef Rivas, S., Romeis, T., and Jones, J.D. (2002). The Cf-9 disease resistance protein is present in an approximately 420-kilodalton heteromultimeric membrane-associated complex at one molecule per complex. Plant Cell 14, 689–702.CrossRef
go back to reference Rohila, J.S., Chen, M., Cerny, R., and Fromm, M.E. (2004). Improved tandem affinity purification tag and methods for isolation of protein heterocomplexes from plants. Plant J 38, 172–181.CrossRef Rohila, J.S., Chen, M., Cerny, R., and Fromm, M.E. (2004). Improved tandem affinity purification tag and methods for isolation of protein heterocomplexes from plants. Plant J 38, 172–181.CrossRef
go back to reference Rohila, J.S., Chen, M., Chen, S., Chen, J., Cerny, R., Dardick, C., Canlas, P., Xu, X., Gribskov, M., Kanrar, S., et al. (2006). Protein-protein interactions of tandem affinity purification-tagged protein kinases in rice. Plant J 46, 1–13.CrossRef Rohila, J.S., Chen, M., Chen, S., Chen, J., Cerny, R., Dardick, C., Canlas, P., Xu, X., Gribskov, M., Kanrar, S., et al. (2006). Protein-protein interactions of tandem affinity purification-tagged protein kinases in rice. Plant J 46, 1–13.CrossRef
go back to reference Rohila, J.S., Chen, M., Chen, S., Chen, J., Cerny, R.L., Dardick, C., Canlas, P., Fujii, H., Gribskov, M., Kanrar, S., et al. (2009). Protein-protein interactions of tandem affinity purified protein kinases from rice. PLoS One 4, e6685.CrossRef Rohila, J.S., Chen, M., Chen, S., Chen, J., Cerny, R.L., Dardick, C., Canlas, P., Fujii, H., Gribskov, M., Kanrar, S., et al. (2009). Protein-protein interactions of tandem affinity purified protein kinases from rice. PLoS One 4, e6685.CrossRef
go back to reference Rubio, V., Shen, Y., Saijo, Y., Liu, Y., Gusmaroli, G., Dinesh-Kumar, S.P., and Deng, X.W. (2005). An alternative tandem affinity purification strategy applied to Arabidopsis protein complex isolation. Plant J 41, 767–778.CrossRef Rubio, V., Shen, Y., Saijo, Y., Liu, Y., Gusmaroli, G., Dinesh-Kumar, S.P., and Deng, X.W. (2005). An alternative tandem affinity purification strategy applied to Arabidopsis protein complex isolation. Plant J 41, 767–778.CrossRef
go back to reference Saracco, S.A., Hansson, M., Scalf, M., Walker, J.M., Smith, L.M., and Vierstra, R.D. (2009). Tandem affinity purification and mass spectrometric analysis of ubiquitylated proteins in Arabidopsis. Plant J 59, 344–358.CrossRef Saracco, S.A., Hansson, M., Scalf, M., Walker, J.M., Smith, L.M., and Vierstra, R.D. (2009). Tandem affinity purification and mass spectrometric analysis of ubiquitylated proteins in Arabidopsis. Plant J 59, 344–358.CrossRef
go back to reference Schad, M., Lipton, M.S., Giavalisco, P., Smith, R.D., and Kehr, J. (2005). Evaluation of two-dimensional electrophoresis and liquid chromatography--tandem mass spectrometry for tissue-specific protein profiling of laser-microdissected plant samples. Electrophoresis 26, 2729–2738.CrossRef Schad, M., Lipton, M.S., Giavalisco, P., Smith, R.D., and Kehr, J. (2005). Evaluation of two-dimensional electrophoresis and liquid chromatography--tandem mass spectrometry for tissue-specific protein profiling of laser-microdissected plant samples. Electrophoresis 26, 2729–2738.CrossRef
go back to reference Schaff, J.E., Mbeunkui, F., Blackburn, K., Bird, D.M., and Goshe, M.B. (2008). SILIP: a novel stable isotope labeling method for in planta quantitative proteomic analysis. Plant J 56, 840–854.CrossRef Schaff, J.E., Mbeunkui, F., Blackburn, K., Bird, D.M., and Goshe, M.B. (2008). SILIP: a novel stable isotope labeling method for in planta quantitative proteomic analysis. Plant J 56, 840–854.CrossRef
go back to reference Schmidt, U.G., Endler, A., Schelbert, S., Brunner, A., Schnell, M., Neuhaus, H.E., Marty-Mazars, D., Marty, F., Baginsky, S., and Martinoia, E. (2007). Novel tonoplast transporters identified using a proteomic approach with vacuoles isolated from cauliflower buds. Plant Physiol 145, 216–229.CrossRef Schmidt, U.G., Endler, A., Schelbert, S., Brunner, A., Schnell, M., Neuhaus, H.E., Marty-Mazars, D., Marty, F., Baginsky, S., and Martinoia, E. (2007). Novel tonoplast transporters identified using a proteomic approach with vacuoles isolated from cauliflower buds. Plant Physiol 145, 216–229.CrossRef
go back to reference Sennels, L., Salek, M., Lomas, L., Boschetti, E., Righetti, P.G., and Rappsilber, J. (2007). Proteomic analysis of human blood serum using peptide library beads. J Proteome Res 6, 4055–4062.CrossRef Sennels, L., Salek, M., Lomas, L., Boschetti, E., Righetti, P.G., and Rappsilber, J. (2007). Proteomic analysis of human blood serum using peptide library beads. J Proteome Res 6, 4055–4062.CrossRef
go back to reference Shimaoka, T., Ohnishi, M., Sazuka, T., Mitsuhashi, N., Hara-Nishimura, I., Shimazaki, K.-I., Maeshima, M., Yokota, A., Tomizawa, K.-I., and Mimura, T. (2004). Isolation of intact vacuoles and proteomic analysis of tonoplast from suspension-cultured cells of Arabidopsis thaliana. Plant Cell Physiol 45, 672–683.CrossRef Shimaoka, T., Ohnishi, M., Sazuka, T., Mitsuhashi, N., Hara-Nishimura, I., Shimazaki, K.-I., Maeshima, M., Yokota, A., Tomizawa, K.-I., and Mimura, T. (2004). Isolation of intact vacuoles and proteomic analysis of tonoplast from suspension-cultured cells of Arabidopsis thaliana. Plant Cell Physiol 45, 672–683.CrossRef
go back to reference Simpson, C., Thomas, C., Findlay, K., Bayer, E., and Maule, A.J. (2009). An Arabidopsis GPI-anchor plasmodesmal neck protein with callose binding activity and potential to regulate cell-to-cell trafficking. Plant Cell 21, 581–594.CrossRef Simpson, C., Thomas, C., Findlay, K., Bayer, E., and Maule, A.J. (2009). An Arabidopsis GPI-anchor plasmodesmal neck protein with callose binding activity and potential to regulate cell-to-cell trafficking. Plant Cell 21, 581–594.CrossRef
go back to reference Sridhar, V.V., Surendrarao, A., Gonzalez, D., Conlan, R.S., and Liu, Z. (2004). Transcriptional repression of target genes by LEUNIG and SEUSS, two interacting regulatory proteins for Arabidopsis flower development. Proc Natl Acad Sci USA 101, 11494–11499.CrossRef Sridhar, V.V., Surendrarao, A., Gonzalez, D., Conlan, R.S., and Liu, Z. (2004). Transcriptional repression of target genes by LEUNIG and SEUSS, two interacting regulatory proteins for Arabidopsis flower development. Proc Natl Acad Sci USA 101, 11494–11499.CrossRef
go back to reference Sridhar, V.V., Surendrarao, A., and Liu, Z. (2006). APETALA1 and SEPALLATA3 interact with SEUSS to mediate transcription repression during flower development. Development 133, 3159–3166.CrossRef Sridhar, V.V., Surendrarao, A., and Liu, Z. (2006). APETALA1 and SEPALLATA3 interact with SEUSS to mediate transcription repression during flower development. Development 133, 3159–3166.CrossRef
go back to reference Steen, H., and Mann, M. (2004). The ABC’s (and XYZ’s) of peptide sequencing. Nat Rev Mol Cell Biol 5, 699–711.CrossRef Steen, H., and Mann, M. (2004). The ABC’s (and XYZ’s) of peptide sequencing. Nat Rev Mol Cell Biol 5, 699–711.CrossRef
go back to reference Thelen, J.J., and Peck, S.C. (2007). Quantitative proteomics in plants: Choices in abundance. Plant Cell 19, 3339–3346.CrossRef Thelen, J.J., and Peck, S.C. (2007). Quantitative proteomics in plants: Choices in abundance. Plant Cell 19, 3339–3346.CrossRef
go back to reference Thiellement, H., Zivy, M., Damerval, C., and Mechin, V. (eds.) (2006). Plant Proteomics: Methods and Protocols. Series: Methods in Molecular Biology, Vol. 355 (Humana Press, Totowa, New Jersey, USA), 399 p. Thiellement, H., Zivy, M., Damerval, C., and Mechin, V. (eds.) (2006). Plant Proteomics: Methods and Protocols. Series: Methods in Molecular Biology, Vol. 355 (Humana Press, Totowa, New Jersey, USA), 399 p.
go back to reference Van Leene, J., Stals, H., Eeckhout, D., Persiau, G., Van De Slijke, E., Van Isterdael, G., De Clercq, A., Bonnet, E., Laukens, K., Remmerie, N., et al. (2007). A tandem affinity purification-based technology platform to study the cell cycle interactome in Arabidopsis thaliana. Mol Cell Proteomics 6, 1226–1238.CrossRef Van Leene, J., Stals, H., Eeckhout, D., Persiau, G., Van De Slijke, E., Van Isterdael, G., De Clercq, A., Bonnet, E., Laukens, K., Remmerie, N., et al. (2007). A tandem affinity purification-based technology platform to study the cell cycle interactome in Arabidopsis thaliana. Mol Cell Proteomics 6, 1226–1238.CrossRef
go back to reference Van Leene, J., Witters, E., Inze, D., and De Jaeger, G. (2008). Boosting tandem affinity purification of plant protein complexes. Trends Plant Sci 13, 517–520.CrossRef Van Leene, J., Witters, E., Inze, D., and De Jaeger, G. (2008). Boosting tandem affinity purification of plant protein complexes. Trends Plant Sci 13, 517–520.CrossRef
go back to reference Wang, X., Wurtele, E.S., Keller, G., McKean, A.L., and Nikolau, B.J. (1994). Molecular cloning of cDNAs and genes coding for beta-methylcrotonyl-CoA carboxylase of tomato. J Biol Chem 269, 11760–11768. Wang, X., Wurtele, E.S., Keller, G., McKean, A.L., and Nikolau, B.J. (1994). Molecular cloning of cDNAs and genes coding for beta-methylcrotonyl-CoA carboxylase of tomato. J Biol Chem 269, 11760–11768.
go back to reference Wessel, D., and Flugge, U.I. (1984). A method for the quantitative recovery of protein in dilute solution in the presence of detergents and lipids. Anal Biochem 138, 141–143.CrossRef Wessel, D., and Flugge, U.I. (1984). A method for the quantitative recovery of protein in dilute solution in the presence of detergents and lipids. Anal Biochem 138, 141–143.CrossRef
go back to reference Widjaja, I., Naumann, K., Roth, U., Wolf, N., Mackey, D., Dangl, J.L., Scheel, D., and Lee, J. (2009). Combining subproteome enrichment and Rubisco depletion enables identification of low abundance proteins differentially regulated during plant defense. Proteomics 9, 138–147.CrossRef Widjaja, I., Naumann, K., Roth, U., Wolf, N., Mackey, D., Dangl, J.L., Scheel, D., and Lee, J. (2009). Combining subproteome enrichment and Rubisco depletion enables identification of low abundance proteins differentially regulated during plant defense. Proteomics 9, 138–147.CrossRef
go back to reference Wilchek, M., and Bayer, E.A. (1990). Applications of avidin-biotin technology: Literature survey. Methods Enzymol 184, 14–45.CrossRef Wilchek, M., and Bayer, E.A. (1990). Applications of avidin-biotin technology: Literature survey. Methods Enzymol 184, 14–45.CrossRef
go back to reference Wilkins, M.R., Lindskog, I., Gasteiger, E., Bairoch, A., Sanchez, J.C., Hochstrasser, D.F., and Appel, R.D. (1997). Detailed peptide characterization using PEPTIDEMASS--a World-Wide-Web-accessible tool. Electrophoresis 18, 403–408.CrossRef Wilkins, M.R., Lindskog, I., Gasteiger, E., Bairoch, A., Sanchez, J.C., Hochstrasser, D.F., and Appel, R.D. (1997). Detailed peptide characterization using PEPTIDEMASS--a World-Wide-Web-accessible tool. Electrophoresis 18, 403–408.CrossRef
go back to reference Witte, C.P., Noel, L.D., Gielbert, J., Parker, J.E., and Romeis, T. (2004). Rapid one-step protein purification from plant material using the eight-amino acid StrepII epitope. Plant Mol Biol 55, 135–147.CrossRef Witte, C.P., Noel, L.D., Gielbert, J., Parker, J.E., and Romeis, T. (2004). Rapid one-step protein purification from plant material using the eight-amino acid StrepII epitope. Plant Mol Biol 55, 135–147.CrossRef
go back to reference Xi, J., Wang, X., Li, S., Zhou, X., Yue, L., Fan, J., and Hao, D. (2006). Polyethylene glycol fractionation improved detection of low-abundant proteins by two-dimensional electrophoresis analysis of plant proteome. Phytochemistry 67, 2341–2348.CrossRef Xi, J., Wang, X., Li, S., Zhou, X., Yue, L., Fan, J., and Hao, D. (2006). Polyethylene glycol fractionation improved detection of low-abundant proteins by two-dimensional electrophoresis analysis of plant proteome. Phytochemistry 67, 2341–2348.CrossRef
go back to reference Xu, Y., Wang, B.C., and Zhu, Y.X. (2007). Identification of proteins expressed at extremely low level in Arabidopsis leaves. Biochem Biophys Res Commun 358, 808–812.CrossRef Xu, Y., Wang, B.C., and Zhu, Y.X. (2007). Identification of proteins expressed at extremely low level in Arabidopsis leaves. Biochem Biophys Res Commun 358, 808–812.CrossRef
go back to reference Yao, X., Freas, A., Ramirez, J., Demirev, P.A., and Fenselau, C. (2001). Proteolytic 18O labeling for comparative proteomics: model studies with two serotypes of adenovirus. Anal Chem 73, 2836–2842.CrossRef Yao, X., Freas, A., Ramirez, J., Demirev, P.A., and Fenselau, C. (2001). Proteolytic 18O labeling for comparative proteomics: model studies with two serotypes of adenovirus. Anal Chem 73, 2836–2842.CrossRef
go back to reference Zanetti, M.E., Chang, I.F., Gong, F., Galbraith, D.W., and Bailey-Serres, J. (2005). Immunopurification of polyribosomal complexes of Arabidopsis for global analysis of gene expression. Plant Physiol 138, 624–635.CrossRef Zanetti, M.E., Chang, I.F., Gong, F., Galbraith, D.W., and Bailey-Serres, J. (2005). Immunopurification of polyribosomal complexes of Arabidopsis for global analysis of gene expression. Plant Physiol 138, 624–635.CrossRef
go back to reference Zhao, H., Xing, D., and Li, Q.Q. (2009a). Unique features of plant cleavage and polyadenylation specificity factor revealed by proteomic studies. Plant Physiol 151, 1546–1556.CrossRef Zhao, H., Xing, D., and Li, Q.Q. (2009a). Unique features of plant cleavage and polyadenylation specificity factor revealed by proteomic studies. Plant Physiol 151, 1546–1556.CrossRef
go back to reference Zhao, H., Xing, D., and Li, Q.Q. (2009b). Unique features of plant cleavage and polyadenylation specificity factor revealed by proteomic studies. Plant Physiol 151, 1546–1556.CrossRef Zhao, H., Xing, D., and Li, Q.Q. (2009b). Unique features of plant cleavage and polyadenylation specificity factor revealed by proteomic studies. Plant Physiol 151, 1546–1556.CrossRef
go back to reference Zhao, Z., Zhang, W., Stanley, B.A., and Assmann, S.M. (2008). Functional proteomics of Arabidopsis thaliana guard cells uncovers new stomatal signaling pathways. Plant Cell 20, 3210–3226.CrossRef Zhao, Z., Zhang, W., Stanley, B.A., and Assmann, S.M. (2008). Functional proteomics of Arabidopsis thaliana guard cells uncovers new stomatal signaling pathways. Plant Cell 20, 3210–3226.CrossRef
go back to reference Zhong, J., Haynes, P.A., Zhang, S., Yang, X., Andon, N.L., Eckert, D., Yates, J.R., 3rd, Wang, X., and Budworth, P. (2003). Development of a system for the study of protein-protein interactions in planta: Characterization of a TATA-box binding protein complex in Oryza sativa. J Proteome Res 2, 514–522.CrossRef Zhong, J., Haynes, P.A., Zhang, S., Yang, X., Andon, N.L., Eckert, D., Yates, J.R., 3rd, Wang, X., and Budworth, P. (2003). Development of a system for the study of protein-protein interactions in planta: Characterization of a TATA-box binding protein complex in Oryza sativa. J Proteome Res 2, 514–522.CrossRef
go back to reference Zhu, M., Dai, S., McClung, S., Yan, X., and Chen, S. (2009). Functional differentiation of Brassica napus guard cells and mesophyll cells revealed by comparative proteomics. Mol Cell Proteomics 8, 752–766.CrossRef Zhu, M., Dai, S., McClung, S., Yan, X., and Chen, S. (2009). Functional differentiation of Brassica napus guard cells and mesophyll cells revealed by comparative proteomics. Mol Cell Proteomics 8, 752–766.CrossRef
go back to reference Zybailov, B., Rutschow, H., Friso, G., Rudella, A., Emanuelsson, O., Sun, Q., and van Wijk, K.J. (2008). Sorting signals, N-terminal modifications and abundance of the chloroplast proteome. PLoS One 3, e1994.CrossRef Zybailov, B., Rutschow, H., Friso, G., Rudella, A., Emanuelsson, O., Sun, Q., and van Wijk, K.J. (2008). Sorting signals, N-terminal modifications and abundance of the chloroplast proteome. PLoS One 3, e1994.CrossRef
Metadata
Title
Efficient Strategies for Analysis of Low Abundance Proteins in Plant Proteomics
Authors
Olga A. Koroleva
Laurence V. Bindschedler
Copyright Year
2011
Publisher
Springer Netherlands
DOI
https://doi.org/10.1007/978-94-007-0828-0_20

Premium Partners