Skip to main content
Top
Published in: Neural Computing and Applications 13/2021

09-03-2021 | S.I. : DICTA 2019

Efficient structured pruning based on deep feature stabilization

Authors: Sheng Xu, Hanlin Chen, Xuan Gong, Kexin Liu, Jinhu Lü, Baochang Zhang

Published in: Neural Computing and Applications | Issue 13/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The application of convolutional neural networks (CNNs) in computer vision highly depends on the consumption of computation and memory resources, which affects its development on resource-limited devices. Accordingly, CNN compression has attracted increasing attention. In this paper, we propose an efficient end-to-end pruning method based on feature stabilization (EPFS), which is feasible to be implemented for structured pruning such as filter pruning and block pruning. For block pruning, we introduce a mask to scale the output of structures and the \(\ell _1\)-regularization term to sparsify the mask. For filter pruning, a novel \(\ell _2\)-regularization term is proposed to constraint the mask along with the \(\ell _1\)-regularization. Besides, we introduce the Center Loss to stabilize the deep feature and fast iterative shrinkage-thresholding algorithm (FISTA) to accelerate the convergence of mask. Extensive experiments demonstrate the superiority of our EPFS. On CIFAR-10, EPFS saves \(47.5\%\) FLOPs on VGGNet with \(1.17\%\) Top-1 accuracy increase. Furthermore, on ImageNet ILSVRC2012, EPFS reduces \(55.2\%\) FLOPs on ResNet-18 with o.nly \(1.63\%\) Top-1 accuracy decrease, which promotes the state-of-the-arts.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Footnotes
1
The number of floating-point operations.
 
Literature
1.
go back to reference Beck A, Teboulle M (2009) A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J Imaging Sci 2(1):183–202MathSciNetCrossRef Beck A, Teboulle M (2009) A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J Imaging Sci 2(1):183–202MathSciNetCrossRef
2.
go back to reference Denil M, Shakibi B, Dinh L, Ranzato M, De Freitas N (2013) Predicting parameters in deep learning. In: Advances in neural information processing systems (NIPS), pp 2148–2156 Denil M, Shakibi B, Dinh L, Ranzato M, De Freitas N (2013) Predicting parameters in deep learning. In: Advances in neural information processing systems (NIPS), pp 2148–2156
3.
go back to reference Ding X, Ding G, Guo Y, Han J (2019) Centripetal sgd for pruning very deep convolutional networks with complicated structure. In: IEEE conference on computer vision and pattern recognition (CVPR), pp 4943–4953 Ding X, Ding G, Guo Y, Han J (2019) Centripetal sgd for pruning very deep convolutional networks with complicated structure. In: IEEE conference on computer vision and pattern recognition (CVPR), pp 4943–4953
4.
go back to reference Dong X, Huang J, Yang Y, Yan S (2017) More is less: A more complicated network with less inference complexity. In: IEEE conference on computer vision and pattern recognition (CVPR), pp 5840–5848 Dong X, Huang J, Yang Y, Yan S (2017) More is less: A more complicated network with less inference complexity. In: IEEE conference on computer vision and pattern recognition (CVPR), pp 5840–5848
5.
go back to reference Everingham M, Van Gool L, Williams CK, Winn J, Zisserman A (2010) The pascal visual object classes (voc) challenge. Int J Comput Vis 88(2):303–338CrossRef Everingham M, Van Gool L, Williams CK, Winn J, Zisserman A (2010) The pascal visual object classes (voc) challenge. Int J Comput Vis 88(2):303–338CrossRef
6.
go back to reference Girshick R, Donahue J, Darrell T, Malik J (2014) Rich feature hierarchies for accurate object detection and semantic segmentation. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp 580–587 Girshick R, Donahue J, Darrell T, Malik J (2014) Rich feature hierarchies for accurate object detection and semantic segmentation. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp 580–587
7.
go back to reference Glorot X, Bordes A, Bengio Y (2011) Deep sparse rectifier neural networks. In: International conference on artificial intelligence and statistics (AISTATS), pp 315–323 Glorot X, Bordes A, Bengio Y (2011) Deep sparse rectifier neural networks. In: International conference on artificial intelligence and statistics (AISTATS), pp 315–323
8.
go back to reference Goldstein T, Studer C, Baraniuk R (2014) A field guide to forward-backward splitting with a fasta implementation. arXiv preprint arXiv:1411.3406 Goldstein T, Studer C, Baraniuk R (2014) A field guide to forward-backward splitting with a fasta implementation. arXiv preprint arXiv:​1411.​3406
9.
go back to reference Gu J, Li C, Zhang B, Han J, Cao X, Liu J, Doermann D (2019) Projection convolutional neural networks for 1-bit cnns via discrete back propagation. In: AAAI conference on artificial intelligence (AAAI) vol 33, pp 8344–8351 Gu J, Li C, Zhang B, Han J, Cao X, Liu J, Doermann D (2019) Projection convolutional neural networks for 1-bit cnns via discrete back propagation. In: AAAI conference on artificial intelligence (AAAI) vol 33, pp 8344–8351
10.
go back to reference Gu J, Zhao J, Jiang X, Zhang B, Liu J, Guo G, Ji R (2019) Bayesian optimized 1-bit cnns. In: IEEE international conference on computer vision (ICCV), pp 4909–4917 Gu J, Zhao J, Jiang X, Zhang B, Liu J, Guo G, Ji R (2019) Bayesian optimized 1-bit cnns. In: IEEE international conference on computer vision (ICCV), pp 4909–4917
11.
go back to reference Han S, Pool J, Tran J, Dally W (2015) Learning both weights and connections for efficient neural network. In: Advances in neural information processing systems (NIPS), pp 1135–1143 Han S, Pool J, Tran J, Dally W (2015) Learning both weights and connections for efficient neural network. In: Advances in neural information processing systems (NIPS), pp 1135–1143
12.
go back to reference Hassibi B, Stork DG, Wolff GJ (1993) Optimal brain surgeon and general network pruning. In: IEEE international conference on neural networks (ICNN), pp 293–299 Hassibi B, Stork DG, Wolff GJ (1993) Optimal brain surgeon and general network pruning. In: IEEE international conference on neural networks (ICNN), pp 293–299
13.
go back to reference He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: IEEE conference on computer vision and pattern recognition (CVPR), pp 770–778 He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: IEEE conference on computer vision and pattern recognition (CVPR), pp 770–778
14.
go back to reference He Y, Kang G, Dong X, Fu Y, Yang Y (2018) Soft filter pruning for accelerating deep convolutional neural networks. In: International joint conference on artificial intelligence (IJCAI), pp 2234–2240 He Y, Kang G, Dong X, Fu Y, Yang Y (2018) Soft filter pruning for accelerating deep convolutional neural networks. In: International joint conference on artificial intelligence (IJCAI), pp 2234–2240
15.
go back to reference He Y, Liu P, Wang Z, Hu Z, Yang Y (2019) Filter pruning via geometric median for deep convolutional neural networks acceleration. In: IEEE conference on computer vision and pattern recognition (CVPR), pp 4340–4349 He Y, Liu P, Wang Z, Hu Z, Yang Y (2019) Filter pruning via geometric median for deep convolutional neural networks acceleration. In: IEEE conference on computer vision and pattern recognition (CVPR), pp 4340–4349
16.
go back to reference He Y, Zhang X, Sun J (2017) Channel pruning for accelerating very deep neural networks. In: IEEE International conference on computer vision (ICCV), pp 1389–1397 He Y, Zhang X, Sun J (2017) Channel pruning for accelerating very deep neural networks. In: IEEE International conference on computer vision (ICCV), pp 1389–1397
17.
go back to reference Howard A, Sandler M, Chu G, Chen LC, Chen B, Tan M, Wang W, Zhu Y, Pang R, Vasudevan V, et al (2019) Searching for mobilenetv3. In: IEEE international conference on computer vision (ICCV), pp 1314–1324 Howard A, Sandler M, Chu G, Chen LC, Chen B, Tan M, Wang W, Zhu Y, Pang R, Vasudevan V, et al (2019) Searching for mobilenetv3. In: IEEE international conference on computer vision (ICCV), pp 1314–1324
18.
go back to reference Howard AG, Zhu M, Chen B, Kalenichenko D, Wang W, Weyand T, Andreetto M, Adam H (2017) Mobilenets: Efficient convolutional neural networks for mobile vision applications. arXiv preprint arXiv:1704.04861 Howard AG, Zhu M, Chen B, Kalenichenko D, Wang W, Weyand T, Andreetto M, Adam H (2017) Mobilenets: Efficient convolutional neural networks for mobile vision applications. arXiv preprint arXiv:​1704.​04861
19.
go back to reference Ioffe S, Szegedy C (2015) Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning (ICML), pp 448–456 Ioffe S, Szegedy C (2015) Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning (ICML), pp 448–456
20.
go back to reference Krizhevsky A, Hinton G et al (2009) Learning multiple layers of features from tiny images. Tech. rep, Citeseer Krizhevsky A, Hinton G et al (2009) Learning multiple layers of features from tiny images. Tech. rep, Citeseer
21.
go back to reference Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with deep convolutional neural networks. In: Advances in neural information processing systems (NIPS), pp 1097–1105 Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with deep convolutional neural networks. In: Advances in neural information processing systems (NIPS), pp 1097–1105
22.
go back to reference LeCun Y, Denker JS, Solla SA (1990) Optimal brain damage. In: Advances in neural information processing systems (NIPS), pp 598–605 LeCun Y, Denker JS, Solla SA (1990) Optimal brain damage. In: Advances in neural information processing systems (NIPS), pp 598–605
23.
go back to reference Li H, Kadav A, Durdanovic I, Samet H, Graf HP (2017) Pruning filters for efficient convnets. In: International conference on learning representations (ICLR), pp 1–13 Li H, Kadav A, Durdanovic I, Samet H, Graf HP (2017) Pruning filters for efficient convnets. In: International conference on learning representations (ICLR), pp 1–13
24.
go back to reference Lin S, Ji R, Chen C, Huang F (2017) Espace: Accelerating convolutional neural networks via eliminating spatial and channel redundancy. In: AAAI conference on artificial intelligence (AAAI), pp 1424–1430 Lin S, Ji R, Chen C, Huang F (2017) Espace: Accelerating convolutional neural networks via eliminating spatial and channel redundancy. In: AAAI conference on artificial intelligence (AAAI), pp 1424–1430
25.
go back to reference Lin S, Ji R, Li Y, Wu Y, Huang F, Zhang B (2018) Accelerating convolutional networks via global & dynamic filter pruning. In: International joint conference on artificial intelligence (IJCAI), pp 2425–2432 Lin S, Ji R, Li Y, Wu Y, Huang F, Zhang B (2018) Accelerating convolutional networks via global & dynamic filter pruning. In: International joint conference on artificial intelligence (IJCAI), pp 2425–2432
26.
go back to reference Lin S, Ji R, Yan C, Zhang B, Cao L, Ye Q, Huang F, Doermann D (2019) Towards optimal structured cnn pruning via generative adversarial learning. In: IEEE conference on computer vision and pattern recognition (CVPR), pp 2790–2799 Lin S, Ji R, Yan C, Zhang B, Cao L, Ye Q, Huang F, Doermann D (2019) Towards optimal structured cnn pruning via generative adversarial learning. In: IEEE conference on computer vision and pattern recognition (CVPR), pp 2790–2799
27.
go back to reference Lin TY, Maire M, Belongie S, Hays J, Perona P, Ramanan D, Dollár P, Zitnick CL (2014) Microsoft coco: Common objects in context. In: European conference on computer vision (ECCV), pp 740–755 Lin TY, Maire M, Belongie S, Hays J, Perona P, Ramanan D, Dollár P, Zitnick CL (2014) Microsoft coco: Common objects in context. In: European conference on computer vision (ECCV), pp 740–755
28.
go back to reference Luan S, Chen C, Zhang B, Han J, Liu J (2018) Gabor convolutional networks. IEEE Trans Image Process 27(9):4357–4366MathSciNetCrossRef Luan S, Chen C, Zhang B, Han J, Liu J (2018) Gabor convolutional networks. IEEE Trans Image Process 27(9):4357–4366MathSciNetCrossRef
29.
go back to reference Luo JH, Wu J, Lin W (2017) Thinet: A filter level pruning method for deep neural network compression. In: IEEE international conference on computer vision (ICCV), pp 5058–5066 Luo JH, Wu J, Lin W (2017) Thinet: A filter level pruning method for deep neural network compression. In: IEEE international conference on computer vision (ICCV), pp 5058–5066
30.
go back to reference Mathieu M, Henaff M, LeCun Y (2014) Fast training of convolutional networks through ffts. In: International conference on learning representations (ICLR), pp 1–9 Mathieu M, Henaff M, LeCun Y (2014) Fast training of convolutional networks through ffts. In: International conference on learning representations (ICLR), pp 1–9
31.
go back to reference Paszke A, Gross S, Massa F, Lerer A, Bradbury J, Chanan G, Killeen T, Lin Z, Gimelshein N, Antiga L, et al (2019) Pytorch: An imperative style, high-performance deep learning library. In: Advances in neural information processing systems (NIPS), pp 8026–8037 Paszke A, Gross S, Massa F, Lerer A, Bradbury J, Chanan G, Killeen T, Lin Z, Gimelshein N, Antiga L, et al (2019) Pytorch: An imperative style, high-performance deep learning library. In: Advances in neural information processing systems (NIPS), pp 8026–8037
32.
go back to reference Rastegari M, Ordonez V, Redmon J, Farhadi A (2016) Xnor-net: Imagenet classification using binary convolutional neural networks. In: European conference on computer vision (ECCV), pp 525–542 Rastegari M, Ordonez V, Redmon J, Farhadi A (2016) Xnor-net: Imagenet classification using binary convolutional neural networks. In: European conference on computer vision (ECCV), pp 525–542
33.
go back to reference Romero A, Ballas N, Kahou SE, Chassang A, Gatta C, Bengio Y (2014) Fitnets: Hints for thin deep nets. arXiv preprint arXiv:1412.6550 Romero A, Ballas N, Kahou SE, Chassang A, Gatta C, Bengio Y (2014) Fitnets: Hints for thin deep nets. arXiv preprint arXiv:​1412.​6550
34.
go back to reference Russakovsky O, Deng J, Su H, Krause J, Satheesh S, Ma S, Huang Z, Karpathy A, Khosla A, Bernstein M et al (2015) Imagenet large scale visual recognition challenge. Int J Comput Vis 115(3):211–252MathSciNetCrossRef Russakovsky O, Deng J, Su H, Krause J, Satheesh S, Ma S, Huang Z, Karpathy A, Khosla A, Bernstein M et al (2015) Imagenet large scale visual recognition challenge. Int J Comput Vis 115(3):211–252MathSciNetCrossRef
35.
go back to reference Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC (2018) Mobilenetv2: Inverted residuals and linear bottlenecks. In: IEEE conference on computer vision and pattern recognition (CVPR), pp 4510–4520 Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC (2018) Mobilenetv2: Inverted residuals and linear bottlenecks. In: IEEE conference on computer vision and pattern recognition (CVPR), pp 4510–4520
36.
go back to reference Simonyan K, Zisserman A (2015) Very deep convolutional networks for large-scale image recognition. In: International conference on learning representations (ICLR), pp 1–15 Simonyan K, Zisserman A (2015) Very deep convolutional networks for large-scale image recognition. In: International conference on learning representations (ICLR), pp 1–15
37.
go back to reference Singh P, Verma VK, Rai P, Namboodiri V (2020) Leveraging filter correlations for deep model compression. In: The IEEE winter conference on applications of computer vision (WACV), pp 835–844 Singh P, Verma VK, Rai P, Namboodiri V (2020) Leveraging filter correlations for deep model compression. In: The IEEE winter conference on applications of computer vision (WACV), pp 835–844
38.
go back to reference Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, Erhan D, Vanhoucke V, Rabinovich A (2015) Going deeper with convolutions. In: IEEE conference on computer vision and pattern recognition (CVPR), pp 1–9 Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, Erhan D, Vanhoucke V, Rabinovich A (2015) Going deeper with convolutions. In: IEEE conference on computer vision and pattern recognition (CVPR), pp 1–9
39.
go back to reference Tibshirani R (1996) Regression shrinkage and selection via the lasso. J R Stat Soc Ser B (Methodol) 58(1):267–288MathSciNetMATH Tibshirani R (1996) Regression shrinkage and selection via the lasso. J R Stat Soc Ser B (Methodol) 58(1):267–288MathSciNetMATH
40.
go back to reference Wang X, Zhang B, Li C, Ji R, Han J, Cao X, Liu J (2018) Modulated convolutional networks. In: IEEE conference on computer vision and pattern recognition (CVPR), pp 840–848 Wang X, Zhang B, Li C, Ji R, Han J, Cao X, Liu J (2018) Modulated convolutional networks. In: IEEE conference on computer vision and pattern recognition (CVPR), pp 840–848
41.
go back to reference Wang Y, Xu C, You S, Tao D, Xu C (2016) Cnnpack: Packing convolutional neural networks in the frequency domain. In: Advances in neural information processing systems (NIPS), pp 253–261 Wang Y, Xu C, You S, Tao D, Xu C (2016) Cnnpack: Packing convolutional neural networks in the frequency domain. In: Advances in neural information processing systems (NIPS), pp 253–261
42.
go back to reference Wen Y, Zhang K, Li Z, Qiao Y (2016) A discriminative feature learning approach for deep face recognition. In: European conference on computer vision (ECCV), pp 499–515 Wen Y, Zhang K, Li Z, Qiao Y (2016) A discriminative feature learning approach for deep face recognition. In: European conference on computer vision (ECCV), pp 499–515
43.
go back to reference Xu S, Chen H, Liu K, Lii J, Zhang B (2019) Efficient block pruning based on kernel and feature stablization. In: International conference on digital image computing: techniques and applications (DICTA), pp 1–6 Xu S, Chen H, Liu K, Lii J, Zhang B (2019) Efficient block pruning based on kernel and feature stablization. In: International conference on digital image computing: techniques and applications (DICTA), pp 1–6
44.
go back to reference Yu R, Li A, Chen CF, Lai JH, Morariu VI, Han X, Gao M, Lin CY, Davis LS (2018) Nisp: Pruning networks using neuron importance score propagation. In: IEEE conference on computer vision and pattern recognition (CVPR), pp 9194–9203 Yu R, Li A, Chen CF, Lai JH, Morariu VI, Han X, Gao M, Lin CY, Davis LS (2018) Nisp: Pruning networks using neuron importance score propagation. In: IEEE conference on computer vision and pattern recognition (CVPR), pp 9194–9203
45.
go back to reference Zhang Z, Saligrama V (2015) Rapid: Rapidly accelerated proximal gradient algorithms for convex minimization. In: International conference on acoustics, speech and signal processing (ICASSP), pp 3796–3800 Zhang Z, Saligrama V (2015) Rapid: Rapidly accelerated proximal gradient algorithms for convex minimization. In: International conference on acoustics, speech and signal processing (ICASSP), pp 3796–3800
46.
go back to reference Zoph B, Le QV (2017) Neural architecture search with reinforcement learning. In: International conference on learning representations (ICLR), pp 1–16 Zoph B, Le QV (2017) Neural architecture search with reinforcement learning. In: International conference on learning representations (ICLR), pp 1–16
Metadata
Title
Efficient structured pruning based on deep feature stabilization
Authors
Sheng Xu
Hanlin Chen
Xuan Gong
Kexin Liu
Jinhu Lü
Baochang Zhang
Publication date
09-03-2021
Publisher
Springer London
Published in
Neural Computing and Applications / Issue 13/2021
Print ISSN: 0941-0643
Electronic ISSN: 1433-3058
DOI
https://doi.org/10.1007/s00521-021-05828-8

Other articles of this Issue 13/2021

Neural Computing and Applications 13/2021 Go to the issue

Premium Partner