Skip to main content
Top
Published in: Journal of Electronic Materials 9/2022

28-06-2022 | Original Research Article

Electrical Tree Performance in Epoxy Resin under Low-Frequency Bipolar Square- Wave Voltage

Authors: Chuang Zhang, Hang Fu, Zhaoliang Xing, Shaowei Guo, Huize Cui, Shihang Wang, Jianying Li

Published in: Journal of Electronic Materials | Issue 9/2022

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Epoxy resin has been widely used as the main insulation in power electronic transformers, which, however, inevitably suffer from the detrimental effect of electrical trees. In this paper, bipolar square-wave voltage is applied to the epoxy resin to initiate electrical trees, with the effect of waveform parameters and ambient temperature on electrical tree characteristics explored. All trees observed demonstrate branch-like structures. The electrical tree length, width, extension factor, fractal dimension, and accumulated damage increase with voltage amplitude and frequency, while breakdown time decreases. In addition, the results of gas chromatography show that thermal decomposing occurred during the breakdown of the epoxy resin, inducing small-molecule gases including acetylene, hydrogen, and carbon monoxide. This indicates that the initiation voltage of the electrical tree at 500 Hz decreases from 8 kV to 6 kV when the temperature is elevated from 20°C to 80°C. The results of surface potential decay testing shows that the trap energy depth and the charge mobility are increased at higher temperatures, which also leads to an easier charge injection and results in an enhanced electrical tree evolution.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference X. She, A.Q. Huang, and R. Burgos, Review of Solid State Transformer Technologies and their Application in Power Distribution Systems. IEEE J. Emerg. Sel. Top. Power. Electron. 1, 186 (2013).CrossRef X. She, A.Q. Huang, and R. Burgos, Review of Solid State Transformer Technologies and their Application in Power Distribution Systems. IEEE J. Emerg. Sel. Top. Power. Electron. 1, 186 (2013).CrossRef
2.
go back to reference Y. Du, S. Baek, S. Bhattacharya, and A. Q. Huang, High-voltage high-frequency transformer design for a 7.2kV to 120V/240V 20 kVA solid state transformer, in 36th Annual Conference of the IEEE Industrial Electronics Society (2010), p. 493-498 Y. Du, S. Baek, S. Bhattacharya, and A. Q. Huang, High-voltage high-frequency transformer design for a 7.2kV to 120V/240V 20 kVA solid state transformer, in 36th Annual Conference of the IEEE Industrial Electronics Society (2010), p. 493-498
3.
go back to reference J.H. Feng, W.Q. Chu, Z.X. Zhang, and Z.Q. Zhu, Power Electronic Transformer-Based Railway Traction Systems: Challenges and Opportunities. IEEE J. Emerg. Sel. Top. Power. Electron. 5, 1237 (2017).CrossRef J.H. Feng, W.Q. Chu, Z.X. Zhang, and Z.Q. Zhu, Power Electronic Transformer-Based Railway Traction Systems: Challenges and Opportunities. IEEE J. Emerg. Sel. Top. Power. Electron. 5, 1237 (2017).CrossRef
4.
go back to reference D. Gao, L. Yu, M. Li, S. Wang, and Y. Dai, Thermal Conductive Epoxy Adhesive with Binary Filler System of Surface Modified Hexagonal Boron Nitride and α -Aluminum Oxide. J. Mater. Sci. Mater. Electron. 31, 14681 (2020).CrossRef D. Gao, L. Yu, M. Li, S. Wang, and Y. Dai, Thermal Conductive Epoxy Adhesive with Binary Filler System of Surface Modified Hexagonal Boron Nitride and α -Aluminum Oxide. J. Mater. Sci. Mater. Electron. 31, 14681 (2020).CrossRef
5.
go back to reference A. Cavallini, M. Conti, G.C. Montanari, C. Arlotti, and A. Contin, PD Inference for the Early Detection of Electrical Treeing in Insulation Systems. IEEE Trans. Dielectr. Electr. Insul. 11, 724 (2004).CrossRef A. Cavallini, M. Conti, G.C. Montanari, C. Arlotti, and A. Contin, PD Inference for the Early Detection of Electrical Treeing in Insulation Systems. IEEE Trans. Dielectr. Electr. Insul. 11, 724 (2004).CrossRef
6.
go back to reference S. Zhou, F. Yu, W. Yang, Z. Li, Z. Xing, M. Fan, T. Han, and B. Du, Effect of sPP Content on Electrical Tree Growth Characteristics in PP-Blended Cable Insulation. Materials 13, 5360 (2020).CrossRef S. Zhou, F. Yu, W. Yang, Z. Li, Z. Xing, M. Fan, T. Han, and B. Du, Effect of sPP Content on Electrical Tree Growth Characteristics in PP-Blended Cable Insulation. Materials 13, 5360 (2020).CrossRef
7.
go back to reference K. Nakanishi, S. Hirabayashi, and Y. Inuishi, Phenomena and Mechanisms of Tree Inception in Epoxy Resins. IEEE Trans. Dielectr. Electr. Insul. 14, 306 (1979).CrossRef K. Nakanishi, S. Hirabayashi, and Y. Inuishi, Phenomena and Mechanisms of Tree Inception in Epoxy Resins. IEEE Trans. Dielectr. Electr. Insul. 14, 306 (1979).CrossRef
8.
go back to reference C. Laurent, C. Mayoux, and A. Sergent, Electrical Breakdown Due to Discharges in Different Types of Insulation. IEEE Trans. Dielectr. Electr. Insul. 16, 52 (1981).CrossRef C. Laurent, C. Mayoux, and A. Sergent, Electrical Breakdown Due to Discharges in Different Types of Insulation. IEEE Trans. Dielectr. Electr. Insul. 16, 52 (1981).CrossRef
9.
go back to reference J.V. Champion, S.J. Dodd, Y. Zhao, A.S. Vaughan, M. Brown, A.E. Davies, S.J. Sutton, and S.G. Swingler, Morphology and the Growth of Electrical Trees in a Propylene/Ethylene Copolymer. IEEE Trans. Dielectr. Electr. Insul. 8, 284 (2001).CrossRef J.V. Champion, S.J. Dodd, Y. Zhao, A.S. Vaughan, M. Brown, A.E. Davies, S.J. Sutton, and S.G. Swingler, Morphology and the Growth of Electrical Trees in a Propylene/Ethylene Copolymer. IEEE Trans. Dielectr. Electr. Insul. 8, 284 (2001).CrossRef
10.
go back to reference F. Stucki, Injection of a Minimal Space-Charge as Mechanism for the Initial Phase of Electrical Polymer Degradation. IEEE Trans. Dielectr. Electr. Insul. 1, 231 (1994).CrossRef F. Stucki, Injection of a Minimal Space-Charge as Mechanism for the Initial Phase of Electrical Polymer Degradation. IEEE Trans. Dielectr. Electr. Insul. 1, 231 (1994).CrossRef
11.
go back to reference L.A. Dissado, Understanding Electrical Trees in Solids: From Experiment to Theory. IEEE Trans. Dielectr. Electr. Insul. 9, 483 (2002).CrossRef L.A. Dissado, Understanding Electrical Trees in Solids: From Experiment to Theory. IEEE Trans. Dielectr. Electr. Insul. 9, 483 (2002).CrossRef
12.
go back to reference N. Shimizu, H. Katsukawa, M. Miyauchi, M. Kosaki, and K. Horii, The Space Charge Behavior and Luminescence Phenomena in Polymers at 77 K. IEEE Trans. Dielectr. Electr. Insul. 14, 256 (1979).CrossRef N. Shimizu, H. Katsukawa, M. Miyauchi, M. Kosaki, and K. Horii, The Space Charge Behavior and Luminescence Phenomena in Polymers at 77 K. IEEE Trans. Dielectr. Electr. Insul. 14, 256 (1979).CrossRef
13.
go back to reference Y. Zhang, Y. Zhou, L. Zhang, C. Teng, X. Huang, J. Chen, and M. Huang, Space Charge Evolution and Its Effects on Electrical tree Degradation in Silicone Rubber at Varied Temperature Under Polarity Reversal Voltage. J. Electrost. 115, 103668 (2022).CrossRef Y. Zhang, Y. Zhou, L. Zhang, C. Teng, X. Huang, J. Chen, and M. Huang, Space Charge Evolution and Its Effects on Electrical tree Degradation in Silicone Rubber at Varied Temperature Under Polarity Reversal Voltage. J. Electrost. 115, 103668 (2022).CrossRef
14.
go back to reference Y. Zhang, Y. Zhou, M. Chen, L. Zhang, X. Zhang, and Y. Sha, Electrical Tree Initiation in Silicone Rubber Under DC and Polarity Reversal Voltages. J. Electrost. 88, 207 (2017).CrossRef Y. Zhang, Y. Zhou, M. Chen, L. Zhang, X. Zhang, and Y. Sha, Electrical Tree Initiation in Silicone Rubber Under DC and Polarity Reversal Voltages. J. Electrost. 88, 207 (2017).CrossRef
15.
go back to reference B.X. Du, J.S. Xue, and M.M. Zhang, Effect of Pulse Duration on Electrical Tree and Breakdown Process of Epoxy Resin in LN2. IEEE Trans. Dielectr. Electr. Insul. 24, 359 (2017).CrossRef B.X. Du, J.S. Xue, and M.M. Zhang, Effect of Pulse Duration on Electrical Tree and Breakdown Process of Epoxy Resin in LN2. IEEE Trans. Dielectr. Electr. Insul. 24, 359 (2017).CrossRef
16.
go back to reference B.X. Du, M.M. Zhang, T. Han, and L.W. Zhu, Effect of Pulse Frequency on Tree Characteristics in Epoxy Resin Under Low Temperature. IEEE Trans. Dielectr. Electr. Insul. 23, 104 (2016).CrossRef B.X. Du, M.M. Zhang, T. Han, and L.W. Zhu, Effect of Pulse Frequency on Tree Characteristics in Epoxy Resin Under Low Temperature. IEEE Trans. Dielectr. Electr. Insul. 23, 104 (2016).CrossRef
17.
go back to reference Y.G. Wang, R.J. Huang, C. Li, C. Zhang, F. Shen, J. Li, H. Dong, H. Zhang, H.C. Zhang, and L. Li, Electrical Tree Characteristics of Epoxy Resin Under AC Voltage at 77K. Cryogenics 99, 123 (2019).CrossRef Y.G. Wang, R.J. Huang, C. Li, C. Zhang, F. Shen, J. Li, H. Dong, H. Zhang, H.C. Zhang, and L. Li, Electrical Tree Characteristics of Epoxy Resin Under AC Voltage at 77K. Cryogenics 99, 123 (2019).CrossRef
18.
go back to reference I. Iddrissu, Z. P. Lv, and S. M. Rowland. The dynamic character of partial discharge in epoxy resin at different stages of treeing, in IEEE International Conference on Dielectrics (ICD) (2016), p.728-731 I. Iddrissu, Z. P. Lv, and S. M. Rowland. The dynamic character of partial discharge in epoxy resin at different stages of treeing, in IEEE International Conference on Dielectrics (ICD) (2016), p.728-731
19.
go back to reference G.C. Stone, R.G. Vanheeswijk, and R. Bartnikas, Electrical Aging and Electroluminescence in Epoxy Under Repetitive Voltage Surges. IEEE Trans. Dielectr. Electr. Insul. 27, 233 (1992).CrossRef G.C. Stone, R.G. Vanheeswijk, and R. Bartnikas, Electrical Aging and Electroluminescence in Epoxy Under Repetitive Voltage Surges. IEEE Trans. Dielectr. Electr. Insul. 27, 233 (1992).CrossRef
20.
go back to reference P. Wang, S. Hui, S. Akram, K. Zhou, M.T. Nazir, Y. Chen, D. Han, M.S. Javed, and I. Ulhaq, Influence of Repetitive Square Voltage Duty Cycle on the Electrical Tree Characteristics of Epoxy resIn. Polymers. 12, 2215 (2020).CrossRef P. Wang, S. Hui, S. Akram, K. Zhou, M.T. Nazir, Y. Chen, D. Han, M.S. Javed, and I. Ulhaq, Influence of Repetitive Square Voltage Duty Cycle on the Electrical Tree Characteristics of Epoxy resIn. Polymers. 12, 2215 (2020).CrossRef
21.
go back to reference S. Nakamura, A. Kumada, K. Hidaka, H. Hirai, T. Imai, T. Nakamura, and T. Yoshimitsu, Effects of Temperature on Electrical Treeing and Partial Discharges in Epoxy/Silica Nanocomposites. IEEE Trans. Dielectr. Electr. Insul. 27, 1169 (2020).CrossRef S. Nakamura, A. Kumada, K. Hidaka, H. Hirai, T. Imai, T. Nakamura, and T. Yoshimitsu, Effects of Temperature on Electrical Treeing and Partial Discharges in Epoxy/Silica Nanocomposites. IEEE Trans. Dielectr. Electr. Insul. 27, 1169 (2020).CrossRef
22.
go back to reference S. M. Peng, X. Zhu, J. D. Wu, and Y. Yin, Characteristics of partial discharge in XLPE during electrical tree initiation process under different temperatures, in International Symposium on Electrical Insulating Materials (ISEIM) (2020), p. 561-564 S. M. Peng, X. Zhu, J. D. Wu, and Y. Yin, Characteristics of partial discharge in XLPE during electrical tree initiation process under different temperatures, in International Symposium on Electrical Insulating Materials (ISEIM) (2020), p. 561-564
23.
go back to reference B.X. Du, J.S. Xue, J.G. Su, and T. Han, Effects of Ambient Temperature on Electrical Tree in Epoxy Resin Under Repetitive Pulse Voltage. IEEE Trans. Dielectr. Electr. Insul. 24, 1527 (2017).CrossRef B.X. Du, J.S. Xue, J.G. Su, and T. Han, Effects of Ambient Temperature on Electrical Tree in Epoxy Resin Under Repetitive Pulse Voltage. IEEE Trans. Dielectr. Electr. Insul. 24, 1527 (2017).CrossRef
24.
go back to reference C. Zhang, H. Fu, J. Xiang, Z. Cheng, S. Wang, and J. Li, Electrical tree propagation in epoxy resin under bipolar square-wave field with varied frequencies, in International Symposium on Electrical Insulating Materials (ISEIM) (2020), p. 458-461 C. Zhang, H. Fu, J. Xiang, Z. Cheng, S. Wang, and J. Li, Electrical tree propagation in epoxy resin under bipolar square-wave field with varied frequencies, in International Symposium on Electrical Insulating Materials (ISEIM) (2020), p. 458-461
25.
go back to reference G. Chen and C.H. Tham, Electrical Treeing Characteristics in XLPE Power Cable Insulation in Frequency Range Between 20 and 500 Hz. IEEE Trans. Dielectr. Electr. Insul. 16, 179 (2009).CrossRef G. Chen and C.H. Tham, Electrical Treeing Characteristics in XLPE Power Cable Insulation in Frequency Range Between 20 and 500 Hz. IEEE Trans. Dielectr. Electr. Insul. 16, 179 (2009).CrossRef
26.
go back to reference B.R. Varlow and D.W. Auckland, Mechanical Aspects of Electrical Treeing in Solid Insulation. IEEE Electr. Insul. Mag. 12, 21 (1996).CrossRef B.R. Varlow and D.W. Auckland, Mechanical Aspects of Electrical Treeing in Solid Insulation. IEEE Electr. Insul. Mag. 12, 21 (1996).CrossRef
27.
go back to reference H. Cui, L. Yang, Y. Zhu, S. Li, A. Abu-Siada, and S. Islam, Dissolved Gas Analysis for Power Transformers Within Distributed Renewable Generation-Based Systems. IEEE Trans. Dielectr. Electr. Insul. 28, 1349 (2021).CrossRef H. Cui, L. Yang, Y. Zhu, S. Li, A. Abu-Siada, and S. Islam, Dissolved Gas Analysis for Power Transformers Within Distributed Renewable Generation-Based Systems. IEEE Trans. Dielectr. Electr. Insul. 28, 1349 (2021).CrossRef
28.
go back to reference H. Wen and X.X. Zhang, Overheating Decomposition Characteristics of Epoxy Dielectrics in SF6 Atmosphere. IEEE Trans. Dielectr. Electr. Insul. 26, 1411 (2019).CrossRef H. Wen and X.X. Zhang, Overheating Decomposition Characteristics of Epoxy Dielectrics in SF6 Atmosphere. IEEE Trans. Dielectr. Electr. Insul. 26, 1411 (2019).CrossRef
29.
go back to reference G. D. Qi, Z. J. Wu, Q. B. Qi, Y. N. Hao, M. Xiao, and X. M. Feng, Study on the compatibility of perfluorocarbonone and its decomposition products with epoxy resin based on reactive force field method, in IEEE International Conference on High Voltage Engineering and Application (ICHVE) (2020), p. 1-4 G. D. Qi, Z. J. Wu, Q. B. Qi, Y. N. Hao, M. Xiao, and X. M. Feng, Study on the compatibility of perfluorocarbonone and its decomposition products with epoxy resin based on reactive force field method, in IEEE International Conference on High Voltage Engineering and Application (ICHVE) (2020), p. 1-4
30.
go back to reference X. Ren, L. Ruan, H.Y. Jin, and G. Zhang, Electrical-Mechanical Model of Electrical Breakdown of Epoxy-Impregnated-Paper Insulated Tubular Busbar With Bubble Defects. IEEE Access 8, 197931 (2020).CrossRef X. Ren, L. Ruan, H.Y. Jin, and G. Zhang, Electrical-Mechanical Model of Electrical Breakdown of Epoxy-Impregnated-Paper Insulated Tubular Busbar With Bubble Defects. IEEE Access 8, 197931 (2020).CrossRef
31.
go back to reference T. Wendel and J. Kindersberger, Effect of Surface Layer on the Space Charge Accumulation in Epoxy Samples Under DC Stress. IEEE Trans. Dielectr. Electr. Insul. 27, 1989 (2020).CrossRef T. Wendel and J. Kindersberger, Effect of Surface Layer on the Space Charge Accumulation in Epoxy Samples Under DC Stress. IEEE Trans. Dielectr. Electr. Insul. 27, 1989 (2020).CrossRef
32.
go back to reference S. Das and N. Gupta, Effect of Ageing on Space Charge Distribution in Homogeneous and Composite Dielectrics. IEEE Trans. Dielectr. Electr. Insul. 22, 541 (2015).CrossRef S. Das and N. Gupta, Effect of Ageing on Space Charge Distribution in Homogeneous and Composite Dielectrics. IEEE Trans. Dielectr. Electr. Insul. 22, 541 (2015).CrossRef
33.
go back to reference H. Vonberlepsch, Interpretation of Surface Potential Kinetics in HDPE by a Trapping Model. J. Phys. D Appl. phys. 18, 1155 (1985).CrossRef H. Vonberlepsch, Interpretation of Surface Potential Kinetics in HDPE by a Trapping Model. J. Phys. D Appl. phys. 18, 1155 (1985).CrossRef
34.
go back to reference L.A. Dissado, J.C. Fothergill, N. Wise, and J. Cooper, A Deterministic Model for Branched Structures in the Electrical Breakdown of Solid Polymeric Dielectrics. J. Phys. D Appl. Phys. 33, 109 (2000).CrossRef L.A. Dissado, J.C. Fothergill, N. Wise, and J. Cooper, A Deterministic Model for Branched Structures in the Electrical Breakdown of Solid Polymeric Dielectrics. J. Phys. D Appl. Phys. 33, 109 (2000).CrossRef
35.
go back to reference G. Mazzanti and G.C. Montanari, Electrical Aging and Life Models: The Role of Space Charge. IEEE Trans. Dielectr. Electr. Insul. 12, 876 (2005).CrossRef G. Mazzanti and G.C. Montanari, Electrical Aging and Life Models: The Role of Space Charge. IEEE Trans. Dielectr. Electr. Insul. 12, 876 (2005).CrossRef
36.
go back to reference Y. Wang, G. Li, J. Wu, and Y. Yin, Effect of Temperature on Space charge Detrapping and Periodic Grounded DC Tree in Cross-Linked Polyethylene. IEEE Trans. Dielectr. Electr. Insul. 23, 3704 (2016).CrossRef Y. Wang, G. Li, J. Wu, and Y. Yin, Effect of Temperature on Space charge Detrapping and Periodic Grounded DC Tree in Cross-Linked Polyethylene. IEEE Trans. Dielectr. Electr. Insul. 23, 3704 (2016).CrossRef
37.
go back to reference X. Du, M. Tian, J.G. Su, and T. Han, Temperature gradient dependence on electrical tree in epoxy resin with harmonic superimposed DC voltage. IEEE Trans. Dielectr. Electr. Insul. 27, 270 (2020).CrossRef X. Du, M. Tian, J.G. Su, and T. Han, Temperature gradient dependence on electrical tree in epoxy resin with harmonic superimposed DC voltage. IEEE Trans. Dielectr. Electr. Insul. 27, 270 (2020).CrossRef
38.
go back to reference M.G. Danikas, L.A. Dissado, J.V. Champion, and S.J. Dodd, Propagation of Electrical Tree Structures in Solid Polymeric Insulation. IEEE Trans. Dielectr. Electr. Insul. 4, 259 (1997).CrossRef M.G. Danikas, L.A. Dissado, J.V. Champion, and S.J. Dodd, Propagation of Electrical Tree Structures in Solid Polymeric Insulation. IEEE Trans. Dielectr. Electr. Insul. 4, 259 (1997).CrossRef
39.
go back to reference S. Alapati and M. JoyThomas, Influence of Nano-Fillers on Electrical Treeing in Epoxy Insulation. IET Sci. Meas. Technol. 6, 21 (2012).CrossRef S. Alapati and M. JoyThomas, Influence of Nano-Fillers on Electrical Treeing in Epoxy Insulation. IET Sci. Meas. Technol. 6, 21 (2012).CrossRef
40.
go back to reference J.M. Alison, J.V. Champion, S.J. Dodd, and G.C. Stevens, Dynamic Bipolar Charge Recombination Model for Electroluminescence in Polymer Based Insulation During Electrical Tree Initiation. J. Phys. D Appl. Phys. 28, 1693 (1995).CrossRef J.M. Alison, J.V. Champion, S.J. Dodd, and G.C. Stevens, Dynamic Bipolar Charge Recombination Model for Electroluminescence in Polymer Based Insulation During Electrical Tree Initiation. J. Phys. D Appl. Phys. 28, 1693 (1995).CrossRef
41.
go back to reference L. Gao, Y. Yang, J. Xie, S. Zhang, J. Hu, R. Zeng, J. He, Q. Li, and Q. Wang, Autonomous Self-Healing of Electrical Degradation in Dielectric Polymers Using in Situ Electroluminescence. Matter 2, 451 (2020).CrossRef L. Gao, Y. Yang, J. Xie, S. Zhang, J. Hu, R. Zeng, J. He, Q. Li, and Q. Wang, Autonomous Self-Healing of Electrical Degradation in Dielectric Polymers Using in Situ Electroluminescence. Matter 2, 451 (2020).CrossRef
42.
go back to reference J.C. Pandey and Nandini Gupta, Study of Treeing in Epoxy-Alumina Nanocomposites Using Electroluminescence. IEEE Trans. Dielectr. Electr. Insul. 26, 648 (2019).CrossRef J.C. Pandey and Nandini Gupta, Study of Treeing in Epoxy-Alumina Nanocomposites Using Electroluminescence. IEEE Trans. Dielectr. Electr. Insul. 26, 648 (2019).CrossRef
43.
go back to reference S. Alapati and M. Joy Thomas, Electrical Treeing and the Associated PD Characteristics in LDPE Nanocomposites. IEEE Trans Dielectr Electr Insul 19, 697 (2012).CrossRef S. Alapati and M. Joy Thomas, Electrical Treeing and the Associated PD Characteristics in LDPE Nanocomposites. IEEE Trans Dielectr Electr Insul 19, 697 (2012).CrossRef
44.
go back to reference M. Liu, Y. Liu, Y. Li, P. Zheng, and H. Rui, Growth and Partial Discharge Characteristics of Electrical Tree in XLPE Under AC-DC Composite Voltage. IEEE Trans. Dielectr. Electr. Insul. 24, 2282 (2017).CrossRef M. Liu, Y. Liu, Y. Li, P. Zheng, and H. Rui, Growth and Partial Discharge Characteristics of Electrical Tree in XLPE Under AC-DC Composite Voltage. IEEE Trans. Dielectr. Electr. Insul. 24, 2282 (2017).CrossRef
45.
go back to reference M.D. Noskov, M. Sack, A.S. Malinovski, and A.J. Schwab, Measurement and Simulation of Electrical Tree Growth and Partial Discharge Activity in Epoxy Resin. J. Phys. D Appl. Phys. 34, 1389 (2001).CrossRef M.D. Noskov, M. Sack, A.S. Malinovski, and A.J. Schwab, Measurement and Simulation of Electrical Tree Growth and Partial Discharge Activity in Epoxy Resin. J. Phys. D Appl. Phys. 34, 1389 (2001).CrossRef
46.
go back to reference M. Ieda, Dielectric Breakdown Process of Polymers. IEEE Trans. Dielectr. Electr. Insul. 15, 206 (1980).CrossRef M. Ieda, Dielectric Breakdown Process of Polymers. IEEE Trans. Dielectr. Electr. Insul. 15, 206 (1980).CrossRef
47.
go back to reference T. J. Lewis, J. P. Llewellyn, M. J. van der Sluijs, J. Freestone, and R. N. Hampton, A new model for electrical ageing and breakdown in dielectrics, in Seventh International Conference on Dielectric Materials, Measurements and Applications (2002), p. 220-224 T. J. Lewis, J. P. Llewellyn, M. J. van der Sluijs, J. Freestone, and R. N. Hampton, A new model for electrical ageing and breakdown in dielectrics, in Seventh International Conference on Dielectric Materials, Measurements and Applications (2002), p. 220-224
48.
go back to reference T. Tanaka and A. Greenwood, Effects of Charge Injection and Extraction on Tree Initiation in Polyethylene. IEEE Trans. Power Appar. Syst. 97, 1749 (1978).CrossRef T. Tanaka and A. Greenwood, Effects of Charge Injection and Extraction on Tree Initiation in Polyethylene. IEEE Trans. Power Appar. Syst. 97, 1749 (1978).CrossRef
49.
go back to reference J.H. Mason, Breakdown of Solid Dielectrics in Divergent Fields. Proceedings of the IEE-Part C: Monographs 10, 254 (1955). J.H. Mason, Breakdown of Solid Dielectrics in Divergent Fields. Proceedings of the IEE-Part C: Monographs 10, 254 (1955).
50.
go back to reference J.V. Champion and S.J. Dodd, Systematic and Reproducible Partial Discharge Patterns During Electrical Tree Growth in an Epoxy Resin. J. Phys. D-Appl. Phys. 29, 862 (1996).CrossRef J.V. Champion and S.J. Dodd, Systematic and Reproducible Partial Discharge Patterns During Electrical Tree Growth in an Epoxy Resin. J. Phys. D-Appl. Phys. 29, 862 (1996).CrossRef
51.
go back to reference M. A. Brown, J.V. Champion, S. J. Dodd, and P. Mudge, An investigation of partial discharge energy dissipation and electrical tree growth in an epoxy resin, in Proceedings of the 2004 IEEE International Conference on Solid Dielectrics (2004), p. 288-291 M. A. Brown, J.V. Champion, S. J. Dodd, and P. Mudge, An investigation of partial discharge energy dissipation and electrical tree growth in an epoxy resin, in Proceedings of the 2004 IEEE International Conference on Solid Dielectrics (2004), p. 288-291
52.
go back to reference X. Chen, Y. Xu, X. Cao, S.J. Dodd, and L.A. Dissado, Effect Of Tree Channel Conductivity on Electrical Tree Shape and Breakdown in XLPE Cable Insulation Samples. IEEE Trans. Dielectr. Electr. Insul. 18, 847 (2011).CrossRef X. Chen, Y. Xu, X. Cao, S.J. Dodd, and L.A. Dissado, Effect Of Tree Channel Conductivity on Electrical Tree Shape and Breakdown in XLPE Cable Insulation Samples. IEEE Trans. Dielectr. Electr. Insul. 18, 847 (2011).CrossRef
53.
go back to reference S.D. Fabiani, G.C. Montanari, A. Cavallini, and G. Mazzanti, Relation Between Space Charge Accumulation and Partial Discharge Activity in Enameled Wires Under PWM-like Voltage Waveforms. IEEE Trans Dielectr Electr Insul 11, 393 (2004).CrossRef S.D. Fabiani, G.C. Montanari, A. Cavallini, and G. Mazzanti, Relation Between Space Charge Accumulation and Partial Discharge Activity in Enameled Wires Under PWM-like Voltage Waveforms. IEEE Trans Dielectr Electr Insul 11, 393 (2004).CrossRef
Metadata
Title
Electrical Tree Performance in Epoxy Resin under Low-Frequency Bipolar Square- Wave Voltage
Authors
Chuang Zhang
Hang Fu
Zhaoliang Xing
Shaowei Guo
Huize Cui
Shihang Wang
Jianying Li
Publication date
28-06-2022
Publisher
Springer US
Published in
Journal of Electronic Materials / Issue 9/2022
Print ISSN: 0361-5235
Electronic ISSN: 1543-186X
DOI
https://doi.org/10.1007/s11664-022-09771-9

Other articles of this Issue 9/2022

Journal of Electronic Materials 9/2022 Go to the issue