Skip to main content
Top
Published in: Journal of Computational Electronics 4/2018

10-09-2018

Electro-thermal RF modeling and performance analysis of graphene nanoribbon interconnects

Authors: Subhajit Das, Debaprasad Das, Hafizur Rahaman

Published in: Journal of Computational Electronics | Issue 4/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This paper presents an electro-thermal radio frequency (RF) model and performance analysis for multilayer graphene nanoribbon (MLGNR) interconnects. The number of conduction channels is calculated as a function of temperature and Fermi energy. A comprehensive model is developed to calculate the temperature dependent effective mean free path (MFP) considering different scattering mechanisms. The RF model of doped and undoped metallic top-contact (TC), as well as side-contact (SC) MLGNR interconnects is demonstrated using ABCD parameter based multi-conductor transmission line formalism. The RF performance of arsenic pentafluoride (\(\text {AsF}_5\)), lithium (Li) and ferric chloride (\(\text {FeCl}_3\)) intercalation doped TC-MLGNR interconnects is investigated and compared with pristine (undoped) TC and SC-MLGNR interconnects for different temperatures. For the first time, our investigation shows that the electro-thermal RF performance of TC-MLGNR can be improved by intercalation doping. It is found that \(\text {AsF}_5\), Li and \(\text {FeCl}_3\) intercalated top-contact MLGNR can operate up to a few GHz for semi-global interconnects (\(100\,\upmu \)m) and several MHz for global interconnects (\(500\,\upmu \)m). Our analysis also proves that the Li intercalated TC-MLGNR shows the best RF performance as compared to conventional copper, pristine, and other type of intercalation doped TC-MLGNR interconnects over the chip operating temperature range from 233 to 378 K. The performance of Li intercalated TC-MLGNR has been found to be improved further by increasing the specularity during fabrication.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V., Firsov, A.A.: Electric field effect in atomically thin carbon films. Science 306(5696), 666–669 (2004)CrossRef Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V., Firsov, A.A.: Electric field effect in atomically thin carbon films. Science 306(5696), 666–669 (2004)CrossRef
2.
go back to reference Avouris, P., Chen, Z., Perebeinos, V.: Carbon based electronics. Nat. Nanotechnol. 2(10), 605–615 (2007)CrossRef Avouris, P., Chen, Z., Perebeinos, V.: Carbon based electronics. Nat. Nanotechnol. 2(10), 605–615 (2007)CrossRef
3.
go back to reference Xu, C., Li, H., Banerjee, K.: Modeling, analysis, and design of graphene nano-ribbon interconnects. IEEE Trans. Electron Devices 56(8), 1567–1578 (2009)CrossRef Xu, C., Li, H., Banerjee, K.: Modeling, analysis, and design of graphene nano-ribbon interconnects. IEEE Trans. Electron Devices 56(8), 1567–1578 (2009)CrossRef
4.
go back to reference Cui, J.P., Zhao, W.S., Yin, W.Y., Hu, J.: Signal transmission analysis of multilayer graphene nano-ribbon (MLGNR) interconnects. IEEE Trans. Electromagn. Compat. 54(1), 126–132 (2012)CrossRef Cui, J.P., Zhao, W.S., Yin, W.Y., Hu, J.: Signal transmission analysis of multilayer graphene nano-ribbon (MLGNR) interconnects. IEEE Trans. Electromagn. Compat. 54(1), 126–132 (2012)CrossRef
5.
go back to reference Zhao, W.S., Yin, W.Y.: Comparative study on multilayer graphene nanoribbon (MLGNR) interconnects. IEEE Trans. Electromagn. Compat. 56(3), 638–645 (2014)CrossRef Zhao, W.S., Yin, W.Y.: Comparative study on multilayer graphene nanoribbon (MLGNR) interconnects. IEEE Trans. Electromagn. Compat. 56(3), 638–645 (2014)CrossRef
6.
go back to reference Nishad, A.K., Sharma, R.: Analytical time-domain models for performance optimization of multilayer GNR interconnects. IEEE J. Sel. Top. Quantum Electron. 20(1), 1–8 (2014)CrossRef Nishad, A.K., Sharma, R.: Analytical time-domain models for performance optimization of multilayer GNR interconnects. IEEE J. Sel. Top. Quantum Electron. 20(1), 1–8 (2014)CrossRef
7.
go back to reference Naeemi, A., Meindl, J.D.: Compact physics-based circuit models for graphene nanoribbon interconnects. IEEE Trans. Electron Devices 56(9), 1822–1833 (2009)CrossRef Naeemi, A., Meindl, J.D.: Compact physics-based circuit models for graphene nanoribbon interconnects. IEEE Trans. Electron Devices 56(9), 1822–1833 (2009)CrossRef
8.
go back to reference Naeemi, A., Meindl, J.D.: Conductance modeling for graphene nanoribbon (GNR) interconnects. IEEE Electron Device Lett. 28(5), 428–431 (2007)CrossRef Naeemi, A., Meindl, J.D.: Conductance modeling for graphene nanoribbon (GNR) interconnects. IEEE Electron Device Lett. 28(5), 428–431 (2007)CrossRef
9.
go back to reference Nasiri, S.H., Moravvej-Farshi, M.K., Faez, R.: Stability analysis in graphene nanoribbon interconnects. IEEE Electron Device Lett. 31(12), 1458–1460 (2010)CrossRef Nasiri, S.H., Moravvej-Farshi, M.K., Faez, R.: Stability analysis in graphene nanoribbon interconnects. IEEE Electron Device Lett. 31(12), 1458–1460 (2010)CrossRef
10.
go back to reference Chen, X., Akinwande, D., Lee, K.-J., Close, G.F., Yasuda, S., Paul, B.C., Fujita, S., Kong, J., Wong, H.-S.P.: Fully integrated graphene and carbon nanotube interconnects for gigahertz high-speed CMOS electronics. IEEE Trans. Electron. Devices 57(11), 3137–3143 (2010)CrossRef Chen, X., Akinwande, D., Lee, K.-J., Close, G.F., Yasuda, S., Paul, B.C., Fujita, S., Kong, J., Wong, H.-S.P.: Fully integrated graphene and carbon nanotube interconnects for gigahertz high-speed CMOS electronics. IEEE Trans. Electron. Devices 57(11), 3137–3143 (2010)CrossRef
11.
go back to reference Lee, K.J., Qazi, M., Kong, J., Chandrakasan, A.P.: Low-swing signalling on monolithically integrated global grapheme interconnects. IEEE Trans. Electron. Devices 57(12), 3418–3425 (2010)CrossRef Lee, K.J., Qazi, M., Kong, J., Chandrakasan, A.P.: Low-swing signalling on monolithically integrated global grapheme interconnects. IEEE Trans. Electron. Devices 57(12), 3418–3425 (2010)CrossRef
12.
go back to reference Sarkar, D., Xu, C., Li, H., Banerjee, K.: High-frequency behavior of graphene-based interconnects—part I: impedance modeling. IEEE Trans. Electron Devices 58(3), 843–852 (2011)CrossRef Sarkar, D., Xu, C., Li, H., Banerjee, K.: High-frequency behavior of graphene-based interconnects—part I: impedance modeling. IEEE Trans. Electron Devices 58(3), 843–852 (2011)CrossRef
13.
go back to reference Kumar, V., Rakheja, S., Naeemi, A.: Modeling and optimization for multi-layer graphene nanoribbon conductors. In: IEEE IITC/MAM, pp. 1–3 (2011) Kumar, V., Rakheja, S., Naeemi, A.: Modeling and optimization for multi-layer graphene nanoribbon conductors. In: IEEE IITC/MAM, pp. 1–3 (2011)
14.
go back to reference Kumar, V., Rakheja, S., Naeemi, A.: Performance and energy-per-bit modeling of multilayer graphene nanoribbon conductors. IEEE Trans. Electron Devices 59(10), 2753–2761 (2012)CrossRef Kumar, V., Rakheja, S., Naeemi, A.: Performance and energy-per-bit modeling of multilayer graphene nanoribbon conductors. IEEE Trans. Electron Devices 59(10), 2753–2761 (2012)CrossRef
15.
go back to reference Bao, W., Wan, J., Han, X., Cai, X., Zhu, H., Kim, D., Ma, D., Xu, Y., Munday, J.N., Dennis Drew, H., Fuhrer, M.S., Hu, L.: Approaching the limits of transparency and conductivity in graphitic materials through lithium intercalation. Nat. Commun. 5, 4224 (2014)CrossRef Bao, W., Wan, J., Han, X., Cai, X., Zhu, H., Kim, D., Ma, D., Xu, Y., Munday, J.N., Dennis Drew, H., Fuhrer, M.S., Hu, L.: Approaching the limits of transparency and conductivity in graphitic materials through lithium intercalation. Nat. Commun. 5, 4224 (2014)CrossRef
16.
go back to reference Jiang, J., Kang, J., Cao, W., Xie, X., Zhang, H., Chu, J., Liu, W., Banerjee, K.: Intercalation doped multilayer-graphene-nanoribbons for next-generation interconnects. Nano Lett. 17(3), 1482–1488 (2017)CrossRef Jiang, J., Kang, J., Cao, W., Xie, X., Zhang, H., Chu, J., Liu, W., Banerjee, K.: Intercalation doped multilayer-graphene-nanoribbons for next-generation interconnects. Nano Lett. 17(3), 1482–1488 (2017)CrossRef
17.
go back to reference ITRS International Technology Working Groups, International Technology Roadmap for Semiconductors (2013) ITRS International Technology Working Groups, International Technology Roadmap for Semiconductors (2013)
18.
go back to reference Jiang, J., Kang, J., Banerjee, K.: Characterization of self-heating and current-carrying capacity of intercalation doped graphene-nanoribbon interconnects. In: IEEE International Reliability Physics Symposium (IRPS) (2017) Jiang, J., Kang, J., Banerjee, K.: Characterization of self-heating and current-carrying capacity of intercalation doped graphene-nanoribbon interconnects. In: IEEE International Reliability Physics Symposium (IRPS) (2017)
19.
go back to reference Bhattacharya, S., Das, D., Rahaman, H.: Analysis of temperature dependent power supply voltage drop in graphene nanoribbon and Cu based power interconnects. AIMS Mater. Sci. 3(4), 1493–1506 (2016)CrossRef Bhattacharya, S., Das, D., Rahaman, H.: Analysis of temperature dependent power supply voltage drop in graphene nanoribbon and Cu based power interconnects. AIMS Mater. Sci. 3(4), 1493–1506 (2016)CrossRef
20.
go back to reference Chen, J.H., Jang, C., Xiao, S., Ishigami, M., Fuhrer, M.S.: Intrinsic and extrinsic performance limits of graphene devices on SiO\(_2\). Nat. Nanotechnol. 3, 206–209 (2008)CrossRef Chen, J.H., Jang, C., Xiao, S., Ishigami, M., Fuhrer, M.S.: Intrinsic and extrinsic performance limits of graphene devices on SiO\(_2\). Nat. Nanotechnol. 3, 206–209 (2008)CrossRef
21.
go back to reference Fratini, S., Guinea, F.: Substrate-limited electron dynamics in graphene. Phys. Rev. B 77, 195415 (2008)CrossRef Fratini, S., Guinea, F.: Substrate-limited electron dynamics in graphene. Phys. Rev. B 77, 195415 (2008)CrossRef
22.
go back to reference Nishad, A.K., Sharma, R.: Lithium-intercalated graphene interconnects: prospects for on-chip applications. IEEE J. Electron Devices Soc. 4(6), 485–489 (2016)CrossRef Nishad, A.K., Sharma, R.: Lithium-intercalated graphene interconnects: prospects for on-chip applications. IEEE J. Electron Devices Soc. 4(6), 485–489 (2016)CrossRef
23.
go back to reference Kumar, V.R., Majumder, M.K., Kukkam, N.R., Kaushik, B.K.: Time and frequency domain analysis of MLGNR interconnects. IEEE Trans. Nanotechnol. 14(3), 484–492 (2015)CrossRef Kumar, V.R., Majumder, M.K., Kukkam, N.R., Kaushik, B.K.: Time and frequency domain analysis of MLGNR interconnects. IEEE Trans. Nanotechnol. 14(3), 484–492 (2015)CrossRef
24.
go back to reference Kumar, V.R., Majumder, M.K., Alam, A., Kukkam, N.R., Kaushik, B.K.: Stability and delay analysis of multi-layered GNR and multi-walled CNT interconnects. J. Comput. Electron. 14(2), 611–618 (2015)CrossRef Kumar, V.R., Majumder, M.K., Alam, A., Kukkam, N.R., Kaushik, B.K.: Stability and delay analysis of multi-layered GNR and multi-walled CNT interconnects. J. Comput. Electron. 14(2), 611–618 (2015)CrossRef
25.
go back to reference Reddy, K.N., Majumder, M.K., Kaushik, B.K.: Delay uncertainty in MLGNR interconnects under process induced variations of width, doping, dielectric thickness and mean free path. J. Comput. Electron. 13(3), 639–646 (2014)CrossRef Reddy, K.N., Majumder, M.K., Kaushik, B.K.: Delay uncertainty in MLGNR interconnects under process induced variations of width, doping, dielectric thickness and mean free path. J. Comput. Electron. 13(3), 639–646 (2014)CrossRef
26.
go back to reference Rai, M.K., Sarkar, S., Kaushik, B.K.: Performance analysis of multilayer graphene nanoribbon (MLGNR) interconnects. J. Comput. Electron. 15(2), 358–366 (2016)CrossRef Rai, M.K., Sarkar, S., Kaushik, B.K.: Performance analysis of multilayer graphene nanoribbon (MLGNR) interconnects. J. Comput. Electron. 15(2), 358–366 (2016)CrossRef
27.
go back to reference Rai, M.K., Arora, S., Kaushik, B.K.: Temperature dependent modeling and performance analysis of coupled MLGNR interconnects. Int. J. Circuit Theory Appl. 46, 299–312 (2018)CrossRef Rai, M.K., Arora, S., Kaushik, B.K.: Temperature dependent modeling and performance analysis of coupled MLGNR interconnects. Int. J. Circuit Theory Appl. 46, 299–312 (2018)CrossRef
28.
go back to reference Clayton, P.R.: Analysis of Multiconductor Transmission Lines. Wiley, New York (1994) Clayton, P.R.: Analysis of Multiconductor Transmission Lines. Wiley, New York (1994)
29.
go back to reference Dresselhaus, M.S., Dresselhaus, G.: Intercalation compounds of graphite. Adv. Phys. 51(1), 1–186 (2002)CrossRef Dresselhaus, M.S., Dresselhaus, G.: Intercalation compounds of graphite. Adv. Phys. 51(1), 1–186 (2002)CrossRef
30.
go back to reference Enoki, T., Suzuki, M., Endo, M.: Graphite Intercalation Compounds and Applications. Oxford University Press, New York (2003) Enoki, T., Suzuki, M., Endo, M.: Graphite Intercalation Compounds and Applications. Oxford University Press, New York (2003)
31.
go back to reference Neto, A.H.C., Guinea, F., Peres, N., Novoselov, K., Geim, A.: The electronic properties of graphene. Rev. Mod. Phys. 81, 109–162 (2009)CrossRef Neto, A.H.C., Guinea, F., Peres, N., Novoselov, K., Geim, A.: The electronic properties of graphene. Rev. Mod. Phys. 81, 109–162 (2009)CrossRef
32.
go back to reference Rakheja, S., Kumar, V., Naeemi, A.: Evaluation of the potential performance of graphene nano-ribbons as on chip interconnects. Proc. IEEE 101(7), 1740–1765 (2013)CrossRef Rakheja, S., Kumar, V., Naeemi, A.: Evaluation of the potential performance of graphene nano-ribbons as on chip interconnects. Proc. IEEE 101(7), 1740–1765 (2013)CrossRef
33.
go back to reference Morozov, S., Novoselov, K., Katsnelson, M.: Giant intrinsic carrier mobilities in graphene and its bilayer. Phys. Rev. Lett. 100, 016602 (2008)CrossRef Morozov, S., Novoselov, K., Katsnelson, M.: Giant intrinsic carrier mobilities in graphene and its bilayer. Phys. Rev. Lett. 100, 016602 (2008)CrossRef
34.
go back to reference Perebeinos, V., Avouris, P.: Inelastic scattering and current saturation in graphene. Phys. Rev. B 81(19), 195442 (2010)CrossRef Perebeinos, V., Avouris, P.: Inelastic scattering and current saturation in graphene. Phys. Rev. B 81(19), 195442 (2010)CrossRef
35.
go back to reference Nishad, A.K., Sharma, R.: Self-consistent capacitance model for multilayer graphene nanoribbon interconnects. Micro Nano Lett. 10(8), 404–407 (2015)CrossRef Nishad, A.K., Sharma, R.: Self-consistent capacitance model for multilayer graphene nanoribbon interconnects. Micro Nano Lett. 10(8), 404–407 (2015)CrossRef
36.
go back to reference Nishad, A.K., Sharma, R.: Performance improvement in SC-MLGNRs interconnects using interlayer dielectric insertion. IEEE Trans. Emerg. Top. Comput. 3(4), 470–482 (2015)CrossRef Nishad, A.K., Sharma, R.: Performance improvement in SC-MLGNRs interconnects using interlayer dielectric insertion. IEEE Trans. Emerg. Top. Comput. 3(4), 470–482 (2015)CrossRef
37.
go back to reference Stellari, F., Lacaita, A.L.: New formulas of interconnect capacitances based on results of conformal mapping method. IEEE Trans. Electron Devices 47(1), 222–231 (2000)CrossRef Stellari, F., Lacaita, A.L.: New formulas of interconnect capacitances based on results of conformal mapping method. IEEE Trans. Electron Devices 47(1), 222–231 (2000)CrossRef
38.
go back to reference Banerjee, K., Mehrotra, A.: Analysis of on-chip inductance effects for distributed RLC interconnects. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 21(8), 904–915 (2002)CrossRef Banerjee, K., Mehrotra, A.: Analysis of on-chip inductance effects for distributed RLC interconnects. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 21(8), 904–915 (2002)CrossRef
39.
go back to reference Kumar, M.G., Chandel, R., Agrawal, Y.: Timing and stability analysis of carbon nanotube interconnects. In: IEEE International Symposium on Nanoelectronic and Information Systems, pp. 308–313 (2015) Kumar, M.G., Chandel, R., Agrawal, Y.: Timing and stability analysis of carbon nanotube interconnects. In: IEEE International Symposium on Nanoelectronic and Information Systems, pp. 308–313 (2015)
40.
go back to reference Bointon, T.H., Khrapach, I., Yakimova, R., Shytov, A.V., Craciun, M.F., Russo, S.: Approaching magnetic ordering in graphene materials by FeCl\(_3\) intercalation. Nano Lett. 14(4), 1751–1755 (2014)CrossRef Bointon, T.H., Khrapach, I., Yakimova, R., Shytov, A.V., Craciun, M.F., Russo, S.: Approaching magnetic ordering in graphene materials by FeCl\(_3\) intercalation. Nano Lett. 14(4), 1751–1755 (2014)CrossRef
41.
go back to reference Khrapach, I., Withers, F., Bointon, T.H., Polyushkin, D.K., Barnes, W.L., Russo, S., Craciun, M.F.: Novel highly conductive and transparent graphene based conductors. Adv. Mater. 24, 2844–2849 (2012)CrossRef Khrapach, I., Withers, F., Bointon, T.H., Polyushkin, D.K., Barnes, W.L., Russo, S., Craciun, M.F.: Novel highly conductive and transparent graphene based conductors. Adv. Mater. 24, 2844–2849 (2012)CrossRef
42.
go back to reference Voiry, D., Yamaguchi, H., Li, J.W., Silva, R., Alves, D.C.B., Fujita, T., Chen, M.W., Asefa, T., Shenoy, V.B., Eda, G., Chhowalla, M.: Enhanced catalytic activity in strained chemically exfoliated WS\(_2\) nanosheets for hydrogen evolution. Nat. Mater. 12, 850–855 (2013)CrossRef Voiry, D., Yamaguchi, H., Li, J.W., Silva, R., Alves, D.C.B., Fujita, T., Chen, M.W., Asefa, T., Shenoy, V.B., Eda, G., Chhowalla, M.: Enhanced catalytic activity in strained chemically exfoliated WS\(_2\) nanosheets for hydrogen evolution. Nat. Mater. 12, 850–855 (2013)CrossRef
43.
go back to reference Seeland, J.A., Dahn, J.R.: Abstract 100, The Electrochemical Society Meeting Abstracts, Vol. 2000-2, Phoenix, AZ, Oct 22–27 (2000) Seeland, J.A., Dahn, J.R.: Abstract 100, The Electrochemical Society Meeting Abstracts, Vol. 2000-2, Phoenix, AZ, Oct 22–27 (2000)
44.
go back to reference Wan, J., Lacey, S.D., Dai, J., Bao, W., Fuhrer, M.S., Hu, L.: Tuning two-dimensional nanomaterials by intercalation: materials, properties and applications. Chem. Soc. Rev. 45, 6742–6765 (2016)CrossRef Wan, J., Lacey, S.D., Dai, J., Bao, W., Fuhrer, M.S., Hu, L.: Tuning two-dimensional nanomaterials by intercalation: materials, properties and applications. Chem. Soc. Rev. 45, 6742–6765 (2016)CrossRef
45.
go back to reference Whittingham, M.S., Jacobson, A.J.: Intercalation Chemistry. Academic, New York (1982) Whittingham, M.S., Jacobson, A.J.: Intercalation Chemistry. Academic, New York (1982)
46.
go back to reference Kahng, A.B., Muddu, S.: An analytical delay model for RLC interconnects. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 16(12), 1507–1514 (1997)CrossRef Kahng, A.B., Muddu, S.: An analytical delay model for RLC interconnects. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 16(12), 1507–1514 (1997)CrossRef
47.
go back to reference Li, X.C., Mao, J.F., Huang, H.F., Liu, Y.: Global interconnect width and spacing optimization for latency, bandwidth and power dissipation. IEEE Trans. Electron Devices 52(10), 2272–2279 (2005)CrossRef Li, X.C., Mao, J.F., Huang, H.F., Liu, Y.: Global interconnect width and spacing optimization for latency, bandwidth and power dissipation. IEEE Trans. Electron Devices 52(10), 2272–2279 (2005)CrossRef
Metadata
Title
Electro-thermal RF modeling and performance analysis of graphene nanoribbon interconnects
Authors
Subhajit Das
Debaprasad Das
Hafizur Rahaman
Publication date
10-09-2018
Publisher
Springer US
Published in
Journal of Computational Electronics / Issue 4/2018
Print ISSN: 1569-8025
Electronic ISSN: 1572-8137
DOI
https://doi.org/10.1007/s10825-018-1245-2

Other articles of this Issue 4/2018

Journal of Computational Electronics 4/2018 Go to the issue