Skip to main content
Top
Published in: Journal of Computational Electronics 4/2018

05-09-2018

Electrostatically doped tunnel CNTFET model for low-power VLSI circuit design

Authors: Shashi Bala, Mamta Khosla

Published in: Journal of Computational Electronics | Issue 4/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

With advantages such as low sub-threshold swing, low OFF-state current and the ability to attain a higher ON–OFF ratio, the tunnel CNTFET is one of the most comprehensively investigated devices for low-power application. The problems associated with this device are fabrication issues since conventional doping is not possible in CNTs. Therefore, a doping-less tunnel CNTFET is proposed which is free from problems associated with a conventional tunnel CNTFET. A mathematical model is developed for an electrostatically doped tunnel CNTFET, and to validate the model accuracy and the equation set, the simulation results are compared with NanoTCAD ViDES results. Finally, the developed model is deployed in an inverter design to verify the suitability of the model for circuit applications.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Tanaka, J., Toyabe, T., Ihara, S., Kimura, S., Noda, H., Itoh, K.: Simulation of sub-0.1-μm MOSFET’s with completely suppressed short-channel effect. IEEE Electron Device Lett. 14(8), 396–399 (1993)CrossRef Tanaka, J., Toyabe, T., Ihara, S., Kimura, S., Noda, H., Itoh, K.: Simulation of sub-0.1-μm MOSFET’s with completely suppressed short-channel effect. IEEE Electron Device Lett. 14(8), 396–399 (1993)CrossRef
2.
go back to reference Bricout, P.H., Dubois, E.: Short-channel effect immunity and current capability of sub-0.1-micron MOSFET’s using a recessed channel. IEEE Trans. Electron Devices 43(8), 1251–1255 (1996)CrossRef Bricout, P.H., Dubois, E.: Short-channel effect immunity and current capability of sub-0.1-micron MOSFET’s using a recessed channel. IEEE Trans. Electron Devices 43(8), 1251–1255 (1996)CrossRef
3.
go back to reference Young, K.K.: Short channel effect in fully depleted SOI MOSFETs. IEEE Trans. Electron Devices 36(2), 399–402 (1989)CrossRef Young, K.K.: Short channel effect in fully depleted SOI MOSFETs. IEEE Trans. Electron Devices 36(2), 399–402 (1989)CrossRef
4.
go back to reference Raj, B.: Quantum mechanical potential modeling of FinFET. In: Han, W., Wang, Z.M. (eds.) Towards Quantum FinFET, vol. 17, pp. 81–97. Springer, Cham (2014)CrossRef Raj, B.: Quantum mechanical potential modeling of FinFET. In: Han, W., Wang, Z.M. (eds.) Towards Quantum FinFET, vol. 17, pp. 81–97. Springer, Cham (2014)CrossRef
5.
go back to reference Zhang, Q., Shao, W., Seabaugh, A.: Low-subthreshold-swing tunnel transistors. IEEE Electron Device Lett. 27(4), 297–300 (2006)CrossRef Zhang, Q., Shao, W., Seabaugh, A.: Low-subthreshold-swing tunnel transistors. IEEE Electron Device Lett. 27(4), 297–300 (2006)CrossRef
6.
go back to reference Appenzeller, J., Lin, Y.M., Knoch, J., Avouris, P.: Band-to-band tunneling in carbon nanotube field-effect transistors. Phys. Rev. Lett. 93(19), 196 805-1–196 805-4 (2004)CrossRef Appenzeller, J., Lin, Y.M., Knoch, J., Avouris, P.: Band-to-band tunneling in carbon nanotube field-effect transistors. Phys. Rev. Lett. 93(19), 196 805-1–196 805-4 (2004)CrossRef
7.
go back to reference Schenk, A.: Rigorous theory and simplified model of the band-to-band tunneling in silicon. Solid State Electron. 36(1), 19–34 (1993)CrossRef Schenk, A.: Rigorous theory and simplified model of the band-to-band tunneling in silicon. Solid State Electron. 36(1), 19–34 (1993)CrossRef
8.
go back to reference Saurabh, S., Kumar, M.J.: Novel attributes of a dual material gate nanoscale tunnel field-effect transistor. IEEE Trans. Electron Devices 58(2), 404–410 (2011)CrossRef Saurabh, S., Kumar, M.J.: Novel attributes of a dual material gate nanoscale tunnel field-effect transistor. IEEE Trans. Electron Devices 58(2), 404–410 (2011)CrossRef
9.
go back to reference Knoch, J., Appenzeller, J.: Tunneling phenomena in carbon nanotube field-effect transistors. Physica Status Solidi 205(4), 679–694 (2008)CrossRef Knoch, J., Appenzeller, J.: Tunneling phenomena in carbon nanotube field-effect transistors. Physica Status Solidi 205(4), 679–694 (2008)CrossRef
10.
go back to reference Appenzeller, J.: Comparing carbon nanotube transistors—the ideal choice: a novel tunneling device design. IEEE Trans. Electron Devices 52(12), 2568–2576 (2005)CrossRef Appenzeller, J.: Comparing carbon nanotube transistors—the ideal choice: a novel tunneling device design. IEEE Trans. Electron Devices 52(12), 2568–2576 (2005)CrossRef
11.
go back to reference Pourfath, M., Kosina, H., Selberherr, S.: Tunneling CNTFETs. J. Comput. Electron. 6(1–3), 243–246 (2007)CrossRef Pourfath, M., Kosina, H., Selberherr, S.: Tunneling CNTFETs. J. Comput. Electron. 6(1–3), 243–246 (2007)CrossRef
12.
go back to reference Knoch, J., Appenzeller, J.: A novel concept for field-effect transistors the tunneling carbon nanotube FET. In: Proceedings of the 63rd Device Research Conference Digest, vol. 1, pp. 153–156 (2005) Knoch, J., Appenzeller, J.: A novel concept for field-effect transistors the tunneling carbon nanotube FET. In: Proceedings of the 63rd Device Research Conference Digest, vol. 1, pp. 153–156 (2005)
13.
go back to reference Kaushik, B.K., Majumder, M.K.: Carbon nanotube: properties and applications. In: Kaushik, B.K. (ed.) Carbon Nanotube Based VLSI Interconnects, pp. 17–37. Springer, New Delhi (2015) Kaushik, B.K., Majumder, M.K.: Carbon nanotube: properties and applications. In: Kaushik, B.K. (ed.) Carbon Nanotube Based VLSI Interconnects, pp. 17–37. Springer, New Delhi (2015)
14.
go back to reference Hueting, R.J.E., Rajasekharan, B., Salm, C., Schmitz, J.: The Charge plasma P–N diode. Electron Device Lett. 29(12), 1367–1369 (2008)CrossRef Hueting, R.J.E., Rajasekharan, B., Salm, C., Schmitz, J.: The Charge plasma P–N diode. Electron Device Lett. 29(12), 1367–1369 (2008)CrossRef
15.
go back to reference Kumar, M.J., Nadda, K.: Bipolar charge-plasma transistor: a novel three terminal device. IEEE Trans. Electron Devices 59(4), 962–967 (2012)CrossRef Kumar, M.J., Nadda, K.: Bipolar charge-plasma transistor: a novel three terminal device. IEEE Trans. Electron Devices 59(4), 962–967 (2012)CrossRef
16.
go back to reference Loan, S.A., Bashir, F., Rafat, M., Alamoud, A.R.M., Abbasi, S.A.: A high performance double gate dopingless metal oxide semiconductor field effect transistor. In: Proceedings off the Ion Implantation Technology, pp. 1–4 (2014) Loan, S.A., Bashir, F., Rafat, M., Alamoud, A.R.M., Abbasi, S.A.: A high performance double gate dopingless metal oxide semiconductor field effect transistor. In: Proceedings off the Ion Implantation Technology, pp. 1–4 (2014)
17.
go back to reference Singh, A., Khosla, M., Raj, B.: Analysis of electrostatic doped Schottky barrier carbon nanotube FET for low power applications. J. Mater. Sci. Mater. Electron. 28, 1762–1768 (2017)CrossRef Singh, A., Khosla, M., Raj, B.: Analysis of electrostatic doped Schottky barrier carbon nanotube FET for low power applications. J. Mater. Sci. Mater. Electron. 28, 1762–1768 (2017)CrossRef
18.
go back to reference Kumar, M.J., Janardhanan, S.: Doping-less tunnel field effect transistor: Design and investigation. IEEE Trans. Electron Devices 60(10), 3285–3290 (2013)CrossRef Kumar, M.J., Janardhanan, S.: Doping-less tunnel field effect transistor: Design and investigation. IEEE Trans. Electron Devices 60(10), 3285–3290 (2013)CrossRef
19.
go back to reference Raad, B.R., Sharma, D., Kondekar, P., Nigam, K., Yadav, D.S.: Drain work function engineered doping-less charge plasma TFET for ambipolar suppression and RF performance improvement: a proposal, design, and investigation. IEEE Trans. Electron Devices 63(10), 3950–3957 (2016)CrossRef Raad, B.R., Sharma, D., Kondekar, P., Nigam, K., Yadav, D.S.: Drain work function engineered doping-less charge plasma TFET for ambipolar suppression and RF performance improvement: a proposal, design, and investigation. IEEE Trans. Electron Devices 63(10), 3950–3957 (2016)CrossRef
20.
go back to reference Singh, S., Kondekar, P.N.: A novel dynamically configurable electrostatically doped silicon nanowire impact ionization MOS. Superlattices Microstruct. 88(12), 695–703 (2015)CrossRef Singh, S., Kondekar, P.N.: A novel dynamically configurable electrostatically doped silicon nanowire impact ionization MOS. Superlattices Microstruct. 88(12), 695–703 (2015)CrossRef
21.
go back to reference Gupta, G., Rajasekharan, B., Hueting, R.J.: Electrostatic doping in semiconductor devices. IEEE Trans. Electron Devices 64(8), 3044–3055 (2017)CrossRef Gupta, G., Rajasekharan, B., Hueting, R.J.: Electrostatic doping in semiconductor devices. IEEE Trans. Electron Devices 64(8), 3044–3055 (2017)CrossRef
22.
go back to reference Singh, A., Khosla, M., Raj, B.: Circuit compatible model for electrostatic doped Schottky barrier CNTFET. J. Electron. Mater. 45(10), 5381–5390 (2016)CrossRef Singh, A., Khosla, M., Raj, B.: Circuit compatible model for electrostatic doped Schottky barrier CNTFET. J. Electron. Mater. 45(10), 5381–5390 (2016)CrossRef
23.
go back to reference Zener, C.: A theory of electrical breakdown of solid dielectrics. Proc. R. Soc. Lond. A 145(855), 523–529 (1934)CrossRef Zener, C.: A theory of electrical breakdown of solid dielectrics. Proc. R. Soc. Lond. A 145(855), 523–529 (1934)CrossRef
25.
go back to reference Moll, J.L.: Physics of Semiconductors, pp. 249–253. McGraw-Hill, New York (1964)MATH Moll, J.L.: Physics of Semiconductors, pp. 249–253. McGraw-Hill, New York (1964)MATH
26.
go back to reference Ilatikhameneh, H., Salazar, R.B., Klimeck, G., Rahman, R., Appenzeller, J.: From Fowler–Nordheim to nonequilibrium Green’s function modeling of tunneling. IEEE Trans. Electron Devices 63(7), 2871–2878 (2016)CrossRef Ilatikhameneh, H., Salazar, R.B., Klimeck, G., Rahman, R., Appenzeller, J.: From Fowler–Nordheim to nonequilibrium Green’s function modeling of tunneling. IEEE Trans. Electron Devices 63(7), 2871–2878 (2016)CrossRef
27.
go back to reference Salazar, R.B., Ilatikhameneh, H., Rahman, R., Klimeck, G., Appenzeller, J.: A predictive analytic model for high-performance tunneling field-effect transistors approaching non-equilibrium Green’s function simulations. J. Appl. Phys. 118(16), 164305 (2015)CrossRef Salazar, R.B., Ilatikhameneh, H., Rahman, R., Klimeck, G., Appenzeller, J.: A predictive analytic model for high-performance tunneling field-effect transistors approaching non-equilibrium Green’s function simulations. J. Appl. Phys. 118(16), 164305 (2015)CrossRef
28.
go back to reference Wang, P.-F., Hilsenbeck, K., Nirschl, T., Oswald, M., Stepper, C., Weiss, M., Schmitt-Landsiedel, D., Hansch, W.: Complementary tunneling transistor for low power applications. Solid State Electron. 48(12), 2281–2286 (2004)CrossRef Wang, P.-F., Hilsenbeck, K., Nirschl, T., Oswald, M., Stepper, C., Weiss, M., Schmitt-Landsiedel, D., Hansch, W.: Complementary tunneling transistor for low power applications. Solid State Electron. 48(12), 2281–2286 (2004)CrossRef
29.
go back to reference Kumar, S., Raj, B.: Compact channel potential analytical modeling of DG-TFET based on Evanescent-mode approach. J. Comput. Electron. 14(3), 820 (2015)CrossRef Kumar, S., Raj, B.: Compact channel potential analytical modeling of DG-TFET based on Evanescent-mode approach. J. Comput. Electron. 14(3), 820 (2015)CrossRef
30.
go back to reference Reddick, W., Amaratunga, G.: Silicon surface tunnel transistor. Appl. Phys. Lett. 67(4), 494–496 (1995)CrossRef Reddick, W., Amaratunga, G.: Silicon surface tunnel transistor. Appl. Phys. Lett. 67(4), 494–496 (1995)CrossRef
31.
go back to reference Seabaugh and Q. Zhang “Low-voltage tunnel transistors for beyond CMOS logic”,Proc. IEEE, vol. 98, No. 12, pp. 2095–2110, 2010CrossRef Seabaugh and Q. Zhang “Low-voltage tunnel transistors for beyond CMOS logic”,Proc. IEEE, vol. 98, No. 12, pp. 2095–2110, 2010CrossRef
32.
go back to reference Knoch, J., Mantl, S., Appenzeller, J.: Impact of the dimensionality on the performance of tunneling FETs: bulk versus one-dimensional devices. Solid State Electron. 51(4), 572–578 (2007)CrossRef Knoch, J., Mantl, S., Appenzeller, J.: Impact of the dimensionality on the performance of tunneling FETs: bulk versus one-dimensional devices. Solid State Electron. 51(4), 572–578 (2007)CrossRef
34.
go back to reference Luisier, M., Klimeck, G.: Simulation of nanowire tunneling transistors: from the Wentzel Kramers Brillouin approximation to full-band phonon-assisted tunneling. J. Appl. Phys. 107(8), 084507 (2010)CrossRef Luisier, M., Klimeck, G.: Simulation of nanowire tunneling transistors: from the Wentzel Kramers Brillouin approximation to full-band phonon-assisted tunneling. J. Appl. Phys. 107(8), 084507 (2010)CrossRef
35.
go back to reference Frégonèse, S., Maneux, C., Zimmer, T.: Implementation of tunneling phenomena in a CNTFET compact model. IEEE Trans. Electron Devices 56(10), 2224–2231 (2009)CrossRef Frégonèse, S., Maneux, C., Zimmer, T.: Implementation of tunneling phenomena in a CNTFET compact model. IEEE Trans. Electron Devices 56(10), 2224–2231 (2009)CrossRef
36.
go back to reference Narang, R., Saxena, M., Gupta, R.S., Gupta, M.: Assessment of ambipolar behavior of a tunnel FET and influence of structural modifications. J Semicond Technol Sci 12(4), 482–491 (2012)CrossRef Narang, R., Saxena, M., Gupta, R.S., Gupta, M.: Assessment of ambipolar behavior of a tunnel FET and influence of structural modifications. J Semicond Technol Sci 12(4), 482–491 (2012)CrossRef
37.
go back to reference Abebe, H., Cumberbatch, E.: Electrostatic single-walled carbon nanotube field effect transistor MOSIS device modeling. In: WCM (2011) Abebe, H., Cumberbatch, E.: Electrostatic single-walled carbon nanotube field effect transistor MOSIS device modeling. In: WCM (2011)
38.
go back to reference Streetman, B.G., Banerjee, S.: Solid State Electronics Devices, vol. 4, 6th edn, pp. 89–92. Prentice Hall, Englewood Cliffs (2000) Streetman, B.G., Banerjee, S.: Solid State Electronics Devices, vol. 4, 6th edn, pp. 89–92. Prentice Hall, Englewood Cliffs (2000)
39.
go back to reference Mintmire, J.W., White, C.T.: Universal density of states for carbon nanotubes. Phys. Rev. Lett. 81(12), 2506–2509 (1998)CrossRef Mintmire, J.W., White, C.T.: Universal density of states for carbon nanotubes. Phys. Rev. Lett. 81(12), 2506–2509 (1998)CrossRef
40.
go back to reference Javey, A., Kim, H., Brink, M., Wang, Q., Ural, A., Guo, J., McIntyre, P., McEuen, P., Lundstrom, M., Dai, H.: High K dielectrics for advanced carbon nanotube transistors and logic. Nat. Mater. 1(4), 241–246 (2002)CrossRef Javey, A., Kim, H., Brink, M., Wang, Q., Ural, A., Guo, J., McIntyre, P., McEuen, P., Lundstrom, M., Dai, H.: High K dielectrics for advanced carbon nanotube transistors and logic. Nat. Mater. 1(4), 241–246 (2002)CrossRef
Metadata
Title
Electrostatically doped tunnel CNTFET model for low-power VLSI circuit design
Authors
Shashi Bala
Mamta Khosla
Publication date
05-09-2018
Publisher
Springer US
Published in
Journal of Computational Electronics / Issue 4/2018
Print ISSN: 1569-8025
Electronic ISSN: 1572-8137
DOI
https://doi.org/10.1007/s10825-018-1240-7

Other articles of this Issue 4/2018

Journal of Computational Electronics 4/2018 Go to the issue