Skip to main content
Top
Published in: Journal of Electronic Materials 9/2021

03-07-2021 | Original Research Article

Electrochemical Deposition of Cu-Nanoparticle-Loaded CdSe/TiO2 Nanotube Nanostructure as Photoelectrode

Authors: Asmaa Kadim Ayal, Ayat Khairi Hashim, Ahmed Mudhafar Mohammed, Ahlam Mohammed Farhan, Araa Mebdir Holi, Ying-Chin Lim

Published in: Journal of Electronic Materials | Issue 9/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Surface alteration of titanium dioxide nanotube arrays by semiconductor and metal is one of the pathways to narrow the wide bandgap of titanium dioxide and thereby increase its absorption in the visible region. Cu-CdSe-cosensitized titanium dioxide nanotube arrays (Cu-CdSe/TiO2 nanotube) have been produced for use as photoanodes in photoelectrochemical cells. Ordered Cu-CdSe/TiO2 nanotubes were successfully prepared by varying the deposition time (1 min to 4 min) using a facile three-step electrochemical method. The composition, morphological structure, and visible-light response were characterized by field-emission scanning electron microscopy, x-ray diffraction (XRD) analysis, energy-dispersive x-ray spectroscopy, ultraviolet–visible (UV–Vis) diffusion reflection spectroscopy (DRS), and photoelectrochemical testing. XRD analysis demonstrated that sensitization using Cu-CdSe did not destroy the structure of the anatase-phase nanotube arrays, with the formation of copper nanoparticles composed of cubic-like particles with increasing deposition time. UV–Vis DRS of the Cu-CdSe/TiO2 nanotubes revealed a red-shift of the photoresponse towards the visible-light region, characterized by bandgap narrowing and improved photoefficiency. The optimal photoelectrochemical performance was observed when depositing Cu nanoparticles for 1 min, surpassing that of pristine titania nanotube arrays and other materials prepared under different conditions. The features of these photoanodes for many applications include easy synthesis, low cost, high efficiency for visible lighting, and good stability. The present work demonstrates a feasible modification of TiO2 nanotubes with Cu-CdSe to form potential photoanodes for solar conversion devices.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference S. Afaq, A.L.I. Shah, Z. Guo, M.H. Sayyad, and S. Abdulkarim, J. Electron. Mater. 50, 613 (2021).CrossRef S. Afaq, A.L.I. Shah, Z. Guo, M.H. Sayyad, and S. Abdulkarim, J. Electron. Mater. 50, 613 (2021).CrossRef
2.
3.
4.
6.
go back to reference B.D.V. Bavykin, J.M. Friedrich, and F.C. Walsh, Adv. Mater. 18, 2807 (2006).CrossRef B.D.V. Bavykin, J.M. Friedrich, and F.C. Walsh, Adv. Mater. 18, 2807 (2006).CrossRef
7.
go back to reference G. He, J. Zhang, Y. Hu, Z. Bai, and C. Wei, Appl. Catal. B Environ. 250, 301 (2019).CrossRef G. He, J. Zhang, Y. Hu, Z. Bai, and C. Wei, Appl. Catal. B Environ. 250, 301 (2019).CrossRef
8.
go back to reference K. Nakata, and A. Fujishima, J. Photochem. Photobiol. C Photochem. Rev. 13, 169 (2012).CrossRef K. Nakata, and A. Fujishima, J. Photochem. Photobiol. C Photochem. Rev. 13, 169 (2012).CrossRef
9.
10.
go back to reference C.R. Bellato, C.H.F. de Souza, and P.A. Rocha, J. Braz. Chem. Soc. 28, 2301 (2017). C.R. Bellato, C.H.F. de Souza, and P.A. Rocha, J. Braz. Chem. Soc. 28, 2301 (2017).
11.
go back to reference T.J. Awaid, A.K. Ayal, A.M. Farhan, and L.Y. Chin, Baghdad Sci. J. 17, 1183 (2020).CrossRef T.J. Awaid, A.K. Ayal, A.M. Farhan, and L.Y. Chin, Baghdad Sci. J. 17, 1183 (2020).CrossRef
12.
go back to reference K.N. Chappanda, Y.R. Smith, L.W. Rieth, P. Tathireddy, M. Misra, and S.K. Mohanty, IEEE Trans. Nanotechnol. 26, 18 (2014). K.N. Chappanda, Y.R. Smith, L.W. Rieth, P. Tathireddy, M. Misra, and S.K. Mohanty, IEEE Trans. Nanotechnol. 26, 18 (2014).
13.
go back to reference M.Z. Lin, H. Chen, W.F. Chen, A. Nakaruk, P. Koshy, and C.C. Sorrell, Int. J. Hydrog. Energy 39, 21500 (2014).CrossRef M.Z. Lin, H. Chen, W.F. Chen, A. Nakaruk, P. Koshy, and C.C. Sorrell, Int. J. Hydrog. Energy 39, 21500 (2014).CrossRef
14.
go back to reference S. Baradaran, W.J. Basirun, E. Zalnezhad, M. Hamdi, A.D. Sarhan, and Y. Alias, J. Mech. Behav. Biomed. Mater. 20, 272 (2013).CrossRef S. Baradaran, W.J. Basirun, E. Zalnezhad, M. Hamdi, A.D. Sarhan, and Y. Alias, J. Mech. Behav. Biomed. Mater. 20, 272 (2013).CrossRef
15.
go back to reference R. Dholam, N. Patel, M. Adami, and A. Miotello, J. Hydrog. Energy 33, 6896 (2008).CrossRef R. Dholam, N. Patel, M. Adami, and A. Miotello, J. Hydrog. Energy 33, 6896 (2008).CrossRef
16.
go back to reference Y.S. Kim, M.Y. Song, E.S. Park, S. Chin, G.-N. Bae, and J. Jurng, Appl. Biochem. Biotechnol. 168, 1143 (2012).CrossRef Y.S. Kim, M.Y. Song, E.S. Park, S. Chin, G.-N. Bae, and J. Jurng, Appl. Biochem. Biotechnol. 168, 1143 (2012).CrossRef
17.
go back to reference N. Tsvetkov, L. Larina, J.K. Kang, and O. Shevaleevskiy, Nanomaterials 10, 296 (2020).CrossRef N. Tsvetkov, L. Larina, J.K. Kang, and O. Shevaleevskiy, Nanomaterials 10, 296 (2020).CrossRef
18.
19.
go back to reference M. Ángel, L. Zavala, S. Alejandro, and L. Morales, Heliyon 3, e00456 (2017).CrossRef M. Ángel, L. Zavala, S. Alejandro, and L. Morales, Heliyon 3, e00456 (2017).CrossRef
20.
go back to reference S.D. Perera, R.G. Mariano, K. Vu, N. Nour, O. Seitz, Y. Chabal, and K.J. Balkus, ACS Catal. 2, 949 (2012).CrossRef S.D. Perera, R.G. Mariano, K. Vu, N. Nour, O. Seitz, Y. Chabal, and K.J. Balkus, ACS Catal. 2, 949 (2012).CrossRef
21.
go back to reference O. Zakir, R. Idouhli, M. Elyaagoubi, M. Khadiri, A. Aityoub, Y. Koumya, S. Rafqah, A. Abouelfida, and A. Outzourhit, J. Nanomater. 2020, 1 (2020).CrossRef O. Zakir, R. Idouhli, M. Elyaagoubi, M. Khadiri, A. Aityoub, Y. Koumya, S. Rafqah, A. Abouelfida, and A. Outzourhit, J. Nanomater. 2020, 1 (2020).CrossRef
22.
go back to reference N. Pishkar, M. Ghoranneviss, Z. Ghorannevis, and H. Akbari, Res. Phys. 9, 1246 (2018). N. Pishkar, M. Ghoranneviss, Z. Ghorannevis, and H. Akbari, Res. Phys. 9, 1246 (2018).
23.
go back to reference H. Sopha, Y. Norikawa, M. Motola, and L. Hromadko, Electrochem. Commun. 118, 106788 (2020).CrossRef H. Sopha, Y. Norikawa, M. Motola, and L. Hromadko, Electrochem. Commun. 118, 106788 (2020).CrossRef
24.
go back to reference T. Ghani, M. Mujahid, M. Mehmood, and M. Ubaidullah, J. Electron. Mater. 49, 1881 (2020).CrossRef T. Ghani, M. Mujahid, M. Mehmood, and M. Ubaidullah, J. Electron. Mater. 49, 1881 (2020).CrossRef
25.
go back to reference R. Daghrir, P. Drogui, and D. Robert, Ind. Eng. Chem. Res. 52, 3581 (2013).CrossRef R. Daghrir, P. Drogui, and D. Robert, Ind. Eng. Chem. Res. 52, 3581 (2013).CrossRef
26.
go back to reference A.K. Ayal, Z. Zainal, H.-N. Lim, Z.A. Talib, Y.-C. Lim, S.-K. Chang, N.A. Samsudin, A.M. Holi, and W.N.M. Amin, J. Mater. Sci. Mater. Electron. 27, 5204 (2016).CrossRef A.K. Ayal, Z. Zainal, H.-N. Lim, Z.A. Talib, Y.-C. Lim, S.-K. Chang, N.A. Samsudin, A.M. Holi, and W.N.M. Amin, J. Mater. Sci. Mater. Electron. 27, 5204 (2016).CrossRef
27.
go back to reference M.M. Momeni, Y. Ghayeb, and F. Ezati, J. Colloid Interface Sci. 514, 70 (2018).CrossRef M.M. Momeni, Y. Ghayeb, and F. Ezati, J. Colloid Interface Sci. 514, 70 (2018).CrossRef
28.
go back to reference W. Krengvirat, S. Sreekantan, and A.M. Noor, Int. J. Hydrog. Energy. 37, 10046 (2012).CrossRef W. Krengvirat, S. Sreekantan, and A.M. Noor, Int. J. Hydrog. Energy. 37, 10046 (2012).CrossRef
Metadata
Title
Electrochemical Deposition of Cu-Nanoparticle-Loaded CdSe/TiO2 Nanotube Nanostructure as Photoelectrode
Authors
Asmaa Kadim Ayal
Ayat Khairi Hashim
Ahmed Mudhafar Mohammed
Ahlam Mohammed Farhan
Araa Mebdir Holi
Ying-Chin Lim
Publication date
03-07-2021
Publisher
Springer US
Published in
Journal of Electronic Materials / Issue 9/2021
Print ISSN: 0361-5235
Electronic ISSN: 1543-186X
DOI
https://doi.org/10.1007/s11664-021-09062-9

Other articles of this Issue 9/2021

Journal of Electronic Materials 9/2021 Go to the issue

Topical Collection: Carbon-Based Materials for Energy Storage

N-Doped NiO Nanosheet Arrays as Efficient Electrocatalysts for Hydrogen Evolution Reaction