Skip to main content
Top
Published in: Rare Metals 3/2019

29-11-2018

Electrochemical performance of Li-rich cathode material, 0.3Li2MnO3–0.7LiMn1/3Ni1/3Co1/3O2 microspheres with F-doping

Authors: Ting Liu, Shi-Xi Zhao, Lu-Lu Gou, Xia Wu, Ce-Wen Nan

Published in: Rare Metals | Issue 3/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Layered F-doped cathode materials 0.3Li2MnO3–0.7LiMn1/3Ni1/3Co1/3O2−xFx (x = 0, 0.01, 0.02, 0.03, 0.04, 0.05) microspheres made up of nanosized primary grains were prepared through co-precipitation method. The sample of x = 0.02 demonstrates a large discharge capacity of 226 mAh·g−1 over 100 cycles at 0.1C and excellent rate performance with discharge capacity of 96 mAh·g−1 at 5.0C and room temperature. Particularly, this material shows much enhanced electrochemical performances even at high temperature of 55 °C. It delivers a quite high discharge capacity of 233.7 mAh·g−1 at 1.0C with capacity retention as high as 97.9% after 100 cycles. The results demonstrate that the fluorine incorporation stabilizes the cathode structure and maintains stable interfacial resistances.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
[1]
go back to reference Du J, Ouyang M, Chen J. Prospects for Chinese electric vehicle technologies in 2016–2020: ambition and rationality. Energy. 2017;120(S):584.CrossRef Du J, Ouyang M, Chen J. Prospects for Chinese electric vehicle technologies in 2016–2020: ambition and rationality. Energy. 2017;120(S):584.CrossRef
[2]
go back to reference Luo W, Gaumet JJ, Mai LQ. Antimony-based intermetallic compounds for lithium-ion and sodium-ion batteries: synthesis, construction and application. Rare Met. 2017;36(5):321.CrossRef Luo W, Gaumet JJ, Mai LQ. Antimony-based intermetallic compounds for lithium-ion and sodium-ion batteries: synthesis, construction and application. Rare Met. 2017;36(5):321.CrossRef
[3]
go back to reference Johnson CS, Li N, Lefief C, Vaughey JT, Thackeray MM. Synthesis, characterization and electrochemistry of lithium battery electrodes: xLi2MnO3·(1−x)LiMn0.333Ni0.333Co0.333O2 (0 ≤ x ≤ 0.7). Chem Mater. 2008;20(19):6095.CrossRef Johnson CS, Li N, Lefief C, Vaughey JT, Thackeray MM. Synthesis, characterization and electrochemistry of lithium battery electrodes: xLi2MnO3·(1−x)LiMn0.333Ni0.333Co0.333O2 (0 ≤ x ≤ 0.7). Chem Mater. 2008;20(19):6095.CrossRef
[4]
go back to reference Mohanty D, Kalnaus S, Meisner RA, Rhodes KJ, Li J, Payzant EA, Wood DL, Daniel C III. Structural transformation of a lithium-rich Li1.2Co0.1Mn0.55Ni0.15O2 cathode during high voltage cycling resolved by in situ X-ray diffraction. J Power Sources. 2013;229:239.CrossRef Mohanty D, Kalnaus S, Meisner RA, Rhodes KJ, Li J, Payzant EA, Wood DL, Daniel C III. Structural transformation of a lithium-rich Li1.2Co0.1Mn0.55Ni0.15O2 cathode during high voltage cycling resolved by in situ X-ray diffraction. J Power Sources. 2013;229:239.CrossRef
[5]
go back to reference Chen Z, Yan X, Xu M, Cao K, Zhu H, Li L, Duan J. Building honeycomb-like hollow microsphere architecture in a bubble template reaction for high-performance lithium-rich layered oxide cathode materials. ACS Appl Mater Interfaces. 2017;9(36):30617.CrossRef Chen Z, Yan X, Xu M, Cao K, Zhu H, Li L, Duan J. Building honeycomb-like hollow microsphere architecture in a bubble template reaction for high-performance lithium-rich layered oxide cathode materials. ACS Appl Mater Interfaces. 2017;9(36):30617.CrossRef
[6]
go back to reference Erickson EM, Sclar H, Schipper F, Liu J, Tian R, Ghanty C, Burstein L, Leifer N, Grinblat J, Talianker M, Shin JY, Lampert JK, Markovsky B, Frenkel AI, Aurbach D. High-temperature treatment of Li-rich cathode materials with ammonia: improved capacity and mean voltage stability during cycling. Adv Energy Mater. 2017;7(18):1700708.CrossRef Erickson EM, Sclar H, Schipper F, Liu J, Tian R, Ghanty C, Burstein L, Leifer N, Grinblat J, Talianker M, Shin JY, Lampert JK, Markovsky B, Frenkel AI, Aurbach D. High-temperature treatment of Li-rich cathode materials with ammonia: improved capacity and mean voltage stability during cycling. Adv Energy Mater. 2017;7(18):1700708.CrossRef
[7]
go back to reference Konishi H, Hirano T, Takamatsu D, Gunji A, Feng X, Furutsuki S, Okumura T, Terada S. Suppression of potential hysteresis between charge and discharge reactions in lithium-rich layer-structured cathode material by increasing nickel/manganese ratio. Solid State Ion. 2017;308:84.CrossRef Konishi H, Hirano T, Takamatsu D, Gunji A, Feng X, Furutsuki S, Okumura T, Terada S. Suppression of potential hysteresis between charge and discharge reactions in lithium-rich layer-structured cathode material by increasing nickel/manganese ratio. Solid State Ion. 2017;308:84.CrossRef
[8]
go back to reference Liu J, Liu J, Wang R, Xia Y. Degradation and structural evolution of xLi2MnO3·(1−x)LiMn1/3Ni1/3Co1/3O2 during cycling. J Electrochem Soc. 2014;161(1):A160.CrossRef Liu J, Liu J, Wang R, Xia Y. Degradation and structural evolution of xLi2MnO3·(1−x)LiMn1/3Ni1/3Co1/3O2 during cycling. J Electrochem Soc. 2014;161(1):A160.CrossRef
[9]
go back to reference Simonin L, Colin J-F, Ranieri V, Canevet E, Martin J-F, Bourbon C, Baehtz C, Strobel P, Daniel L, Patoux S. In situ investigations of a Li-rich Mn-Ni layered oxide for Li-ion batteries. J Mater Chem. 2012;22(22):11316.CrossRef Simonin L, Colin J-F, Ranieri V, Canevet E, Martin J-F, Bourbon C, Baehtz C, Strobel P, Daniel L, Patoux S. In situ investigations of a Li-rich Mn-Ni layered oxide for Li-ion batteries. J Mater Chem. 2012;22(22):11316.CrossRef
[10]
go back to reference Yu H, Zhou H. High-energy cathode materials (Li2MnO3–LiMO2) for lithium-ion batteries. J Phys Chem Lett. 2013;4(8):1268.CrossRef Yu H, Zhou H. High-energy cathode materials (Li2MnO3–LiMO2) for lithium-ion batteries. J Phys Chem Lett. 2013;4(8):1268.CrossRef
[11]
go back to reference Ramesha RN, Laisa CP, Ramesha K. Improving electrochemical stability by transition metal cation doping for manganese in lithium-rich layered cathode, Li1.2Ni0.13Co0.13Mn0.54−xMxO2 (M = Co, Cr and Fe). Electrochim Acta. 2017;249:377.CrossRef Ramesha RN, Laisa CP, Ramesha K. Improving electrochemical stability by transition metal cation doping for manganese in lithium-rich layered cathode, Li1.2Ni0.13Co0.13Mn0.54−xMxO2 (M = Co, Cr and Fe). Electrochim Acta. 2017;249:377.CrossRef
[12]
go back to reference Wei W, Chen L, Pan A, Ivey DG. Roles of surface structure and chemistry on electrochemical processes in lithium-rich layered oxide cathodes. Nano Energy. 2016;30:580.CrossRef Wei W, Chen L, Pan A, Ivey DG. Roles of surface structure and chemistry on electrochemical processes in lithium-rich layered oxide cathodes. Nano Energy. 2016;30:580.CrossRef
[13]
go back to reference Ding F, Li J, Deng F, Xu G, Liu Y, Yang K, Kang F. Surface heterostructure induced by PrPO4 modification in Li1.2Mn0.54Ni0.13Co0.13O2 cathode material for high-performance lithium-ion batteries with mitigating voltage decay. ACS Appl Mater Interfaces. 2017;9(33):27936.CrossRef Ding F, Li J, Deng F, Xu G, Liu Y, Yang K, Kang F. Surface heterostructure induced by PrPO4 modification in Li1.2Mn0.54Ni0.13Co0.13O2 cathode material for high-performance lithium-ion batteries with mitigating voltage decay. ACS Appl Mater Interfaces. 2017;9(33):27936.CrossRef
[14]
go back to reference Zhang N, Li Y. Lithium-rich layered oxides as cathode materials: structures, capacity origin mechanisms and modifications. Prog Chem. 2017;29(4):373. Zhang N, Li Y. Lithium-rich layered oxides as cathode materials: structures, capacity origin mechanisms and modifications. Prog Chem. 2017;29(4):373.
[15]
go back to reference Wang Z, Lu HQ, Yin YP, Sun XY, Bai XT, Shen XL, Zhuang WD, Lu SG. FePO4-coated Li[Li0.2Ni0.13Co0.13Mn0.54]O2 with improved cycling performance as cathode material for Li-ion batteries. Rare Met. 2017;36(11):899.CrossRef Wang Z, Lu HQ, Yin YP, Sun XY, Bai XT, Shen XL, Zhuang WD, Lu SG. FePO4-coated Li[Li0.2Ni0.13Co0.13Mn0.54]O2 with improved cycling performance as cathode material for Li-ion batteries. Rare Met. 2017;36(11):899.CrossRef
[16]
go back to reference Chen S, Chen L, Li Y, Su Y, Lu Y, Bao L, Wang J, Wang M, Wu F. Synergistic effects of stabilizing the surface structure and lowering the interface resistance in improving the low-temperature performances of layered lithium-rich materials. ACS Appl Mater Interfaces. 2017;9(10):8641.CrossRef Chen S, Chen L, Li Y, Su Y, Lu Y, Bao L, Wang J, Wang M, Wu F. Synergistic effects of stabilizing the surface structure and lowering the interface resistance in improving the low-temperature performances of layered lithium-rich materials. ACS Appl Mater Interfaces. 2017;9(10):8641.CrossRef
[17]
go back to reference An J, Shi L, Chen G, Li M, Liu H, Yuan S, Chen S, Zhang D. Insights into the stable layered structure of a Li-rich cathode material for lithium-ion batteries. J Mater Chem A. 2017;5(37):19738.CrossRef An J, Shi L, Chen G, Li M, Liu H, Yuan S, Chen S, Zhang D. Insights into the stable layered structure of a Li-rich cathode material for lithium-ion batteries. J Mater Chem A. 2017;5(37):19738.CrossRef
[18]
go back to reference Kapylou A, Song JH, Missiul A, Ham DJ, Kim DH, Moon S, Park JH. Improved thermal stability of Li-rich layered oxide by fluorine doping. Chemphyschem Eur J Chem Phys Phys Chem. 2017;19(1):116.CrossRef Kapylou A, Song JH, Missiul A, Ham DJ, Kim DH, Moon S, Park JH. Improved thermal stability of Li-rich layered oxide by fluorine doping. Chemphyschem Eur J Chem Phys Phys Chem. 2017;19(1):116.CrossRef
[19]
go back to reference Tian Z, Wang J, Liu S, Li Q, Zeng G, Yang Y, Cui Y. Na-stabilized Ru-based lithium rich layered oxides with enhanced electrochemical performance for lithium ion batteries. Electrochim Acta. 2017;253:31.CrossRef Tian Z, Wang J, Liu S, Li Q, Zeng G, Yang Y, Cui Y. Na-stabilized Ru-based lithium rich layered oxides with enhanced electrochemical performance for lithium ion batteries. Electrochim Acta. 2017;253:31.CrossRef
[20]
go back to reference Chen Y, Zheng C, Chen Z, Xie K. The significance of the stable Rhombohedral structure in Li-rich cathodes for lithium-ion batteries. Ionics. 2017;23(2):367.CrossRef Chen Y, Zheng C, Chen Z, Xie K. The significance of the stable Rhombohedral structure in Li-rich cathodes for lithium-ion batteries. Ionics. 2017;23(2):367.CrossRef
[21]
go back to reference Wang J, He X, Paillard E, Laszczynski N, Li J, Passerini S. Lithium- and manganese-rich oxide cathode materials for high-energy lithium ion batteries. Adv Energy Mater. 2016;6(21):1600906.CrossRef Wang J, He X, Paillard E, Laszczynski N, Li J, Passerini S. Lithium- and manganese-rich oxide cathode materials for high-energy lithium ion batteries. Adv Energy Mater. 2016;6(21):1600906.CrossRef
[22]
go back to reference Zhao Y, Liu J, Wang S, Ji R, Xia Q, Ding Z, Wei W, Liu Y, Wang P, Ivey DG. Surface structural transition induced by gradient polyanion-doping in Li-rich layered oxides: implications for enhanced electrochemical performance. Adv Funct Mater. 2016;26(26):4760.CrossRef Zhao Y, Liu J, Wang S, Ji R, Xia Q, Ding Z, Wei W, Liu Y, Wang P, Ivey DG. Surface structural transition induced by gradient polyanion-doping in Li-rich layered oxides: implications for enhanced electrochemical performance. Adv Funct Mater. 2016;26(26):4760.CrossRef
[23]
go back to reference Yu C, Li G, Guan X, Zheng J, Luo D, Li L. The impact of upper cut-off voltages on the electrochemical behaviors of composite electrode 0.3LiMnO3·0.7LiMn1/3Ni1/3Co1/3O2. Phys Chem Chem Phys. 2012;14(35):12368.CrossRef Yu C, Li G, Guan X, Zheng J, Luo D, Li L. The impact of upper cut-off voltages on the electrochemical behaviors of composite electrode 0.3LiMnO3·0.7LiMn1/3Ni1/3Co1/3O2. Phys Chem Chem Phys. 2012;14(35):12368.CrossRef
[24]
go back to reference Guo B, Zhao J, Fan X, Zhang W, Li S, Yang Z, Chen Z, Zhang W. Aluminum and fluorine co-doping for promotion of stability and safety of lithium-rich layered cathode material. Electrochim Acta. 2017;236:171.CrossRef Guo B, Zhao J, Fan X, Zhang W, Li S, Yang Z, Chen Z, Zhang W. Aluminum and fluorine co-doping for promotion of stability and safety of lithium-rich layered cathode material. Electrochim Acta. 2017;236:171.CrossRef
[25]
go back to reference Zheng J, Wu X, Yang Y. Improved electrochemical performance of Li0.2Mn0.54Ni0.13Co0.13O2 cathode material by fluorine incorporation. Electrochim Acta. 2013;105:200.CrossRef Zheng J, Wu X, Yang Y. Improved electrochemical performance of Li0.2Mn0.54Ni0.13Co0.13O2 cathode material by fluorine incorporation. Electrochim Acta. 2013;105:200.CrossRef
[26]
go back to reference Kang S-H, Amine K. Layered Li (Li0.2Ni0.15 + 0.5zCo0.10Mn0.55−0.5z)O2−zFz cathode materials for Li-ion secondary batteries. J Power Sources. 2005;146(1):654.CrossRef Kang S-H, Amine K. Layered Li (Li0.2Ni0.15 + 0.5zCo0.10Mn0.55−0.5z)O2−zFz cathode materials for Li-ion secondary batteries. J Power Sources. 2005;146(1):654.CrossRef
[27]
go back to reference Oh SW, Park SH, Kim JH, Bae YC, Sun YK. Improvement of electrochemical properties of LiNi0.5Mn1.5O4 spinel material by fluorine substitution. J Power Sources. 2006;157(1):464.CrossRef Oh SW, Park SH, Kim JH, Bae YC, Sun YK. Improvement of electrochemical properties of LiNi0.5Mn1.5O4 spinel material by fluorine substitution. J Power Sources. 2006;157(1):464.CrossRef
[28]
go back to reference West W, Staniewicz R, Ma C, Robak J, Soler J, Smart M, Ratnakumar B. Implications of the first cycle irreversible capacity on cell balancing for Li2MnO3–LiMO2 (M = Ni, Mn, Co) Li-ion cathodes. J Power Sources. 2011;196(22):9696.CrossRef West W, Staniewicz R, Ma C, Robak J, Soler J, Smart M, Ratnakumar B. Implications of the first cycle irreversible capacity on cell balancing for Li2MnO3–LiMO2 (M = Ni, Mn, Co) Li-ion cathodes. J Power Sources. 2011;196(22):9696.CrossRef
[29]
go back to reference Deng Z, Manthiram A. Influence of cationic substitutions on the oxygen loss and reversible capacity of lithium-rich layered oxide cathodes. J Phys Chem C. 2011;115(14):7097.CrossRef Deng Z, Manthiram A. Influence of cationic substitutions on the oxygen loss and reversible capacity of lithium-rich layered oxide cathodes. J Phys Chem C. 2011;115(14):7097.CrossRef
[30]
go back to reference Liu H, Fell CR, An K, Cai L, Meng YS. In-situ neutron diffraction study of the xLi2MnO3·(1−x)LiMO2 (x = 0, 0.5; M = Ni, Mn, Co) layered oxide compounds during electrochemical cycling. J Power Sources. 2013;240:772.CrossRef Liu H, Fell CR, An K, Cai L, Meng YS. In-situ neutron diffraction study of the xLi2MnO3·(1−x)LiMO2 (x = 0, 0.5; M = Ni, Mn, Co) layered oxide compounds during electrochemical cycling. J Power Sources. 2013;240:772.CrossRef
[31]
go back to reference Liu T, Zhao SX, Wang K, Nan CW. CuO-coated Li[Ni0.5Co0.2Mn0.3]O2 cathode material with improved cycling performance at high rates. Electrochim Acta. 2012;85:605.CrossRef Liu T, Zhao SX, Wang K, Nan CW. CuO-coated Li[Ni0.5Co0.2Mn0.3]O2 cathode material with improved cycling performance at high rates. Electrochim Acta. 2012;85:605.CrossRef
[32]
go back to reference Nobili F, Croce F, Scrosati B, Marassi R. Electronic and electrochemical properties of LixNi1−yCoyO2 cathodes studied by impedance spectroscopy. Chem Mater. 2001;13(5):1642.CrossRef Nobili F, Croce F, Scrosati B, Marassi R. Electronic and electrochemical properties of LixNi1−yCoyO2 cathodes studied by impedance spectroscopy. Chem Mater. 2001;13(5):1642.CrossRef
[33]
go back to reference Lu Z, Dahn JR. Understanding the anomalous capacity of Li/Li [NixLi(1/3−2x/3)Mn(2/3−x/3)]O2 cells using in situ X-ray diffraction and electrochemical studies. J Electrochem Soc. 2002;149(7):A815.CrossRef Lu Z, Dahn JR. Understanding the anomalous capacity of Li/Li [NixLi(1/3−2x/3)Mn(2/3−x/3)]O2 cells using in situ X-ray diffraction and electrochemical studies. J Electrochem Soc. 2002;149(7):A815.CrossRef
Metadata
Title
Electrochemical performance of Li-rich cathode material, 0.3Li2MnO3–0.7LiMn1/3Ni1/3Co1/3O2 microspheres with F-doping
Authors
Ting Liu
Shi-Xi Zhao
Lu-Lu Gou
Xia Wu
Ce-Wen Nan
Publication date
29-11-2018
Publisher
Nonferrous Metals Society of China
Published in
Rare Metals / Issue 3/2019
Print ISSN: 1001-0521
Electronic ISSN: 1867-7185
DOI
https://doi.org/10.1007/s12598-018-1168-x

Other articles of this Issue 3/2019

Rare Metals 3/2019 Go to the issue

Premium Partners