Skip to main content
Top
Published in: Rare Metals 3/2019

07-07-2017

A scalable synthesis of silicon nanoparticles as high-performance anode material for lithium-ion batteries

Authors: Jin Li, Juan-Yu Yang, Jian-Tao Wang, Shi-Gang Lu

Published in: Rare Metals | Issue 3/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this work, a scalable and cost-effective method including mechanical milling, centrifugation and spray drying was developed to fabricate Si nanoparticles. The synthesized Si nanoparticles show an average size of 62 nm and exhibit a narrow particle size distribution. The influence of particle sizes on electrochemical performance of Si-based electrode was investigated, and it is found that as the particle size decreases in the studied range, the Si particles show a lower specific capacity and a higher irreversible capacity loss (ICL). Furthermore, an oxide layer with thickness of ~3 nm was detected on the surface of the as-received Si nanoparticles, and this layer can be effectively removed by hydrofluoric acid (HF) etching, resulting in much improved electrochemical performance over the as-received samples.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
[1]
go back to reference Armand M, Tarascon JM. Building better batteries. Nature. 2008;451(7179):652.CrossRef Armand M, Tarascon JM. Building better batteries. Nature. 2008;451(7179):652.CrossRef
[2]
go back to reference Goodenough JB, Kim Y. Challenges for rechargeable Li batteries. Chem Mater. 2010;22(3):587.CrossRef Goodenough JB, Kim Y. Challenges for rechargeable Li batteries. Chem Mater. 2010;22(3):587.CrossRef
[3]
go back to reference Wu ZH, Yang JY, Yu B, Shi BM, Zhao CR, Yu ZL. Self-healing alginate–carboxymethyl chitosan porous scaffold as an effective binder for silicon anodes in lithium-ion batteries. Rare Met. 2016;. doi:10.1007/s12598-016-0753-0. Wu ZH, Yang JY, Yu B, Shi BM, Zhao CR, Yu ZL. Self-healing alginate–carboxymethyl chitosan porous scaffold as an effective binder for silicon anodes in lithium-ion batteries. Rare Met. 2016;. doi:10.​1007/​s12598-016-0753-0.
[4]
go back to reference McDowell MT, Lee SW, Nix WD, Cui Y. 25th anniversary article: understanding the lithiation of silicon and other alloying anodes for lithium-ion batteries. Adv Mater. 2013;25(36):4966.CrossRef McDowell MT, Lee SW, Nix WD, Cui Y. 25th anniversary article: understanding the lithiation of silicon and other alloying anodes for lithium-ion batteries. Adv Mater. 2013;25(36):4966.CrossRef
[5]
go back to reference Kim H, Seo M, Park MH, Cho J. A critical size of silicon nano-anodes for lithium rechargeable batteries. Angew Chem Int Ed. 2010;49(12):2146.CrossRef Kim H, Seo M, Park MH, Cho J. A critical size of silicon nano-anodes for lithium rechargeable batteries. Angew Chem Int Ed. 2010;49(12):2146.CrossRef
[6]
go back to reference Li H, Huang X, Chen L, Wu Z, Liang Y. A high capacity nano-Si Composite anode material for lithium rechargeable batteries. Electrochem Solid State Lett. 1999;2(11):547.CrossRef Li H, Huang X, Chen L, Wu Z, Liang Y. A high capacity nano-Si Composite anode material for lithium rechargeable batteries. Electrochem Solid State Lett. 1999;2(11):547.CrossRef
[7]
go back to reference Fang S, Wang H, Yang JY, Lu SG, Yu B, Wang JT, Zhao CR. Electrochemical preparation of silicon nanowires from porous Ni/SiO2 blocks in molten CaCl2. Rare Met. 2016;. doi:10.1007/s12598-016-0742-3. Fang S, Wang H, Yang JY, Lu SG, Yu B, Wang JT, Zhao CR. Electrochemical preparation of silicon nanowires from porous Ni/SiO2 blocks in molten CaCl2. Rare Met. 2016;. doi:10.​1007/​s12598-016-0742-3.
[8]
go back to reference Zhang C, Gu L, Kaskhedikar N, Cui G, Maier J. Preparation of silicon@silicon oxide core–shell nanowires from a silica precursor toward a high energy density Li-ion battery anode. ACS Appl Mater Interfaces. 2013;5(23):12340.CrossRef Zhang C, Gu L, Kaskhedikar N, Cui G, Maier J. Preparation of silicon@silicon oxide core–shell nanowires from a silica precursor toward a high energy density Li-ion battery anode. ACS Appl Mater Interfaces. 2013;5(23):12340.CrossRef
[9]
go back to reference Wu H, Chan G, Choi JW, Ryu I, Yao Y, McDowell MT, Lee SW, Jackson A, Yang Y, Hu L, Cui Y. Stable cycling of double-walled silicon nanotube battery anodes through solid–electrolyte interphase control. Nat Nanotechnol. 2012;7(5):310.CrossRef Wu H, Chan G, Choi JW, Ryu I, Yao Y, McDowell MT, Lee SW, Jackson A, Yang Y, Hu L, Cui Y. Stable cycling of double-walled silicon nanotube battery anodes through solid–electrolyte interphase control. Nat Nanotechnol. 2012;7(5):310.CrossRef
[10]
go back to reference Wen Z, Lu G, Mao S, Kim H, Cui S, Yu K, Huang X, Hurley PT, Mao O, Chen J. Silicon nanotube anode for lithium-ion batteries. Electrochem Commun. 2013;29:67.CrossRef Wen Z, Lu G, Mao S, Kim H, Cui S, Yu K, Huang X, Hurley PT, Mao O, Chen J. Silicon nanotube anode for lithium-ion batteries. Electrochem Commun. 2013;29:67.CrossRef
[11]
go back to reference Xing A, Tian S, Tang H, Losic D, Bao Z. Mesoporous silicon engineered by the reduction of biosilica from rice husk as a high-performance anode for lithium-ion batteries. RSC Adv. 2013;3(26):10145.CrossRef Xing A, Tian S, Tang H, Losic D, Bao Z. Mesoporous silicon engineered by the reduction of biosilica from rice husk as a high-performance anode for lithium-ion batteries. RSC Adv. 2013;3(26):10145.CrossRef
[12]
go back to reference Ge M, Rong J, Fang X, Zhang A, Lu Y, Zhou C. Scalable preparation of porous silicon nanoparticles and their application for lithium-ion battery anodes. Nano Res. 2013;6(3):174.CrossRef Ge M, Rong J, Fang X, Zhang A, Lu Y, Zhou C. Scalable preparation of porous silicon nanoparticles and their application for lithium-ion battery anodes. Nano Res. 2013;6(3):174.CrossRef
[13]
go back to reference Liu XH, Zhong L, Huang S, Mao SX, Zhu T, Huang JY. Size-dependent fracture of silicon nanoparticles during lithiation. ACS Nano. 2012;6(2):1522.CrossRef Liu XH, Zhong L, Huang S, Mao SX, Zhu T, Huang JY. Size-dependent fracture of silicon nanoparticles during lithiation. ACS Nano. 2012;6(2):1522.CrossRef
[14]
go back to reference Su L, Jing Y, Zhou Z. Li ion battery materials with core–shell nanostructures. Nanoscale. 2011;3(10):3967.CrossRef Su L, Jing Y, Zhou Z. Li ion battery materials with core–shell nanostructures. Nanoscale. 2011;3(10):3967.CrossRef
[15]
go back to reference Su L, Xie J, Xu Y, Wang L, Wang Y, Ren M. Effect of pore lengths on the reduction degree and lithium storage performance of mesoporous SiOx nanomaterials. J Alloys Compd. 2016;663:524.CrossRef Su L, Xie J, Xu Y, Wang L, Wang Y, Ren M. Effect of pore lengths on the reduction degree and lithium storage performance of mesoporous SiOx nanomaterials. J Alloys Compd. 2016;663:524.CrossRef
[16]
go back to reference Su L, Zhou Z, Ren M. Core double-shell Si@SiO2@C nanocomposites as anode materials for Li-ion batteries. Chem Commun. 2010;46(15):2590.CrossRef Su L, Zhou Z, Ren M. Core double-shell Si@SiO2@C nanocomposites as anode materials for Li-ion batteries. Chem Commun. 2010;46(15):2590.CrossRef
[17]
go back to reference Zhang P, Wang L, Xie J, Su L, Ma C. Micro/nano-complex-structure SiOx–PANI–Ag composites with homogeneously-embedded Si nanocrystals and nanopores as high-performance anodes for lithium ion batteries. J Mater Chem A. 2014;2(11):3776.CrossRef Zhang P, Wang L, Xie J, Su L, Ma C. Micro/nano-complex-structure SiOx–PANI–Ag composites with homogeneously-embedded Si nanocrystals and nanopores as high-performance anodes for lithium ion batteries. J Mater Chem A. 2014;2(11):3776.CrossRef
[18]
go back to reference Youn WK, Kim CS, Hwang NM. Effect of the carrier gas flow rate on the microstructure evolution and the generation of the charged nanoparticles during silicon chemical vapor deposition. J Nanosci Nanotechnol. 2013;13(10):7127.CrossRef Youn WK, Kim CS, Hwang NM. Effect of the carrier gas flow rate on the microstructure evolution and the generation of the charged nanoparticles during silicon chemical vapor deposition. J Nanosci Nanotechnol. 2013;13(10):7127.CrossRef
[19]
go back to reference Zacharias M, Heitmann J, Scholz R, Kahler U, Schmidt M, Bläsing J. Size-controlled highly luminescent silicon nanocrystals: a SiO/SiO2 superlattice approach. Appl Phys Lett. 2002;80(4):661.CrossRef Zacharias M, Heitmann J, Scholz R, Kahler U, Schmidt M, Bläsing J. Size-controlled highly luminescent silicon nanocrystals: a SiO/SiO2 superlattice approach. Appl Phys Lett. 2002;80(4):661.CrossRef
[20]
go back to reference Intartaglia R, Bagga K, Brandi F. Study on the productivity of silicon nanoparticles by picosecond laser ablation in water: towards gram per hour yield. Opt Express. 2014;22(3):3117.CrossRef Intartaglia R, Bagga K, Brandi F. Study on the productivity of silicon nanoparticles by picosecond laser ablation in water: towards gram per hour yield. Opt Express. 2014;22(3):3117.CrossRef
[21]
go back to reference Won CW, Nersisyan HH, Won HI, Lee HH. Synthesis of nanosized silicon particles by a rapid metathesis reaction. J Solid State Chem. 2009;182(11):3201.CrossRef Won CW, Nersisyan HH, Won HI, Lee HH. Synthesis of nanosized silicon particles by a rapid metathesis reaction. J Solid State Chem. 2009;182(11):3201.CrossRef
[22]
go back to reference Lin N, Han Y, Wang L, Zhou J, Zhou J, Zhu Y, Qian Y. Preparation of nanocrystalline silicon from SiCl4 at 200 °C in molten salt for high-performance anodes for lithium ion batteries. Angew Chem Int Ed. 2015;54(12):3822.CrossRef Lin N, Han Y, Wang L, Zhou J, Zhou J, Zhu Y, Qian Y. Preparation of nanocrystalline silicon from SiCl4 at 200 °C in molten salt for high-performance anodes for lithium ion batteries. Angew Chem Int Ed. 2015;54(12):3822.CrossRef
[23]
go back to reference Wang L, Gao B, Peng C, Peng X, Fu J, Chu PK, Huo K. Bamboo leaf derived ultrafine Si nanoparticles and Si/C nanocomposites for high-performance Li-ion battery anodes. Nanoscale. 2015;7(33):13840.CrossRef Wang L, Gao B, Peng C, Peng X, Fu J, Chu PK, Huo K. Bamboo leaf derived ultrafine Si nanoparticles and Si/C nanocomposites for high-performance Li-ion battery anodes. Nanoscale. 2015;7(33):13840.CrossRef
[24]
go back to reference Kwon Y, Park GS, Cho J. Synthesis and electrochemical properties of lithium-electroactive surface-stabilized silicon quantum dots. Electrochim Acta. 2007;52(14):4663.CrossRef Kwon Y, Park GS, Cho J. Synthesis and electrochemical properties of lithium-electroactive surface-stabilized silicon quantum dots. Electrochim Acta. 2007;52(14):4663.CrossRef
[25]
go back to reference Epur R, Minardi L, Datta MK, Chung SJ, Kumta PN. A simple facile approach to large scale synthesis of high specific surface area silicon nanoparticles. J Solid State Chem. 2013;208:93.CrossRef Epur R, Minardi L, Datta MK, Chung SJ, Kumta PN. A simple facile approach to large scale synthesis of high specific surface area silicon nanoparticles. J Solid State Chem. 2013;208:93.CrossRef
[26]
go back to reference Knieke C, Sommer M, Peukert W. Identifying the apparent and true grinding limit. Powder Technol. 2009;195(1):25.CrossRef Knieke C, Sommer M, Peukert W. Identifying the apparent and true grinding limit. Powder Technol. 2009;195(1):25.CrossRef
[27]
go back to reference Cho H, Waters MA, Hogg R. Investigation of the grind limit in stirred-media milling. Int J Miner Process. 1996;44–45:607.CrossRef Cho H, Waters MA, Hogg R. Investigation of the grind limit in stirred-media milling. Int J Miner Process. 1996;44–45:607.CrossRef
[28]
go back to reference Stenger F, Mende S, Schwedes J, Peukert W. The influence of suspension properties on the grinding behavior of alumina particles in the submicron size range in stirred media mills. Powder Technol. 2005;156(2):103.CrossRef Stenger F, Mende S, Schwedes J, Peukert W. The influence of suspension properties on the grinding behavior of alumina particles in the submicron size range in stirred media mills. Powder Technol. 2005;156(2):103.CrossRef
[29]
go back to reference Khalilov U, Pourtois G, Huygh S, van Duin ACT, Neyts EC, Bogaerts A. New mechanism for oxidation of native silicon oxide. J Phys Chem C. 2013;117(19):9819.CrossRef Khalilov U, Pourtois G, Huygh S, van Duin ACT, Neyts EC, Bogaerts A. New mechanism for oxidation of native silicon oxide. J Phys Chem C. 2013;117(19):9819.CrossRef
[30]
go back to reference Liu XH, Fan F, Yang H, Zhang S, Huang JY, Zhu T. Self-limiting lithiation in silicon nanowires. ACS Nano. 2013;7(2):1495.CrossRef Liu XH, Fan F, Yang H, Zhang S, Huang JY, Zhu T. Self-limiting lithiation in silicon nanowires. ACS Nano. 2013;7(2):1495.CrossRef
[31]
go back to reference He Y, Piper DM, Gu M, Travis JJ, George SM, Lee SH, Genc A, Pullan L, Liu J, Mao SX, Zhang JG, Ban C, Wang C. In situ transmission electron microscopy probing of native oxide and artificial layers on silicon nanoparticles for lithium ion batteries. ACS Nano. 2014;8(11):11816.CrossRef He Y, Piper DM, Gu M, Travis JJ, George SM, Lee SH, Genc A, Pullan L, Liu J, Mao SX, Zhang JG, Ban C, Wang C. In situ transmission electron microscopy probing of native oxide and artificial layers on silicon nanoparticles for lithium ion batteries. ACS Nano. 2014;8(11):11816.CrossRef
[32]
go back to reference Chen X, Li X, Ding F, Xu W, Xiao J, Cao Y, Meduri P, Liu J, Graff GL, Zhang J. Conductive rigid skeleton supported silicon as high-performance Li-ion battery anodes. Nano Lett. 2012;12(8):4124.CrossRef Chen X, Li X, Ding F, Xu W, Xiao J, Cao Y, Meduri P, Liu J, Graff GL, Zhang J. Conductive rigid skeleton supported silicon as high-performance Li-ion battery anodes. Nano Lett. 2012;12(8):4124.CrossRef
[33]
go back to reference Obrovac MN, Krause LJ. Reversible cycling of crystalline silicon powder. J Electrochem Soc. 2007;154(2):A103.CrossRef Obrovac MN, Krause LJ. Reversible cycling of crystalline silicon powder. J Electrochem Soc. 2007;154(2):A103.CrossRef
[34]
go back to reference Chang WS, Park CM, Kim JH, Kim YU, Jeong G, Sohn HJ. Quartz (SiO2): a new energy storage anode material for Li-ion batteries. Energy Environ Sci. 2012;5(5):6895.CrossRef Chang WS, Park CM, Kim JH, Kim YU, Jeong G, Sohn HJ. Quartz (SiO2): a new energy storage anode material for Li-ion batteries. Energy Environ Sci. 2012;5(5):6895.CrossRef
[35]
go back to reference Xun S, Song X, Wang L, Grass ME, Liu Z, Battaglia VS, Liu G. The Effects of native oxide surface layer on the electrochemical performance of Si nanoparticle-based electrodes. J Electrochem Soc. 2011;158(12):A1260.CrossRef Xun S, Song X, Wang L, Grass ME, Liu Z, Battaglia VS, Liu G. The Effects of native oxide surface layer on the electrochemical performance of Si nanoparticle-based electrodes. J Electrochem Soc. 2011;158(12):A1260.CrossRef
[36]
go back to reference Sun Q, Zhang B, Fu ZW. Lithium electrochemistry of SiO2 thin film electrode for lithium-ion batteries. Appl Surf Sci. 2008;254(13):3774.CrossRef Sun Q, Zhang B, Fu ZW. Lithium electrochemistry of SiO2 thin film electrode for lithium-ion batteries. Appl Surf Sci. 2008;254(13):3774.CrossRef
Metadata
Title
A scalable synthesis of silicon nanoparticles as high-performance anode material for lithium-ion batteries
Authors
Jin Li
Juan-Yu Yang
Jian-Tao Wang
Shi-Gang Lu
Publication date
07-07-2017
Publisher
Nonferrous Metals Society of China
Published in
Rare Metals / Issue 3/2019
Print ISSN: 1001-0521
Electronic ISSN: 1867-7185
DOI
https://doi.org/10.1007/s12598-017-0936-3

Other articles of this Issue 3/2019

Rare Metals 3/2019 Go to the issue

Premium Partners