Skip to main content
Erschienen in: Rare Metals 9/2019

29.06.2016

Self-healing alginate–carboxymethyl chitosan porous scaffold as an effective binder for silicon anodes in lithium-ion batteries

verfasst von: Zhao-Hui Wu, Juan-Yu Yang, Bing Yu, Bi-Meng Shi, Chun-Rong Zhao, Zhang-Long Yu

Erschienen in: Rare Metals | Ausgabe 9/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Polymer binder plays a pivotal role in electrochemical performance of high-capacity silicon (Si) anode that usually suffers from severe capacity fading due to enormous substantial volume change of Si during cycling. In an effort to find efficient polymer binder that could mitigate such capacity fading, alginate–carboxymethyl chitosan (Alg–C-chitosan) composite polymer was investigated as a low-cost water-soluble binder for silicon anodes in lithium-ion batteries. The electrostatic interaction between carboxylate (–COO) of Alg and protonated amines (–NH3+) of C-chitosan forms a self-healing porous scaffold structure. Synergistic effect on the enhanced porous scaffold structure and self-healing electrostatic interaction of Alg–C-chitosan binder effectively can tolerate the tremendous volume change of Si and maintain an integrated electrode structure during cycling process. The Si nanopowder electrodes with Alg–C-chitosan composite binder exhibit an excellent cycling stability, with a capacity of 750 mAh·g−1 remaining after 100th cycling. In addition, an extraordinary areal capacity of 3.76 mAh·cm−2 is achieved for Si-based anodes with Alg–C-chitosan binder.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
[1]
Zurück zum Zitat Huggins RA. Lithium alloy negative electrodes. J Power Sources. 1999;81–82(1–2):13.CrossRef Huggins RA. Lithium alloy negative electrodes. J Power Sources. 1999;81–82(1–2):13.CrossRef
[2]
Zurück zum Zitat Wu H, Cui Y. Designing nanostructured Si anodes for high energy lithium ion batteries. Nano Today. 2012;7(5):414.CrossRef Wu H, Cui Y. Designing nanostructured Si anodes for high energy lithium ion batteries. Nano Today. 2012;7(5):414.CrossRef
[3]
Zurück zum Zitat Key B, Morcrette M, Tarascon JM, Grey CP. Pair distribution function analysis and solid state NMR studies of silicon electrodes for lithium ion batteries: understanding the (de)lithiation mechanisms. J Am Chem Soc. 2010;133(3):503.CrossRef Key B, Morcrette M, Tarascon JM, Grey CP. Pair distribution function analysis and solid state NMR studies of silicon electrodes for lithium ion batteries: understanding the (de)lithiation mechanisms. J Am Chem Soc. 2010;133(3):503.CrossRef
[4]
Zurück zum Zitat Boukamp BA, Lesh GC, Huggins RA. All-solid lithium electrodes with mixed-conductor matrix. J Electrochem Soc. 1981;128(4):725.CrossRef Boukamp BA, Lesh GC, Huggins RA. All-solid lithium electrodes with mixed-conductor matrix. J Electrochem Soc. 1981;128(4):725.CrossRef
[5]
Zurück zum Zitat Chan CK, Peng H, Liu G, McIlwrath K, Zhang XF, Huggins RA, Cui Y. High-performance lithium battery anodes using silicon nanowires. Nat Nanotechnol. 2008;3(1):31.CrossRef Chan CK, Peng H, Liu G, McIlwrath K, Zhang XF, Huggins RA, Cui Y. High-performance lithium battery anodes using silicon nanowires. Nat Nanotechnol. 2008;3(1):31.CrossRef
[6]
Zurück zum Zitat Szczech JR, Jin S. Nanostructured silicon for high capacity lithium battery anodes. Energy Environ Sci. 2011;4(1):56.CrossRef Szczech JR, Jin S. Nanostructured silicon for high capacity lithium battery anodes. Energy Environ Sci. 2011;4(1):56.CrossRef
[7]
Zurück zum Zitat Liu XH, Zhong L, Huang S, Mao SX, Zhu T, Huang JY. Size-dependent fracture of silicon nanoparticles during lithiation. ACS Nano. 2012;6(2):1522.CrossRef Liu XH, Zhong L, Huang S, Mao SX, Zhu T, Huang JY. Size-dependent fracture of silicon nanoparticles during lithiation. ACS Nano. 2012;6(2):1522.CrossRef
[8]
Zurück zum Zitat Jung DS, Hwang TH, Park SB, Choi JW. Spray drying method for large-scale and high-performance silicon negative electrodes in Li-ion batteries. Nano Lett. 2013;13(5):2092.CrossRef Jung DS, Hwang TH, Park SB, Choi JW. Spray drying method for large-scale and high-performance silicon negative electrodes in Li-ion batteries. Nano Lett. 2013;13(5):2092.CrossRef
[9]
Zurück zum Zitat Wu H, Zheng G, Liu N, Carney TJ, Yang Y, Cui Y. Engineering empty space between Si nanoparticles for lithium-ion battery anodes. Nano Lett. 2012;12(2):904.CrossRef Wu H, Zheng G, Liu N, Carney TJ, Yang Y, Cui Y. Engineering empty space between Si nanoparticles for lithium-ion battery anodes. Nano Lett. 2012;12(2):904.CrossRef
[10]
Zurück zum Zitat Li X, Cho JH, Li N, Zhang Y, Williams D, Dayeh SA, Picraux ST. Carbon nanotube-enhanced growth of silicon nanowires as an anode for high-performance lithium-ion batteries. Adv Energy Mater. 2012;2(1):87.CrossRef Li X, Cho JH, Li N, Zhang Y, Williams D, Dayeh SA, Picraux ST. Carbon nanotube-enhanced growth of silicon nanowires as an anode for high-performance lithium-ion batteries. Adv Energy Mater. 2012;2(1):87.CrossRef
[11]
Zurück zum Zitat Fan Y, Zhang Q, Xiao Q, Wang X, Huang K. High performance lithium ion battery anodes based on carbon nanotube-silicon core-shell nanowires with controlled morphology. Carbon. 2013;59(7):264.CrossRef Fan Y, Zhang Q, Xiao Q, Wang X, Huang K. High performance lithium ion battery anodes based on carbon nanotube-silicon core-shell nanowires with controlled morphology. Carbon. 2013;59(7):264.CrossRef
[12]
Zurück zum Zitat Liu N, Lu Z, Zhao J, Matthew MT, Lee HW, Zhao T, Cui Y. A pomegranate-inspired nanoscale design for large-volume-change lithium battery anodes. Nat Nanotechnol. 2014;9(3):187.CrossRef Liu N, Lu Z, Zhao J, Matthew MT, Lee HW, Zhao T, Cui Y. A pomegranate-inspired nanoscale design for large-volume-change lithium battery anodes. Nat Nanotechnol. 2014;9(3):187.CrossRef
[13]
Zurück zum Zitat Komaba S, Shimomura K, Yabuuchi N, Ozeki T, Yui H, Konno K. Study on polymer binders for high-capacity SiO negative electrode of Li-ion batteries. J Phys Chem C. 2011;115(27):13487.CrossRef Komaba S, Shimomura K, Yabuuchi N, Ozeki T, Yui H, Konno K. Study on polymer binders for high-capacity SiO negative electrode of Li-ion batteries. J Phys Chem C. 2011;115(27):13487.CrossRef
[14]
Zurück zum Zitat Munao D, Van Erven JWM, Valvo M, Garcia-Tamayo E, Kelder EM. Role of the binder on the failure mechanism of Si nano-composite electrodes for Li-ion batteries. J Power Sources. 2011;196(16):6695.CrossRef Munao D, Van Erven JWM, Valvo M, Garcia-Tamayo E, Kelder EM. Role of the binder on the failure mechanism of Si nano-composite electrodes for Li-ion batteries. J Power Sources. 2011;196(16):6695.CrossRef
[15]
Zurück zum Zitat Li J, Lewis RB, Dahn JR. Sodium carboxymethyl cellulose a potential binder for Si negative electrodes for Li-ion batteries. Electrochem Solid State Lett. 2007;10(2):A17.CrossRef Li J, Lewis RB, Dahn JR. Sodium carboxymethyl cellulose a potential binder for Si negative electrodes for Li-ion batteries. Electrochem Solid State Lett. 2007;10(2):A17.CrossRef
[16]
Zurück zum Zitat Yue L, Zhang L, Zhong H. Carboxymethyl chitosan: a new water soluble binder for Si anode of Li-ion batteries. J Power Sources. 2014;247(3):327.CrossRef Yue L, Zhang L, Zhong H. Carboxymethyl chitosan: a new water soluble binder for Si anode of Li-ion batteries. J Power Sources. 2014;247(3):327.CrossRef
[17]
Zurück zum Zitat Magasinski A, Zdyrko B, Kovalenko I, Hertzberg B, Burtovyy R, Huebner CF, Fuller TF, Luzinov I, Yushin G. Toward efficient binders for Li-ion battery Si-based anodes: polyacrylic acid. ACS Appl Mater Interfaces. 2010;2(11):3004.CrossRef Magasinski A, Zdyrko B, Kovalenko I, Hertzberg B, Burtovyy R, Huebner CF, Fuller TF, Luzinov I, Yushin G. Toward efficient binders for Li-ion battery Si-based anodes: polyacrylic acid. ACS Appl Mater Interfaces. 2010;2(11):3004.CrossRef
[18]
Zurück zum Zitat Kovalenko I, Zdyrko B, Magasinski A, Hertzberg B, Milicev Z, Burtovyy R, Luzinov I, Yushin G. A major constituent of brown algae for use in high-capacity Li-ion batteries. Science. 2011;334(6052):75.CrossRef Kovalenko I, Zdyrko B, Magasinski A, Hertzberg B, Milicev Z, Burtovyy R, Luzinov I, Yushin G. A major constituent of brown algae for use in high-capacity Li-ion batteries. Science. 2011;334(6052):75.CrossRef
[19]
Zurück zum Zitat Bridel JS, Azais T, Morcrette M, Tarascon JM, Larcher D. Key parameters governing the reversibility of Si/carbon/CMC electrodes for li-ion batteries. Chem Mater. 2009;22(3):1229.CrossRef Bridel JS, Azais T, Morcrette M, Tarascon JM, Larcher D. Key parameters governing the reversibility of Si/carbon/CMC electrodes for li-ion batteries. Chem Mater. 2009;22(3):1229.CrossRef
[20]
Zurück zum Zitat Hochgatterer NS, Schweiger MR, Koller S, Raimann PR, Wöhrle T, Wurm C, Winter M. Silicon/graphite composite electrodes for high-capacity anodes: influence of binder chemistry on cycling stability. Electrochem Solid State Lett. 2008;11(5):A76.CrossRef Hochgatterer NS, Schweiger MR, Koller S, Raimann PR, Wöhrle T, Wurm C, Winter M. Silicon/graphite composite electrodes for high-capacity anodes: influence of binder chemistry on cycling stability. Electrochem Solid State Lett. 2008;11(5):A76.CrossRef
[21]
Zurück zum Zitat Choi NS, Yew KH, Choi WU, Kim SS. Enhanced electrochemical properties of a Si-based anode using an electrochemically active polyamide imide binder. J Power Sources. 2008;177(2):590.CrossRef Choi NS, Yew KH, Choi WU, Kim SS. Enhanced electrochemical properties of a Si-based anode using an electrochemically active polyamide imide binder. J Power Sources. 2008;177(2):590.CrossRef
[22]
Zurück zum Zitat Kim JS, Choi W, Cho KY, Byun D, Lim J, Lee JK. Effect of polyimide binder on electrochemical characteristics of surface-modified silicon anode for lithium ion batteries. J Power Sources. 2013;244(4):521.CrossRef Kim JS, Choi W, Cho KY, Byun D, Lim J, Lee JK. Effect of polyimide binder on electrochemical characteristics of surface-modified silicon anode for lithium ion batteries. J Power Sources. 2013;244(4):521.CrossRef
[23]
Zurück zum Zitat Koo B, Kim H, Cho Y, Lee KT, Choi NS, Cho J. A highly cross-linked polymeric binder for high-performance silicon negative electrodes in lithium ion batteries. Angew Chem Int Ed. 2012;51(35):8762.CrossRef Koo B, Kim H, Cho Y, Lee KT, Choi NS, Cho J. A highly cross-linked polymeric binder for high-performance silicon negative electrodes in lithium ion batteries. Angew Chem Int Ed. 2012;51(35):8762.CrossRef
[24]
Zurück zum Zitat Song JX, Zhou MJ, Yi R, Xu T, Gordin ML, Tang DH, Yu ZX, Regula M, Wang DH. Interpenetrated gel polymer binder for high-performance silicon anodes in lithium-ion batteries. Adv Funct Mater. 2014;24(37):5904.CrossRef Song JX, Zhou MJ, Yi R, Xu T, Gordin ML, Tang DH, Yu ZX, Regula M, Wang DH. Interpenetrated gel polymer binder for high-performance silicon anodes in lithium-ion batteries. Adv Funct Mater. 2014;24(37):5904.CrossRef
[25]
Zurück zum Zitat Yim T, Choi SJ, Jo YN, Kim TH, Kim KJ, Jeong G, Kim YJ. Effect of binder properties on electrochemical performance for silicon-graphite anode: method and application of binder screening. Electrochem Acta. 2014;136(8):112.CrossRef Yim T, Choi SJ, Jo YN, Kim TH, Kim KJ, Jeong G, Kim YJ. Effect of binder properties on electrochemical performance for silicon-graphite anode: method and application of binder screening. Electrochem Acta. 2014;136(8):112.CrossRef
[26]
Zurück zum Zitat Lee KY, Mooney DJ. Alginate: properties and biomedical applications. Prog Polym Sci. 2012;37(1):106.CrossRef Lee KY, Mooney DJ. Alginate: properties and biomedical applications. Prog Polym Sci. 2012;37(1):106.CrossRef
[27]
Zurück zum Zitat Rinaudo M. Chitin and chitosan: properties and applications. Progr Polym Sci. 2006;31(7):603.CrossRef Rinaudo M. Chitin and chitosan: properties and applications. Progr Polym Sci. 2006;31(7):603.CrossRef
[28]
Zurück zum Zitat Baruch L, Machluf M. Alginate-chitosan complex coacervation for cell encapsulation: effect on mechanical properties and on long-term viability. Biopolymers. 2006;82(6):570.CrossRef Baruch L, Machluf M. Alginate-chitosan complex coacervation for cell encapsulation: effect on mechanical properties and on long-term viability. Biopolymers. 2006;82(6):570.CrossRef
[29]
Zurück zum Zitat Li S, Wang XT, Zhang XB, Yang RJ, Zhang HZ, Zhu LZ, Hou XP. Studies on alginate–chitosan microcapsules and renal arterial embolization in rabbits. J Control Release. 2002;84(3):87.CrossRef Li S, Wang XT, Zhang XB, Yang RJ, Zhang HZ, Zhu LZ, Hou XP. Studies on alginate–chitosan microcapsules and renal arterial embolization in rabbits. J Control Release. 2002;84(3):87.CrossRef
[30]
Zurück zum Zitat George M, Abraham TE. Polyionic hydrocolloids for the intestinal delivery of protein drugs: alginate and chitosan—a review. J Control Released. 2006;114(1):1.CrossRef George M, Abraham TE. Polyionic hydrocolloids for the intestinal delivery of protein drugs: alginate and chitosan—a review. J Control Released. 2006;114(1):1.CrossRef
[31]
Zurück zum Zitat Li Z, Ramay HR, Hauch KD, Xiao D, Zhang M. Chitosan-alginate hybrid scaffolds for bone tissue engineering. Biomaterials. 2005;26(18):3919.CrossRef Li Z, Ramay HR, Hauch KD, Xiao D, Zhang M. Chitosan-alginate hybrid scaffolds for bone tissue engineering. Biomaterials. 2005;26(18):3919.CrossRef
[32]
Zurück zum Zitat Mourya VK, Inamdar NN, Tiwari A. Carboxymethyl chitosan and its applications. Adv Mater Lett. 2010;1(1):11.CrossRef Mourya VK, Inamdar NN, Tiwari A. Carboxymethyl chitosan and its applications. Adv Mater Lett. 2010;1(1):11.CrossRef
[33]
Zurück zum Zitat Sugimoto M, Morimoto M, Sashiwa H, Saimoto H, Shigemasa Y. Preparation and characterization of water-soluble chitin and chitosan derivatives. Carbohydr Polym. 1998;36(1):49.CrossRef Sugimoto M, Morimoto M, Sashiwa H, Saimoto H, Shigemasa Y. Preparation and characterization of water-soluble chitin and chitosan derivatives. Carbohydr Polym. 1998;36(1):49.CrossRef
[34]
Zurück zum Zitat Wang Q, Du Y, Hu X, Yang J, Fan L, Feng T. Preparation of alginate/soy protein isolate blend fibers through a novel coagulating bath. J Appl Polym Sci. 2006;101(1):425.CrossRef Wang Q, Du Y, Hu X, Yang J, Fan L, Feng T. Preparation of alginate/soy protein isolate blend fibers through a novel coagulating bath. J Appl Polym Sci. 2006;101(1):425.CrossRef
[35]
Zurück zum Zitat Salmon S, Hudson SM. Crystal morphology, biosynthesis, and physical assembly of cellulose, chitin, and chitosan. Rev Macromol Chem Phys C. 1997;37(2):199. Salmon S, Hudson SM. Crystal morphology, biosynthesis, and physical assembly of cellulose, chitin, and chitosan. Rev Macromol Chem Phys C. 1997;37(2):199.
[36]
Zurück zum Zitat Kim JH, Lee YM. Synthesis and properties of diethylaminoethyl chitosan. Polymer. 1993;34(9):1952.CrossRef Kim JH, Lee YM. Synthesis and properties of diethylaminoethyl chitosan. Polymer. 1993;34(9):1952.CrossRef
[37]
Zurück zum Zitat Zhao H, Wang ZH, Lu P, Jiang M, Shi FF, Song XY, Zheng ZY, Zhou X, Fu YB, Guerfi A, Xiao XC, Liu Z, Vincent SB, Karim Z, Liu G. Toward practical application of functional conductive polymer binder for a high-energy lithium-ion battery design. Nano Lett. 2015;14(11):6704.CrossRef Zhao H, Wang ZH, Lu P, Jiang M, Shi FF, Song XY, Zheng ZY, Zhou X, Fu YB, Guerfi A, Xiao XC, Liu Z, Vincent SB, Karim Z, Liu G. Toward practical application of functional conductive polymer binder for a high-energy lithium-ion battery design. Nano Lett. 2015;14(11):6704.CrossRef
Metadaten
Titel
Self-healing alginate–carboxymethyl chitosan porous scaffold as an effective binder for silicon anodes in lithium-ion batteries
verfasst von
Zhao-Hui Wu
Juan-Yu Yang
Bing Yu
Bi-Meng Shi
Chun-Rong Zhao
Zhang-Long Yu
Publikationsdatum
29.06.2016
Verlag
Nonferrous Metals Society of China
Erschienen in
Rare Metals / Ausgabe 9/2019
Print ISSN: 1001-0521
Elektronische ISSN: 1867-7185
DOI
https://doi.org/10.1007/s12598-016-0753-0

Weitere Artikel der Ausgabe 9/2019

Rare Metals 9/2019 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.