Skip to main content
Top
Published in: Journal of Materials Science: Materials in Electronics 24/2019

15-11-2019

RETRACTED ARTICLE: Electrode buffer layers via networks of polythiophene/polyaniline bottlebrushes and carbon nanotubes in organic solar cells

Authors: Nafiseh Sorkhishams, Bakhshali Massoumi, Mahnaz Saraei, Samira Agbolaghi

Published in: Journal of Materials Science: Materials in Electronics | Issue 24/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

A new p-type electrode buffer layer (EBL) material was developed by the networks composed of multi-walled CNTs (MWCNTs) and poly(3-thiophene ethanol) (P3ThEt)-g-polyaniline (PANI) bottlebrush copolymers. The nanocomposites of CNT:P3ThEt-g-PANI were prepared in three different thicknesses (5, 15, and 25 nm) and employed as hole transport layer (HTL) in poly(3-hexylthiophene) (P3HT):phenyl-C71-butyric acid methyl ester (PC71BM) solar cells. A trade-off was detected between the sheet resistance and transmittance by elevating the HTL thickness for both pure CNT and CNT:P3ThEt-g-PANI nanocomposites. The CNT:P3ThEt-g-PANI thin films, in particular with an optimal thickness of 15 nm, were the turning points for equilibrating the film thickness, transmittance, surface roughness, and sheet resistance values. The smoothest thin films of CNT:P3ThEt-g-PANI with the thickness of 15 nm, the transmittance of 85–89%, and the sheet resistance of 5.6 × 104 Ω/sq reflected the best results of 12.85 mA/cm2, 60.7%, and 0.68 V. Hence, a maximum power conversion efficiency (PCE) of 5.30% was acquired among all solar cells fabricated in current work. After peaking at 15 nm, the second group of proper results was recognized in CNT:P3ThEt-g-PANI (25 nm)/P3HT:PC71BM photovoltaics (10.37 mA/cm2, 49.0%, and 0.62 V). The PCE of 3.15% for this system was even greater than the ideal performance (= 2.94%) detected in the pure CNT (15 nm)/P3HT:PC71BM solar cells.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Z. He, C. Zhong, S. Su, M. Xu, H. Wu, Y. Cao, Enhanced power-conversion efficiency in polymer solar cells using an inverted device structure. Nat. Photonics 6(9), 591–595 (2012)CrossRef Z. He, C. Zhong, S. Su, M. Xu, H. Wu, Y. Cao, Enhanced power-conversion efficiency in polymer solar cells using an inverted device structure. Nat. Photonics 6(9), 591–595 (2012)CrossRef
2.
go back to reference T. Yang, M. Wang, C. Duan, X. Hu, L. Huang, J. Peng, F. Huang, X. Gong, Inverted polymer solar cells with 84% efficiency by conjugated polyelectrolyte. Energy Environ. Sci. 5(8), 8208–8214 (2012)CrossRef T. Yang, M. Wang, C. Duan, X. Hu, L. Huang, J. Peng, F. Huang, X. Gong, Inverted polymer solar cells with 84% efficiency by conjugated polyelectrolyte. Energy Environ. Sci. 5(8), 8208–8214 (2012)CrossRef
3.
go back to reference S. Liu, K. Zhang, J. Lu, J. Zhang, H.L. Yip, F. Huang, Y. Cao, High-efficiency polymer solar cells via the incorporation of an amino-functionalized conjugated metallopolymer as a cathode interlayer. J. Am. Chem. Soc. 135(41), 15326–15329 (2013)CrossRef S. Liu, K. Zhang, J. Lu, J. Zhang, H.L. Yip, F. Huang, Y. Cao, High-efficiency polymer solar cells via the incorporation of an amino-functionalized conjugated metallopolymer as a cathode interlayer. J. Am. Chem. Soc. 135(41), 15326–15329 (2013)CrossRef
4.
go back to reference K. Li, Z. Li, K. Feng, X. Xu, L. Wang, Q. Peng, Development of large band-gap conjugated copolymers for efficient regular single and tandem organic solar cells. J. Am. Chem. Soc. 135(36), 13549–13557 (2013)CrossRef K. Li, Z. Li, K. Feng, X. Xu, L. Wang, Q. Peng, Development of large band-gap conjugated copolymers for efficient regular single and tandem organic solar cells. J. Am. Chem. Soc. 135(36), 13549–13557 (2013)CrossRef
5.
go back to reference X. Guo, M. Zhang, W. Ma, L. Ye, S. Zhang, S. Liu, H. Ade, F. Huang, J. Hou, Enhanced photovoltaic performance by modulating surface composition in bulk heterojunction polymer solar cells based on PBDTTT-C-T/PC71BM. Adv. Mater. 26(24), 4043–4049 (2014)CrossRef X. Guo, M. Zhang, W. Ma, L. Ye, S. Zhang, S. Liu, H. Ade, F. Huang, J. Hou, Enhanced photovoltaic performance by modulating surface composition in bulk heterojunction polymer solar cells based on PBDTTT-C-T/PC71BM. Adv. Mater. 26(24), 4043–4049 (2014)CrossRef
6.
go back to reference Y. Zhou, C. Fuentes-Hernandez, J.W. Shim, T.M. Khan, B. Kippelen, High performance polymeric charge recombination layer for organic tandem solar cells. Energy Environ. Sci. 5(12), 9827–9832 (2012)CrossRef Y. Zhou, C. Fuentes-Hernandez, J.W. Shim, T.M. Khan, B. Kippelen, High performance polymeric charge recombination layer for organic tandem solar cells. Energy Environ. Sci. 5(12), 9827–9832 (2012)CrossRef
7.
go back to reference S.H. Liao, H.J. Jhuo, Y.S. Cheng, S.A. Chen, Fullerene derivative-doped zinc oxide nanofilm as the cathode of inverted polymer solar cells with low-bandgap polymer (PTB7-Th) for high performance. Adv. Mater. 25(34), 4766–4771 (2013)CrossRef S.H. Liao, H.J. Jhuo, Y.S. Cheng, S.A. Chen, Fullerene derivative-doped zinc oxide nanofilm as the cathode of inverted polymer solar cells with low-bandgap polymer (PTB7-Th) for high performance. Adv. Mater. 25(34), 4766–4771 (2013)CrossRef
8.
go back to reference C.Y. Chang, L. Zuo, H.L. Yip, Y. Li, C.Z. Li, C.S. Hsu, Y.J. Cheng, H. Chen, A.K.Y. Jen, A versatile fluoro-containing low-bandgap polymer for efficient semitransparent and tandem polymer solar cells. Adv. Funct. Mater. 23(40), 5084–5090 (2013)CrossRef C.Y. Chang, L. Zuo, H.L. Yip, Y. Li, C.Z. Li, C.S. Hsu, Y.J. Cheng, H. Chen, A.K.Y. Jen, A versatile fluoro-containing low-bandgap polymer for efficient semitransparent and tandem polymer solar cells. Adv. Funct. Mater. 23(40), 5084–5090 (2013)CrossRef
9.
go back to reference Y. Sun, S.C. Chien, H.L. Yip, Y. Zhang, K.S. Chen, D.F. Zeigler, F.C. Chen, B. Lin, A.K.Y. Jen, Chemically doped and cross-linked hole-transporting materials as an efficient anode buffer layer for polymer solar cells. Chem. Mater. 23(22), 5006–5015 (2011)CrossRef Y. Sun, S.C. Chien, H.L. Yip, Y. Zhang, K.S. Chen, D.F. Zeigler, F.C. Chen, B. Lin, A.K.Y. Jen, Chemically doped and cross-linked hole-transporting materials as an efficient anode buffer layer for polymer solar cells. Chem. Mater. 23(22), 5006–5015 (2011)CrossRef
10.
go back to reference Y.M. Chang, R. Zhu, E. Richard, C.C. Chen, G. Li, Y. Yang, Electrostatic self-assembly conjugated polyelectrolyte-surfactant complex as an interlayer for high performance polymer solar cells. Adv. Funct. Mater. 22(15), 3284–3289 (2012)CrossRef Y.M. Chang, R. Zhu, E. Richard, C.C. Chen, G. Li, Y. Yang, Electrostatic self-assembly conjugated polyelectrolyte-surfactant complex as an interlayer for high performance polymer solar cells. Adv. Funct. Mater. 22(15), 3284–3289 (2012)CrossRef
11.
go back to reference C. Gu, Y. Chen, Z. Zhang, S. Xue, S. Sun, K. Zhang, C. Zhong, H. Zhang, Y. Pan, Y. Lv, Y. Yang, Electrochemical route to fabricate film-like conjugated microporous polymers and application for organic electronics. Adv. Mater. 25(25), 3443–3448 (2013)CrossRef C. Gu, Y. Chen, Z. Zhang, S. Xue, S. Sun, K. Zhang, C. Zhong, H. Zhang, Y. Pan, Y. Lv, Y. Yang, Electrochemical route to fabricate film-like conjugated microporous polymers and application for organic electronics. Adv. Mater. 25(25), 3443–3448 (2013)CrossRef
12.
go back to reference H. Zhou, Y. Zhang, C.K. Mai, S.D. Collins, T.Q. Nguyen, G.C. Bazan, A.J. Heeger, Conductive conjugated polyelectrolyte as hole-transporting layer for organic bulk heterojunction solar cells. Adv. Mater. 26(5), 780–785 (2014)CrossRef H. Zhou, Y. Zhang, C.K. Mai, S.D. Collins, T.Q. Nguyen, G.C. Bazan, A.J. Heeger, Conductive conjugated polyelectrolyte as hole-transporting layer for organic bulk heterojunction solar cells. Adv. Mater. 26(5), 780–785 (2014)CrossRef
14.
go back to reference Z. Hu, F. Zhang, Q. An, M. Zhang, X. Ma, J. Wang, J. Zhang, J. Wang, Ternary nonfullerene polymer solar cells with a power conversion efficiency of 11.6% by inheriting the advantages of binary cells. ACS Energy Lett. 3(3), 555–561 (2018)CrossRef Z. Hu, F. Zhang, Q. An, M. Zhang, X. Ma, J. Wang, J. Zhang, J. Wang, Ternary nonfullerene polymer solar cells with a power conversion efficiency of 11.6% by inheriting the advantages of binary cells. ACS Energy Lett. 3(3), 555–561 (2018)CrossRef
15.
go back to reference X. Ma, M. Luo, W. Gao, J. Yuan, Q. An, M. Zhang, Z. Hu, J. Gao, J. Wang, Y. Zou, C. Yang, Achieving 14.11% efficiency of ternary polymer solar cells by simultaneously optimizing photon harvesting and exciton distribution. J. Mater. Chem. A 7(13), 7843–7851 (2019)CrossRef X. Ma, M. Luo, W. Gao, J. Yuan, Q. An, M. Zhang, Z. Hu, J. Gao, J. Wang, Y. Zou, C. Yang, Achieving 14.11% efficiency of ternary polymer solar cells by simultaneously optimizing photon harvesting and exciton distribution. J. Mater. Chem. A 7(13), 7843–7851 (2019)CrossRef
16.
go back to reference M. Zhang, Z. Xiao, W. Gao, Q. Liu, K. Jin, W. Wang, Y. Mi, Q. An, X. Ma, X. Liu, C. Yang, Over 13% efficiency ternary nonfullerene polymer solar cells with tilted up absorption edge by incorporating a medium bandgap acceptor. Adv. Energy Mater. 8(30), 1801968 (2018)CrossRef M. Zhang, Z. Xiao, W. Gao, Q. Liu, K. Jin, W. Wang, Y. Mi, Q. An, X. Ma, X. Liu, C. Yang, Over 13% efficiency ternary nonfullerene polymer solar cells with tilted up absorption edge by incorporating a medium bandgap acceptor. Adv. Energy Mater. 8(30), 1801968 (2018)CrossRef
17.
go back to reference J. You, L. Dou, K. Yoshimura, T. Kato, K. Ohya, T. Moriarty, K. Emery, C.C. Chen, J. Gao, G. Li, Y. Yang, A polymer tandem solar cell with 10.6% power conversion efficiency. Nat. Commun. 4, 1446 (2013)CrossRef J. You, L. Dou, K. Yoshimura, T. Kato, K. Ohya, T. Moriarty, K. Emery, C.C. Chen, J. Gao, G. Li, Y. Yang, A polymer tandem solar cell with 10.6% power conversion efficiency. Nat. Commun. 4, 1446 (2013)CrossRef
18.
go back to reference F. Zhang, M. Ceder, O. Inganäs, Enhancing the photovoltage of polymer solar cells by using a modified cathode. Adv. Mater. 19(14), 1835–1838 (2007)CrossRef F. Zhang, M. Ceder, O. Inganäs, Enhancing the photovoltage of polymer solar cells by using a modified cathode. Adv. Mater. 19(14), 1835–1838 (2007)CrossRef
19.
go back to reference C.J. Brabec, S.E. Shaheen, C. Winder, N.S. Sariciftci, P. Denk, Effect of LiF/metal electrodes on the performance of plastic solar cells. Appl. Phys. Lett. 80(7), 1288–1290 (2002)CrossRef C.J. Brabec, S.E. Shaheen, C. Winder, N.S. Sariciftci, P. Denk, Effect of LiF/metal electrodes on the performance of plastic solar cells. Appl. Phys. Lett. 80(7), 1288–1290 (2002)CrossRef
20.
go back to reference P. Peumans, S.R. Forrest, Very-high-efficiency double-heterostructure copper phthalocyanine/C 60 photovoltaic cells. Appl. Phys. Lett. 79(1), 126–128 (2001)CrossRef P. Peumans, S.R. Forrest, Very-high-efficiency double-heterostructure copper phthalocyanine/C 60 photovoltaic cells. Appl. Phys. Lett. 79(1), 126–128 (2001)CrossRef
21.
go back to reference S.A. Carter, M. Angelopoulos, S. Karg, P.J. Brock, J.C. Scott, Polymeric anodes for improved polymer light-emitting diode performance. Appl. Phys. Lett. 70(16), 2067–2069 (1997)CrossRef S.A. Carter, M. Angelopoulos, S. Karg, P.J. Brock, J.C. Scott, Polymeric anodes for improved polymer light-emitting diode performance. Appl. Phys. Lett. 70(16), 2067–2069 (1997)CrossRef
22.
go back to reference T.M. Brown, J.S. Kim, R.H. Friend, F. Cacialli, R. Daik, W.J. Feast, Built-in field electroabsorption spectroscopy of polymer light-emitting diodes incorporating a doped poly (3, 4-ethylene dioxythiophene) hole injection layer. Appl. Phys. Lett. 75(12), 1679–1681 (1999)CrossRef T.M. Brown, J.S. Kim, R.H. Friend, F. Cacialli, R. Daik, W.J. Feast, Built-in field electroabsorption spectroscopy of polymer light-emitting diodes incorporating a doped poly (3, 4-ethylene dioxythiophene) hole injection layer. Appl. Phys. Lett. 75(12), 1679–1681 (1999)CrossRef
23.
go back to reference S. Khodabakhsh, B.M. Sanderson, J. Nelson, T.S. Jones, Using self-assembling dipole molecules to improve charge collection in molecular solar cells. Adv. Funct. Mater. 16(1), 95–100 (2006)CrossRef S. Khodabakhsh, B.M. Sanderson, J. Nelson, T.S. Jones, Using self-assembling dipole molecules to improve charge collection in molecular solar cells. Adv. Funct. Mater. 16(1), 95–100 (2006)CrossRef
24.
go back to reference H. Yan, P. Lee, N.R. Armstrong, A. Graham, G.A. Evmenenko, P. Dutta, T.J. Marks, High-performance hole-transport layers for polymer light-emitting diodes. Implementation of organosiloxane cross-linking chemistry in polymeric electroluminescent devices. J. Am. Chem. Soc. 127(9), 3172–3183 (2005)CrossRef H. Yan, P. Lee, N.R. Armstrong, A. Graham, G.A. Evmenenko, P. Dutta, T.J. Marks, High-performance hole-transport layers for polymer light-emitting diodes. Implementation of organosiloxane cross-linking chemistry in polymeric electroluminescent devices. J. Am. Chem. Soc. 127(9), 3172–3183 (2005)CrossRef
25.
go back to reference J. Van De Lagemaat, T.M. Barnes, G. Rumbles, S.E. Shaheen, T.J. Coutts, C. Weeks, I. Levitsky, J. Peltola, P. Glatkowski, Organic solar cells with carbon nanotubes replacing In2O3: Sn as the transparent electrode. Appl. Phys. Lett. 88(23), 233503(1-5) (2006) J. Van De Lagemaat, T.M. Barnes, G. Rumbles, S.E. Shaheen, T.J. Coutts, C. Weeks, I. Levitsky, J. Peltola, P. Glatkowski, Organic solar cells with carbon nanotubes replacing In2O3: Sn as the transparent electrode. Appl. Phys. Lett. 88(23), 233503(1-5) (2006)
26.
go back to reference K. Norrman, M.V. Madsen, S.A. Gevorgyan, F.C. Krebs, Degradation patterns in water and oxygen of an inverted polymer solar cell. J. Am. Chem. Soc. 132(47), 16883–16892 (2010)CrossRef K. Norrman, M.V. Madsen, S.A. Gevorgyan, F.C. Krebs, Degradation patterns in water and oxygen of an inverted polymer solar cell. J. Am. Chem. Soc. 132(47), 16883–16892 (2010)CrossRef
27.
go back to reference A.W. Hains, T.J. Marks, High-efficiency hole extraction/electron-blocking layer to replace poly (3, 4-ethylenedioxythiophene): poly (styrene sulfonate) in bulk-heterojunction polymer solar cells. Appl. Phys. Lett. 92(2), 023504(1–3) (2008)CrossRef A.W. Hains, T.J. Marks, High-efficiency hole extraction/electron-blocking layer to replace poly (3, 4-ethylenedioxythiophene): poly (styrene sulfonate) in bulk-heterojunction polymer solar cells. Appl. Phys. Lett. 92(2), 023504(1–3) (2008)CrossRef
28.
go back to reference M. Kemerink, S. Timpanaro, M.M. De Kok, E.A. Meulenkamp, F.J. Touwslager, Three-dimensional inhomogeneities in PEDOT: PSS films. J. Phys. Chem. B 108(49), 18820–18825 (2004)CrossRef M. Kemerink, S. Timpanaro, M.M. De Kok, E.A. Meulenkamp, F.J. Touwslager, Three-dimensional inhomogeneities in PEDOT: PSS films. J. Phys. Chem. B 108(49), 18820–18825 (2004)CrossRef
29.
go back to reference L.M. Chen, Z. Xu, Z. Hong, Y. Yang, Interface investigation and engineering–achieving high performance polymer photovoltaic devices. J. Mater. Chem. 20(13), 2575–2598 (2010)CrossRef L.M. Chen, Z. Xu, Z. Hong, Y. Yang, Interface investigation and engineering–achieving high performance polymer photovoltaic devices. J. Mater. Chem. 20(13), 2575–2598 (2010)CrossRef
30.
go back to reference M.S. White, D.C. Olson, S.E. Shaheen, N. Kopidakis, D.S. Ginley, Inverted bulk-heterojunction organic photovoltaic device using a solution-derived ZnO underlayer. Appl. Phys. Lett. 89(14), 143517(1–3) (2006)CrossRef M.S. White, D.C. Olson, S.E. Shaheen, N. Kopidakis, D.S. Ginley, Inverted bulk-heterojunction organic photovoltaic device using a solution-derived ZnO underlayer. Appl. Phys. Lett. 89(14), 143517(1–3) (2006)CrossRef
31.
go back to reference S.K. Hau, H.L. Yip, N.S. Baek, J. Zou, K. O’Malley, A.K.Y. Jen, Air-stable inverted flexible polymer solar cells using zinc oxide nanoparticles as an electron selective layer. Appl. Phys. Lett. 92(25), 225 (2008)CrossRef S.K. Hau, H.L. Yip, N.S. Baek, J. Zou, K. O’Malley, A.K.Y. Jen, Air-stable inverted flexible polymer solar cells using zinc oxide nanoparticles as an electron selective layer. Appl. Phys. Lett. 92(25), 225 (2008)CrossRef
32.
go back to reference J.W. Jung, J.U. Lee, W.H. Jo, High-efficiency polymer solar cells with water-soluble and self-doped conducting polyaniline graft copolymer as hole transport layer. J. Phys. Chem. C 114(1), 633–637 (2009)CrossRef J.W. Jung, J.U. Lee, W.H. Jo, High-efficiency polymer solar cells with water-soluble and self-doped conducting polyaniline graft copolymer as hole transport layer. J. Phys. Chem. C 114(1), 633–637 (2009)CrossRef
33.
go back to reference W.J. Bae, K.H. Kim, Y.H. Park, W.H. Jo, A novel water-soluble and self-doped conducting polyaniline graft copolymer. Chem. Commun. 22, 2768–2769 (2003)CrossRef W.J. Bae, K.H. Kim, Y.H. Park, W.H. Jo, A novel water-soluble and self-doped conducting polyaniline graft copolymer. Chem. Commun. 22, 2768–2769 (2003)CrossRef
34.
go back to reference W.J. Bae, K.H. Kim, W.H. Jo, Y.H. Park, A water-soluble and self-doped conducting polypyrrole graft copolymer. Macromolecules 38(4), 1044–1047 (2005)CrossRef W.J. Bae, K.H. Kim, W.H. Jo, Y.H. Park, A water-soluble and self-doped conducting polypyrrole graft copolymer. Macromolecules 38(4), 1044–1047 (2005)CrossRef
35.
go back to reference W.J. Ke, G.H. Lin, C.P. Hsu, C.M. Chen, Y.S. Cheng, T.H. Jen, S.A. Chen, Solution processable self-doped polyaniline as hole transport layer for inverted polymer solar cells. J. Mater. Chem. 21(35), 13483–13489 (2011)CrossRef W.J. Ke, G.H. Lin, C.P. Hsu, C.M. Chen, Y.S. Cheng, T.H. Jen, S.A. Chen, Solution processable self-doped polyaniline as hole transport layer for inverted polymer solar cells. J. Mater. Chem. 21(35), 13483–13489 (2011)CrossRef
36.
go back to reference W. Zhao, L. Ye, S. Zhang, B. Fan, M. Sun, J. Hou, Ultrathin polyaniline-based buffer layer for highly efficient polymer solar cells with wide applicability. Sci. Rep. 4, 6570 (2014)CrossRef W. Zhao, L. Ye, S. Zhang, B. Fan, M. Sun, J. Hou, Ultrathin polyaniline-based buffer layer for highly efficient polymer solar cells with wide applicability. Sci. Rep. 4, 6570 (2014)CrossRef
37.
go back to reference E. Kymakis, M.M. Stylianakis, G.D. Spyropoulos, E. Stratakis, E. Koudoumas, C. Fotakis, Spin coated carbon nanotubes as the hole transport layer in organic photovoltaics. Sol. Energy Mater. Sol. Cells 96, 298–301 (2012)CrossRef E. Kymakis, M.M. Stylianakis, G.D. Spyropoulos, E. Stratakis, E. Koudoumas, C. Fotakis, Spin coated carbon nanotubes as the hole transport layer in organic photovoltaics. Sol. Energy Mater. Sol. Cells 96, 298–301 (2012)CrossRef
38.
go back to reference R. Sarvari, M. Akbari-Alanjaraghi, B. Massoumi, Y. Beygi-Khosrowshahi, S. Agbolaghi, Conductive and biodegradable scaffolds based on a five-arm and functionalized star-like polyaniline–polycaprolactone copolymer with ad-glucose core. New J. Chem. 41(14), 6371–6384 (2017)CrossRef R. Sarvari, M. Akbari-Alanjaraghi, B. Massoumi, Y. Beygi-Khosrowshahi, S. Agbolaghi, Conductive and biodegradable scaffolds based on a five-arm and functionalized star-like polyaniline–polycaprolactone copolymer with ad-glucose core. New J. Chem. 41(14), 6371–6384 (2017)CrossRef
39.
go back to reference B. Massoumi, R. Sarvari, S. Agbolaghi, Biodegradable and conductive hyperbranched terpolymers based on aliphatic polyester, poly (D, L-lactide), and polyaniline used as scaffold in tissue engineering. Int. J. Polym. Mater. Polym. Biomater. 67(13), 808–821 (2018)CrossRef B. Massoumi, R. Sarvari, S. Agbolaghi, Biodegradable and conductive hyperbranched terpolymers based on aliphatic polyester, poly (D, L-lactide), and polyaniline used as scaffold in tissue engineering. Int. J. Polym. Mater. Polym. Biomater. 67(13), 808–821 (2018)CrossRef
40.
go back to reference M. Zhang, F. Zhang, Q. An, Q. Sun, W. Wang, X. Ma, J. Zhang, W. Tang, Nematic liquid crystal materials as a morphology regulator for ternary small molecule solar cells with power conversion efficiency exceeding 10%. J. Mater. Chem. A 5(7), 3589–3598 (2017)CrossRef M. Zhang, F. Zhang, Q. An, Q. Sun, W. Wang, X. Ma, J. Zhang, W. Tang, Nematic liquid crystal materials as a morphology regulator for ternary small molecule solar cells with power conversion efficiency exceeding 10%. J. Mater. Chem. A 5(7), 3589–3598 (2017)CrossRef
41.
go back to reference M. Zhang, F. Zhang, Q. An, Q. Sun, W. Wang, J. Zhang, W. Tang, Highly efficient ternary polymer solar cells by optimizing photon harvesting and charge carrier transport. Nano Energy 22, 241–254 (2016)CrossRef M. Zhang, F. Zhang, Q. An, Q. Sun, W. Wang, J. Zhang, W. Tang, Highly efficient ternary polymer solar cells by optimizing photon harvesting and charge carrier transport. Nano Energy 22, 241–254 (2016)CrossRef
42.
go back to reference Q. An, F. Zhang, Q. Sun, M. Zhang, J. Zhang, W. Tang, X. Yin, Z. Deng, Efficient organic ternary solar cells with the third component as energy acceptor. Nano Energy 26, 180–191 (2016)CrossRef Q. An, F. Zhang, Q. Sun, M. Zhang, J. Zhang, W. Tang, X. Yin, Z. Deng, Efficient organic ternary solar cells with the third component as energy acceptor. Nano Energy 26, 180–191 (2016)CrossRef
Metadata
Title
RETRACTED ARTICLE: Electrode buffer layers via networks of polythiophene/polyaniline bottlebrushes and carbon nanotubes in organic solar cells
Authors
Nafiseh Sorkhishams
Bakhshali Massoumi
Mahnaz Saraei
Samira Agbolaghi
Publication date
15-11-2019
Publisher
Springer US
Published in
Journal of Materials Science: Materials in Electronics / Issue 24/2019
Print ISSN: 0957-4522
Electronic ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-019-02482-8

Other articles of this Issue 24/2019

Journal of Materials Science: Materials in Electronics 24/2019 Go to the issue