Skip to main content
Top
Published in: Journal of Materials Science: Materials in Electronics 24/2019

13-11-2019

Copper doping of Sb2S3: fabrication, properties, and photovoltaic application

Authors: Hongwei Lei, Tinghao Lin, Xinran Wang, Pei Dai, Yaxiong Guo, Yijun Gao, Dejia Hou, Jianjun Chen, Zuojun Tan

Published in: Journal of Materials Science: Materials in Electronics | Issue 24/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Sb2S3 solar cells are lagging behind conventional thin-film solar cells such as silicon solar cells and cadmium telluride solar cells in the power conversion efficiency (PCE). One of the most prominent problems is that the carrier concentration of Sb2S3 is relatively low. In order to increase the carrier concentration, elemental Cu was doped into Sb2S3 film by radio-frequency (RF) magnetron sputtering. We proved that Cu was doped into Sb2S3 films and mainly anchored with sulfur in the form of copper chalcogenide species at the surface and grain boundaries of Sb2S3. The doping of Cu essentially affects the physical and electrical properties of RF-sputtered Sb2S3 films such as the optical band gap, crystallinity, chemical composition, morphology, and carrier concentration. Specially, the electronic carrier concentration is remarkably increased from 6.28 × 109 to 6.06 × 1010 cm−3 and the Fermi level is also significantly uplifted after prudent doping with Cu. Planar solar cells based on RF-sputtered Cu-doped Sb2S3 absorber deliver an increased PCE of 1.13% and show good stability. This research proves that doping of Cu is an alternative and effective way to improve the electronic property of Sb2S3 films and enhance the performance of Sb2S3 solar cells.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference M.A. Green, Y. Hishikawa, E.D. Dunlop, D.H. Levi, J. Hohl-Ebinger, A.W.Y. Ho-Baillie, Solar cell efficiency tables (version 52). Prog. Photovolt. Res. Appl. 26, 427–436 (2018)CrossRef M.A. Green, Y. Hishikawa, E.D. Dunlop, D.H. Levi, J. Hohl-Ebinger, A.W.Y. Ho-Baillie, Solar cell efficiency tables (version 52). Prog. Photovolt. Res. Appl. 26, 427–436 (2018)CrossRef
2.
go back to reference M. Hosenuzzaman, N.A. Rahim, J. Selvaraj, M. Hasanuzzaman, A.B.M.A. Malek, A. Nahar, Global prospects, progress, policies, and environmental impact of solar photovoltaic power generation. Renew. Sust. Energy Rev. 41, 284–297 (2015)CrossRef M. Hosenuzzaman, N.A. Rahim, J. Selvaraj, M. Hasanuzzaman, A.B.M.A. Malek, A. Nahar, Global prospects, progress, policies, and environmental impact of solar photovoltaic power generation. Renew. Sust. Energy Rev. 41, 284–297 (2015)CrossRef
3.
go back to reference V.V. Tyagi, N.A.A. Rahim, N.A. Rahim, J.A.L. Selvaraj, Progress in solar PV technology: research and achievement. Renew. Sust. Energy Rev. 20, 443–461 (2013)CrossRef V.V. Tyagi, N.A.A. Rahim, N.A. Rahim, J.A.L. Selvaraj, Progress in solar PV technology: research and achievement. Renew. Sust. Energy Rev. 20, 443–461 (2013)CrossRef
4.
go back to reference X. Wang, R. Tang, C. Wu, C. Zhu, T. Chen, Development of antimony sulfide-selenide Sb2(S, Se)3-based solar cells. J Energy Chem. 27(3), 713–721 (2018)CrossRef X. Wang, R. Tang, C. Wu, C. Zhu, T. Chen, Development of antimony sulfide-selenide Sb2(S, Se)3-based solar cells. J Energy Chem. 27(3), 713–721 (2018)CrossRef
5.
go back to reference K. Zeng, D.-J. Xue, J. Tang, Antimony selenide thin-film solar cells. Semicond. Sci. Technol. 31, 063001 (2016)CrossRef K. Zeng, D.-J. Xue, J. Tang, Antimony selenide thin-film solar cells. Semicond. Sci. Technol. 31, 063001 (2016)CrossRef
6.
go back to reference H. Lei, J. Chen, Z. Tan, G. Fang, Review of recent progress in antimony chalcogenide-based solar cells: materials and devices. Solar RRL 3(6), 1900026 (2019)CrossRef H. Lei, J. Chen, Z. Tan, G. Fang, Review of recent progress in antimony chalcogenide-based solar cells: materials and devices. Solar RRL 3(6), 1900026 (2019)CrossRef
7.
go back to reference R. Kondrotas, C. Chen, J. Tang, Sb2S3 solar cells. Joule 2, 857–878 (2018)CrossRef R. Kondrotas, C. Chen, J. Tang, Sb2S3 solar cells. Joule 2, 857–878 (2018)CrossRef
8.
go back to reference O. Savadogo, K.C. Mandal, Studies on new chemically deposited photoconducting antimony trisulphide thin films. Sol. Energy Mater. Sol. Cells 26, 117–136 (1992)CrossRef O. Savadogo, K.C. Mandal, Studies on new chemically deposited photoconducting antimony trisulphide thin films. Sol. Energy Mater. Sol. Cells 26, 117–136 (1992)CrossRef
9.
go back to reference J.A. Chang, J.H. Rhee, S.H. Im, Y.H. Lee, H.J. Kim, S.I. Seok, M.K. Nazeeruddin, M. Gratzel, High-performance nanostructured inorganic-organic heterojunction solar cells. Nano Lett. 10, 2609–2612 (2010)CrossRef J.A. Chang, J.H. Rhee, S.H. Im, Y.H. Lee, H.J. Kim, S.I. Seok, M.K. Nazeeruddin, M. Gratzel, High-performance nanostructured inorganic-organic heterojunction solar cells. Nano Lett. 10, 2609–2612 (2010)CrossRef
10.
go back to reference J.A. Chang, S.H. Im, Y.H. Lee, H.-J. Kim, C.-S. Lim, J.H. Heo, S.I. Seok, Panchromatic Photon-harvesting by hole-conducting materials in inorganic-organic heterojunction sensitized-solar cell through the formation of nanostructured electron channels. Nano Lett. 12, 1863–1867 (2012)CrossRef J.A. Chang, S.H. Im, Y.H. Lee, H.-J. Kim, C.-S. Lim, J.H. Heo, S.I. Seok, Panchromatic Photon-harvesting by hole-conducting materials in inorganic-organic heterojunction sensitized-solar cell through the formation of nanostructured electron channels. Nano Lett. 12, 1863–1867 (2012)CrossRef
11.
go back to reference N. Bansal, F.T. O’Mahony, T. Lutz, S.A. Haque, Solution processed polymer-inorganic semiconductor solar cells employing Sb2S3 as a light harvesting and electron transporting material. Adv. Energy Mater. 3, 986–990 (2013)CrossRef N. Bansal, F.T. O’Mahony, T. Lutz, S.A. Haque, Solution processed polymer-inorganic semiconductor solar cells employing Sb2S3 as a light harvesting and electron transporting material. Adv. Energy Mater. 3, 986–990 (2013)CrossRef
12.
go back to reference C.Y. Chan, M.T. Nath, Y.W. Seok, L.Y. Hui, I.S. Hyuk, N.J. Hong, S.S. Il, Sb2Se3-sensitized inorganic-organic heterojunction solar cells fabricated using a single-source precursor. Angew. Chem. Int. Ed. 53, 1329–1333 (2014)CrossRef C.Y. Chan, M.T. Nath, Y.W. Seok, L.Y. Hui, I.S. Hyuk, N.J. Hong, S.S. Il, Sb2Se3-sensitized inorganic-organic heterojunction solar cells fabricated using a single-source precursor. Angew. Chem. Int. Ed. 53, 1329–1333 (2014)CrossRef
13.
go back to reference C.Y. Chan, L.D. Uk, N.J. Hong, K.E. Kyu, S.S. Il, Highly improved Sb2S3 sensitized-inorganic–organic heterojunction solar cells and quantification of traps by deep-level transient spectroscopy. Adv. Funct. Mater. 24, 3587–3592 (2014)CrossRef C.Y. Chan, L.D. Uk, N.J. Hong, K.E. Kyu, S.S. Il, Highly improved Sb2S3 sensitized-inorganic–organic heterojunction solar cells and quantification of traps by deep-level transient spectroscopy. Adv. Funct. Mater. 24, 3587–3592 (2014)CrossRef
14.
go back to reference X. Liu, J. Chen, M. Luo, M. Leng, Z. Xia, Y. Zhou, S. Qin, D.-J. Xue, L. Lv, H. Huang, D. Niu, J. Tang, Thermal evaporation and characterization of Sb2Se3 thin film for substrate Sb2Se3/CdS solar cells. ACS Appl. Mater. Interface 6, 10687–10695 (2014)CrossRef X. Liu, J. Chen, M. Luo, M. Leng, Z. Xia, Y. Zhou, S. Qin, D.-J. Xue, L. Lv, H. Huang, D. Niu, J. Tang, Thermal evaporation and characterization of Sb2Se3 thin film for substrate Sb2Se3/CdS solar cells. ACS Appl. Mater. Interface 6, 10687–10695 (2014)CrossRef
15.
go back to reference Y.C. Choi, S.I. Seok, Efficient Sb2S3-sensitized solar cells via single-step deposition of Sb2S3 using S/Sb-ratio-controlled SbCl3-thiourea complex solution. Adv. Funct. Mater. 25, 2892–2898 (2015)CrossRef Y.C. Choi, S.I. Seok, Efficient Sb2S3-sensitized solar cells via single-step deposition of Sb2S3 using S/Sb-ratio-controlled SbCl3-thiourea complex solution. Adv. Funct. Mater. 25, 2892–2898 (2015)CrossRef
16.
go back to reference S. Yuan, H. Deng, D. Dong, X. Yang, K. Qiao, C. Hu, H. Song, H. Song, Z. He, J. Tang, Efficient planar antimony sulfide thin film photovoltaics with large grain and preferential growth. Sol. Energy Mater. Sol. Cells 157, 887–893 (2016)CrossRef S. Yuan, H. Deng, D. Dong, X. Yang, K. Qiao, C. Hu, H. Song, H. Song, Z. He, J. Tang, Efficient planar antimony sulfide thin film photovoltaics with large grain and preferential growth. Sol. Energy Mater. Sol. Cells 157, 887–893 (2016)CrossRef
17.
go back to reference X. Wang, J. Li, W. Liu, S. Yang, C. Zhu, T. Chen, A fast chemical approach towards Sb2S3 film with a large grain size for high-performance planar heterojunction solar cells. Nanoscale 9, 3386–3390 (2017)CrossRef X. Wang, J. Li, W. Liu, S. Yang, C. Zhu, T. Chen, A fast chemical approach towards Sb2S3 film with a large grain size for high-performance planar heterojunction solar cells. Nanoscale 9, 3386–3390 (2017)CrossRef
18.
go back to reference L. Zhang, D. Zhuang, M. Zhao, Q. Gong, L. Guo, L. Ouyang, R. Sun, Y. Wei, X. Lyu, X. Peng, Sb2S3 thin films prepared by vulcanizing evaporated metallic precursors. Mater. Lett. 208, 58–61 (2017)CrossRef L. Zhang, D. Zhuang, M. Zhao, Q. Gong, L. Guo, L. Ouyang, R. Sun, Y. Wei, X. Lyu, X. Peng, Sb2S3 thin films prepared by vulcanizing evaporated metallic precursors. Mater. Lett. 208, 58–61 (2017)CrossRef
19.
go back to reference L. Zhang, C. Jiang, C. Wu, H. Ju, G. Jiang, W. Liu, C. Zhu, T. Chen, V2O5 as hole transporting material for efficient all inorganic Sb2S3 solar cells. ACS Appl. Mater. Interface 10, 27098–27105 (2018)CrossRef L. Zhang, C. Jiang, C. Wu, H. Ju, G. Jiang, W. Liu, C. Zhu, T. Chen, V2O5 as hole transporting material for efficient all inorganic Sb2S3 solar cells. ACS Appl. Mater. Interface 10, 27098–27105 (2018)CrossRef
20.
go back to reference L. Zhang, C. Wu, W. Liu, S. Yang, M. Wang, T. Chen, C. Zhu, Sequential deposition route to efficient Sb2S3 solar cells. J. Mater. Chem. A 6, 21320–21326 (2018)CrossRef L. Zhang, C. Wu, W. Liu, S. Yang, M. Wang, T. Chen, C. Zhu, Sequential deposition route to efficient Sb2S3 solar cells. J. Mater. Chem. A 6, 21320–21326 (2018)CrossRef
21.
go back to reference C. Jiang, R. Tang, X. Wang, H. Ju, G. Chen, T. Chen, Alkali metals doping for high-performance planar heterojunction Sb2S3 solar cells. Sol. RRL 3(1), 1800272 (2019)CrossRef C. Jiang, R. Tang, X. Wang, H. Ju, G. Chen, T. Chen, Alkali metals doping for high-performance planar heterojunction Sb2S3 solar cells. Sol. RRL 3(1), 1800272 (2019)CrossRef
22.
go back to reference Z. Li, X. Liang, G. Li, H. Liu, H. Zhang, J. Guo, J. Chen, K. Shen, X. San, W. Yu, R.E.I. Schropp, Y. Mai, 9.2%-efficient core-shell structured antimony selenide nanorod array solar cells. Nat. Commun. 10, 125 (2019)CrossRef Z. Li, X. Liang, G. Li, H. Liu, H. Zhang, J. Guo, J. Chen, K. Shen, X. San, W. Yu, R.E.I. Schropp, Y. Mai, 9.2%-efficient core-shell structured antimony selenide nanorod array solar cells. Nat. Commun. 10, 125 (2019)CrossRef
23.
go back to reference X. Wen, C. Chen, S. Lu, K. Li, R. Kondrotas, Y. Zhao, W. Chen, L. Gao, C. Wang, J. Zhang, G. Niu, J. Tang, Vapor transport deposition of antimony selenide thin film solar cells with 7.6% efficiency. Nat. Commun. 9, 2179 (2018)CrossRef X. Wen, C. Chen, S. Lu, K. Li, R. Kondrotas, Y. Zhao, W. Chen, L. Gao, C. Wang, J. Zhang, G. Niu, J. Tang, Vapor transport deposition of antimony selenide thin film solar cells with 7.6% efficiency. Nat. Commun. 9, 2179 (2018)CrossRef
24.
go back to reference L. Wang, D.-B. Li, K. Li, C. Chen, H.-X. Deng, L. Gao, Y. Zhao, F. Jiang, L. Li, F. Huang, Y. He, H. Song, G. Niu, J. Tang, Stable 6%-efficient Sb2Se3 solar cells with a ZnO buffer layer. Nat. Energy 2, 17046 (2017)CrossRef L. Wang, D.-B. Li, K. Li, C. Chen, H.-X. Deng, L. Gao, Y. Zhao, F. Jiang, L. Li, F. Huang, Y. He, H. Song, G. Niu, J. Tang, Stable 6%-efficient Sb2Se3 solar cells with a ZnO buffer layer. Nat. Energy 2, 17046 (2017)CrossRef
25.
go back to reference X. Chen, Z. Li, H. Zhu, Y. Wang, B. Liang, J. Chen, Y. Xu, Y. Mai, CdS/Sb2S3 heterojunction thin film solar cells with a thermally evaporated absorber. J. Mater. Chem. C 5, 9421–9428 (2017)CrossRef X. Chen, Z. Li, H. Zhu, Y. Wang, B. Liang, J. Chen, Y. Xu, Y. Mai, CdS/Sb2S3 heterojunction thin film solar cells with a thermally evaporated absorber. J. Mater. Chem. C 5, 9421–9428 (2017)CrossRef
26.
go back to reference N. Guijarro, T. Lutz, T. Lana-Villarreal, F. O’Mahony, R. Gómez, S.A. Haque, Toward antimony selenide sensitized solar cells: efficient charge photogeneration at spiro-OMeTAD/Sb2Se3/metal oxide heterojunctions. J. Phys. Chem. Lett. 3, 1351–1356 (2012)CrossRef N. Guijarro, T. Lutz, T. Lana-Villarreal, F. O’Mahony, R. Gómez, S.A. Haque, Toward antimony selenide sensitized solar cells: efficient charge photogeneration at spiro-OMeTAD/Sb2Se3/metal oxide heterojunctions. J. Phys. Chem. Lett. 3, 1351–1356 (2012)CrossRef
27.
go back to reference Y. Wu, L. Assaud, C. Kryschi, B. Capon, C. Detavernier, L. Santinacci, J. Bachmann, Antimony sulfide as a light absorber in highly ordered, coaxial nanocylindrical arrays: preparation and integration into a photovoltaic device. J. Mater. Chem. A 3, 5971–5981 (2015)CrossRef Y. Wu, L. Assaud, C. Kryschi, B. Capon, C. Detavernier, L. Santinacci, J. Bachmann, Antimony sulfide as a light absorber in highly ordered, coaxial nanocylindrical arrays: preparation and integration into a photovoltaic device. J. Mater. Chem. A 3, 5971–5981 (2015)CrossRef
28.
go back to reference S. Ito, K. Tsujimoto, D.-C. Nguyen, K. Manabe, H. Nishino, Doping effects in Sb2S3 absorber for full-inorganic printed solar cells with 5.7% conversion efficiency. Int. J. Hydrog. Energy 38, 16749–16754 (2013)CrossRef S. Ito, K. Tsujimoto, D.-C. Nguyen, K. Manabe, H. Nishino, Doping effects in Sb2S3 absorber for full-inorganic printed solar cells with 5.7% conversion efficiency. Int. J. Hydrog. Energy 38, 16749–16754 (2013)CrossRef
29.
go back to reference R. Tang, X. Wang, C. Jiang, S. Li, W. Liu, H. Ju, S. Yang, C. Zhu, T. Chen, n-type doping of Sb2S3 light-harvesting films enabling high-efficiency planar heterojunction solar cells. ACS Appl. Mater. Interface 10, 30314–30321 (2018)CrossRef R. Tang, X. Wang, C. Jiang, S. Li, W. Liu, H. Ju, S. Yang, C. Zhu, T. Chen, n-type doping of Sb2S3 light-harvesting films enabling high-efficiency planar heterojunction solar cells. ACS Appl. Mater. Interface 10, 30314–30321 (2018)CrossRef
30.
go back to reference H. Lei, G. Yang, X. Zheng, Z.G. Zhang, C. Chen, J. Ma, Y. Guo, Z. Chen, P. Qin, Y. Li, G. Fang, Incorporation of high-mobility and room-temperature-deposited CuxS as a hole transport layer for efficient and stable organo-lead halide perovskite solar cells. Solid RRL 1, 1700038 (2017)CrossRef H. Lei, G. Yang, X. Zheng, Z.G. Zhang, C. Chen, J. Ma, Y. Guo, Z. Chen, P. Qin, Y. Li, G. Fang, Incorporation of high-mobility and room-temperature-deposited CuxS as a hole transport layer for efficient and stable organo-lead halide perovskite solar cells. Solid RRL 1, 1700038 (2017)CrossRef
31.
go back to reference H. Lei, T. Lin, X. Wang, S. Zhang, Q. Cheng, X. Chen, Z. Tan, J. Chen, A novel in situ hydrothermal preparation route for Sb2S3 and its solar cell application. Mater. Lett. 233, 90–93 (2018)CrossRef H. Lei, T. Lin, X. Wang, S. Zhang, Q. Cheng, X. Chen, Z. Tan, J. Chen, A novel in situ hydrothermal preparation route for Sb2S3 and its solar cell application. Mater. Lett. 233, 90–93 (2018)CrossRef
32.
go back to reference C. Gao, M. Xu, B.K. Ng, L. Kang, L. Jiang, Y. Lai, F. Liu, In situ growth of Sb2S3 thin films by reactive sputtering on n-Si (100) substrates for top sub-cell of silicon based tandem solar cells. Mater. Lett. 195, 186–189 (2017)CrossRef C. Gao, M. Xu, B.K. Ng, L. Kang, L. Jiang, Y. Lai, F. Liu, In situ growth of Sb2S3 thin films by reactive sputtering on n-Si (100) substrates for top sub-cell of silicon based tandem solar cells. Mater. Lett. 195, 186–189 (2017)CrossRef
33.
go back to reference C. Gao, J. Huang, H. Li, K. Sun, Y. Lai, M. Jia, L. Jiang, F. Liu, Fabrication of Sb2S3 thin films by sputtering and post-annealing for solar cells. Ceram. Int. 45, 3044–3051 (2019)CrossRef C. Gao, J. Huang, H. Li, K. Sun, Y. Lai, M. Jia, L. Jiang, F. Liu, Fabrication of Sb2S3 thin films by sputtering and post-annealing for solar cells. Ceram. Int. 45, 3044–3051 (2019)CrossRef
Metadata
Title
Copper doping of Sb2S3: fabrication, properties, and photovoltaic application
Authors
Hongwei Lei
Tinghao Lin
Xinran Wang
Pei Dai
Yaxiong Guo
Yijun Gao
Dejia Hou
Jianjun Chen
Zuojun Tan
Publication date
13-11-2019
Publisher
Springer US
Published in
Journal of Materials Science: Materials in Electronics / Issue 24/2019
Print ISSN: 0957-4522
Electronic ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-019-02481-9

Other articles of this Issue 24/2019

Journal of Materials Science: Materials in Electronics 24/2019 Go to the issue