Skip to main content
Top
Published in: Journal of Materials Science: Materials in Electronics 24/2018

11-10-2018

Electrodeposition of silver (Ag) nanoparticles on MnO2 nanorods for fabrication of highly conductive and flexible paper electrodes for energy storage application

Authors: Ishrat Sultana, Muhammad Idrees, M. Yasir Rafique, Sameen Ilyas, Shahzada Qamar Hussain, Asim Ali Kahn, Aamir Razaq

Published in: Journal of Materials Science: Materials in Electronics | Issue 24/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Metal oxide based electrodes are attractive for energy storage applications with limited characteristics of flexibility due to inherent rigid structure. However, incorporation of flexible insulating matrix within metal oxide composites result in poor electrically conductive and energy storage characteristics. This study presents the fabrication of flexible MnO2 based composite electrodes prepared by incorporation of lignocelluloses (LC) fibers, directly collected from a self-growing plant, Monochoria Vaginalis. Furthermore electrodeposition of silver (Ag) nanoparticles was performed on LC/MnO2 in potentiostatic mode to address the electrically conductive characteristics. Morphology, structural, conductive and energy storage properties of fabricated electrodes are analyzed by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), impedance analyzer and potentiostat, respectively. SEM images clearly indicate the deposition of Ag nanoparticles on MnO2 nanorods embedded in LC fibers whereas FTIR results confirm the bonding of the functional groups. Cyclic voltammetry measurements showed efficient kinetics of LC/MnO2 after electrodeposition of Ag nanoparticles. The effects on electrical properties associated with blending MnO2 nanorods in lignocelluloses fibers and Ag deposition on MnO2 in LC/MnO2 are explored in wide frequency range between 10 Hz and 5 MHz. However, deposition of Ag nanoparticles on MnO2 nanorods surfaces acts as a conductive path and reduces the associated resistance. Incorporated flexibility in rigid structure of MnO2 and further improvements in conductive and energy storage characteristics will open the possibilities to be used as electrode in modern bendable energy storage devices.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference L. Nyholm, G. Nyström, A. Mihranyan, M. Strømme, Adv. Mater. 23, 3751–3769 (2011) L. Nyholm, G. Nyström, A. Mihranyan, M. Strømme, Adv. Mater. 23, 3751–3769 (2011)
2.
go back to reference L. Bin, J. Zhang, X. Wang, G. Chen, D. Chen, C. Zhou, G. Shen, Nano Lett. 12, 3005–3011 (2012)CrossRef L. Bin, J. Zhang, X. Wang, G. Chen, D. Chen, C. Zhou, G. Shen, Nano Lett. 12, 3005–3011 (2012)CrossRef
3.
go back to reference T. Taberna, P. Louis, G. Chevallier, P. Simon, D. Plée, T. Aubert, Mater. Res. Bull. 41, 478–484 (2006)CrossRef T. Taberna, P. Louis, G. Chevallier, P. Simon, D. Plée, T. Aubert, Mater. Res. Bull. 41, 478–484 (2006)CrossRef
6.
go back to reference S. Xie, M. Zhang, P. Liu, S. Wang, S. Liu, H. Feng, H. Zheng, F. Cheng, Mater. Res. Bull. 96, 413–418 (2017)CrossRef S. Xie, M. Zhang, P. Liu, S. Wang, S. Liu, H. Feng, H. Zheng, F. Cheng, Mater. Res. Bull. 96, 413–418 (2017)CrossRef
10.
11.
go back to reference T. Brousse, M. Toupin, R. Dugas, L. Athouël, O. Crosnier, D. Bélanger, J. Electrochem. Soc. 153, 2171 (2006)CrossRef T. Brousse, M. Toupin, R. Dugas, L. Athouël, O. Crosnier, D. Bélanger, J. Electrochem. Soc. 153, 2171 (2006)CrossRef
12.
go back to reference Z. Hao, G. Cao, Z. Wang, Y. Yang, Z. Shi, Z. Gu, Nano Lett. 8, 2664–2668 (2008)CrossRef Z. Hao, G. Cao, Z. Wang, Y. Yang, Z. Shi, Z. Gu, Nano Lett. 8, 2664–2668 (2008)CrossRef
13.
go back to reference K. Amine, J. Liu, S. Kang, I. Belharouak, Y. Hyung, D. Vissers, G. Henriksen, J. Power Sources 129, 14–19 (2004)CrossRef K. Amine, J. Liu, S. Kang, I. Belharouak, Y. Hyung, D. Vissers, G. Henriksen, J. Power Sources 129, 14–19 (2004)CrossRef
14.
15.
16.
go back to reference D. Liu, B.B. Garcia, Q. Zhang, Q. Guo, Y. Zhang, S. Sepehri, G. CaoAdv, Funct. Mater. 19, 1015 (2009)CrossRef D. Liu, B.B. Garcia, Q. Zhang, Q. Guo, Y. Zhang, S. Sepehri, G. CaoAdv, Funct. Mater. 19, 1015 (2009)CrossRef
17.
go back to reference Y.S. Ding, X.F. Shen, S. Sithambaram, S. Gomez, R. Kumar, V.M.B. Crisostomo, S.L. Suib, M. Aindow, Chem. Mater. 17, 5382 (2005)CrossRef Y.S. Ding, X.F. Shen, S. Sithambaram, S. Gomez, R. Kumar, V.M.B. Crisostomo, S.L. Suib, M. Aindow, Chem. Mater. 17, 5382 (2005)CrossRef
18.
go back to reference C. Shu-Lei, J.Z. Wang, S.Y. Chew, H.K. Liu, S.X. Dou, Electrochem. Commun. 10, 1724–1727 (2008)CrossRef C. Shu-Lei, J.Z. Wang, S.Y. Chew, H.K. Liu, S.X. Dou, Electrochem. Commun. 10, 1724–1727 (2008)CrossRef
19.
go back to reference L. Seung Woo, J. Kim, S. Chen, P.T. Hammond, S.-H. Yang, ACS Nano 4, 3889–3896 (2010)CrossRef L. Seung Woo, J. Kim, S. Chen, P.T. Hammond, S.-H. Yang, ACS Nano 4, 3889–3896 (2010)CrossRef
20.
go back to reference G. Zhe, H. Zhu, E. Gillette, X. Han, W. Gary, R. Liangbing, Hu, S.B. Lee, ACS Nano 7, 6037–6046 (2013)CrossRef G. Zhe, H. Zhu, E. Gillette, X. Han, W. Gary, R. Liangbing, Hu, S.B. Lee, ACS Nano 7, 6037–6046 (2013)CrossRef
21.
go back to reference Y. Longyan, X. Xiao, T. Ding, J. Zhong, X. Zhang, Y. Shen, B. Hu, Y. Huang, J. Zhou, Z.L. Wang, Angew. Chem. 124, 5018–5022 (2012)CrossRef Y. Longyan, X. Xiao, T. Ding, J. Zhong, X. Zhang, Y. Shen, B. Hu, Y. Huang, J. Zhou, Z.L. Wang, Angew. Chem. 124, 5018–5022 (2012)CrossRef
22.
go back to reference G. Kezheng, Z. Shao, J. Li, X. Wang, X. Peng, W. Wang, F. Wang, J. Mater. Chem. A. 1, 63–67 (2013)CrossRef G. Kezheng, Z. Shao, J. Li, X. Wang, X. Peng, W. Wang, F. Wang, J. Mater. Chem. A. 1, 63–67 (2013)CrossRef
23.
go back to reference Z. Li, J. He, J. Zhang, Z. He, Y. Hu, C. Zhang, H. He, J. Phys. Chem. C 115, 16873–16878 (2011)CrossRef Z. Li, J. He, J. Zhang, Z. He, Y. Hu, C. Zhang, H. He, J. Phys. Chem. C 115, 16873–16878 (2011)CrossRef
24.
go back to reference M. Shihabudheen, M. Kinattukara, P. Lisha, T. Pradeep, J. Hazard. Mater. 181, 986–995 (2010)CrossRef M. Shihabudheen, M. Kinattukara, P. Lisha, T. Pradeep, J. Hazard. Mater. 181, 986–995 (2010)CrossRef
25.
go back to reference Y.C. Chen, Y.K. Hse, Y.G. Lin, Y.Y. Horng, L.C. Chen, K.H. Chen, Electrochim. Acta 56, 7124–7130 (2011)CrossRef Y.C. Chen, Y.K. Hse, Y.G. Lin, Y.Y. Horng, L.C. Chen, K.H. Chen, Electrochim. Acta 56, 7124–7130 (2011)CrossRef
26.
27.
go back to reference T. Dubas, T. Stephan, P. Kumlangdudsana, P. Potiyaraj, Colloids Surf. A 289, 105–109 (2006)CrossRef T. Dubas, T. Stephan, P. Kumlangdudsana, P. Potiyaraj, Colloids Surf. A 289, 105–109 (2006)CrossRef
28.
go back to reference J. Hongquan, S. Manolache, A.C. Lee Wong, F.S. Denes, J. Appl. Polym. Sci. 93, 1411–1422 (2004)CrossRef J. Hongquan, S. Manolache, A.C. Lee Wong, F.S. Denes, J. Appl. Polym. Sci. 93, 1411–1422 (2004)CrossRef
29.
go back to reference L. Wenjie, A. Jorma, M. Virtanen, M. Reginald Penner, Appl. Phys. Lett. 60, 1181–1183 (1992)CrossRef L. Wenjie, A. Jorma, M. Virtanen, M. Reginald Penner, Appl. Phys. Lett. 60, 1181–1183 (1992)CrossRef
30.
go back to reference B. Yao et al., Paper-based solid-state supercapacitors with pencil-drawing graphite/polyaniline networks hybrid electrodes. Nano Energy 2(6), 1071–1078 (2013)CrossRef B. Yao et al., Paper-based solid-state supercapacitors with pencil-drawing graphite/polyaniline networks hybrid electrodes. Nano Energy 2(6), 1071–1078 (2013)CrossRef
31.
go back to reference Y. Shao et al., Graphene-based materials for flexible supercapacitors. Chem. Soc. Rev. 44(11), 3639–3665 (2015)CrossRef Y. Shao et al., Graphene-based materials for flexible supercapacitors. Chem. Soc. Rev. 44(11), 3639–3665 (2015)CrossRef
32.
go back to reference B. Yao et al., Flexible transparent molybdenum trioxide nanopaper for energy storage. Adv. Mater. 28(30), 6353–6358 (2016)CrossRef B. Yao et al., Flexible transparent molybdenum trioxide nanopaper for energy storage. Adv. Mater. 28(30), 6353–6358 (2016)CrossRef
33.
go back to reference B. Yao et al., Paper-based electrodes for flexible energy storage devices. Adv. Sci. 4(7), 1700107 (2017)CrossRef B. Yao et al., Paper-based electrodes for flexible energy storage devices. Adv. Sci. 4(7), 1700107 (2017)CrossRef
34.
go back to reference P.F. Moonen, I. Yakimets, J. Huskens, Fabrication of transistors on flexible substrates: from mass-printing to high-resolution alternative lithography strategies. Adv. Mater. 24(41), 5526–5541 (2012)CrossRef P.F. Moonen, I. Yakimets, J. Huskens, Fabrication of transistors on flexible substrates: from mass-printing to high-resolution alternative lithography strategies. Adv. Mater. 24(41), 5526–5541 (2012)CrossRef
35.
go back to reference Y.-Z. Zhang et al., Flexible supercapacitors based on paper substrates: a new paradigm for low-cost energy storage. Chem. Soc. Rev. 44(15), 5181–5199 (2015)CrossRef Y.-Z. Zhang et al., Flexible supercapacitors based on paper substrates: a new paradigm for low-cost energy storage. Chem. Soc. Rev. 44(15), 5181–5199 (2015)CrossRef
36.
go back to reference Z. Jim, V. Rebecca, M. Stiger, P.R. Biernacki, R.M. Penner, J. Phys. Chem. 100, 837–844 (1996)CrossRef Z. Jim, V. Rebecca, M. Stiger, P.R. Biernacki, R.M. Penner, J. Phys. Chem. 100, 837–844 (1996)CrossRef
37.
go back to reference S. Ishrat, A. Razaq, M. Idrees, M.H. Asif, H. Ali, A. Asim, S. Iqbal, S.M. Ramay, S.Q. Hussain, J. Electron. Mater. 45, 5140–5145 (2016)CrossRef S. Ishrat, A. Razaq, M. Idrees, M.H. Asif, H. Ali, A. Asim, S. Iqbal, S.M. Ramay, S.Q. Hussain, J. Electron. Mater. 45, 5140–5145 (2016)CrossRef
38.
go back to reference M. Quinn, M. Bernadette, C. Dekker, S.G. Lemay, J. Am. Chem. Soc. 127, 6146–6147 (2005)CrossRef M. Quinn, M. Bernadette, C. Dekker, S.G. Lemay, J. Am. Chem. Soc. 127, 6146–6147 (2005)CrossRef
39.
go back to reference T. Jing, D. Peng, X. Wu, W. Li, H. Deng, S. Liu, Carbohydr. Polym. 156, 19–25 (2017)CrossRef T. Jing, D. Peng, X. Wu, W. Li, H. Deng, S. Liu, Carbohydr. Polym. 156, 19–25 (2017)CrossRef
40.
41.
go back to reference I. Sultana, F. Ashraf, F. Manzoor, N. Hassan, A. Razaq, J. Electron. Mater. 455(10), 5140–5145 (2016)CrossRef I. Sultana, F. Ashraf, F. Manzoor, N. Hassan, A. Razaq, J. Electron. Mater. 455(10), 5140–5145 (2016)CrossRef
42.
go back to reference T. Farid, A. Islama, A. Masooda, F. Iqbalb, M. Yasir Rafiquea, A. Razaqa, Ceram. Int. 44, 11397–11401 (2018)CrossRef T. Farid, A. Islama, A. Masooda, F. Iqbalb, M. Yasir Rafiquea, A. Razaqa, Ceram. Int. 44, 11397–11401 (2018)CrossRef
43.
go back to reference J.H. Luiz Ornaghi, Á Gustavo, D. Olivieras Moraes, M. Poletto, A.J. Zattera, S.C. Amico, Cell. Chem. Technol. 50, 15–22 (2016) J.H. Luiz Ornaghi, Á Gustavo, D. Olivieras Moraes, M. Poletto, A.J. Zattera, S.C. Amico, Cell. Chem. Technol. 50, 15–22 (2016)
44.
go back to reference E. Sivasankara Rao, S. Anantharaj, U. Nithiyanantham, S. Kundu, Phys. Chem. Chem. Phys. 17, 5474–5484 (2015)CrossRef E. Sivasankara Rao, S. Anantharaj, U. Nithiyanantham, S. Kundu, Phys. Chem. Chem. Phys. 17, 5474–5484 (2015)CrossRef
45.
46.
go back to reference M. Idrees, M. Nadeem, S. Anwar Siddiqi, R. Ahmad, A. Hussnain, M. Mehmood, Mater. Chem. Phys. 162, 652–658 (2015)CrossRef M. Idrees, M. Nadeem, S. Anwar Siddiqi, R. Ahmad, A. Hussnain, M. Mehmood, Mater. Chem. Phys. 162, 652–658 (2015)CrossRef
Metadata
Title
Electrodeposition of silver (Ag) nanoparticles on MnO2 nanorods for fabrication of highly conductive and flexible paper electrodes for energy storage application
Authors
Ishrat Sultana
Muhammad Idrees
M. Yasir Rafique
Sameen Ilyas
Shahzada Qamar Hussain
Asim Ali Kahn
Aamir Razaq
Publication date
11-10-2018
Publisher
Springer US
Published in
Journal of Materials Science: Materials in Electronics / Issue 24/2018
Print ISSN: 0957-4522
Electronic ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-018-0194-7

Other articles of this Issue 24/2018

Journal of Materials Science: Materials in Electronics 24/2018 Go to the issue