Skip to main content
Top
Published in: Rare Metals 2/2021

24-08-2020 | Review

Electrolytic alloy-type anodes for metal-ion batteries

Authors: Xian-Yang Li, Jia-Kang Qu, Hua-Yi Yin

Published in: Rare Metals | Issue 2/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Alloy-type metals/alloys hold the promise of increasing the energy density of metal-ion batteries (MIBs) because of their theoretical high gravimetrical capacities. Semimetals and semimetal-analogs are typical alloy-type anodes. Currently, the large-scale extraction of semimetals (Si, Ge) and semimetal-analogs (Sb, Bi, Sn) by traditional metallurgical routes highly relies on using reducing agents (e.g., carbon, hydrogen, reactive metals), which consumes a large number of fossil fuels and produces greenhouse gas emissions. In addition, the common metallurgical methods for extracting semimetals involve relatively high operating temperatures and therefore produce bulk metal ingots solidified from the liquid metals. However, the commonly used electrode materials in batteries are fine powders. Thus, directly producing semimetal powders would be more energy efficient. In addition, semimetals are good candidates to host alkali/alkaline-earth ions through the alloying process because the electronegativity of semimetals is high. Therefore, preparing semimetal powders via an environment-sound manner is of great interest to provide sustainable anode materials for MIBs while reducing the ecological footprint. Low-cost and high-output capacity anode powder materials, as well as straightforward and environmental-benign synthetic methods, play key roles in enabling the energy conversion and storage technologies for real applications of MIBs. Electrochemical technologies offer new strategies to extract semimetals using electrons as the reducing agent that comes from renewable energies. Besides, the morphologies and structures of the electrolytic products can be rationally tailored by tuning the electrode potentials, electrolytes, and operating temperatures. In this regard, using the one-step green electrochemical method to prepare high-capacity and cheaper alloy-type metalloids for MIB anodes can fulfill the requirements for developing MIBs. This review critically overviews recent developments and advances in the electrochemical extraction of semimetals (Si, Ge) and semimetal-analogs (Sb, Bi, Sn) for MIBs, including basic electrochemical principles, thermodynamic analysis, manufacture strategies and applications in lithium-ion batteries (LIBs), sodium-ion batteries (SIBs), potassium-ion batteries (PIBs), magnesium-ion batteries (Mg-ion batteries), and liquid metal batteries (LMBs). It also presents challenges and prospects of employing electrochemical approaches for preparing alloy-type anode materials directly from inexpensive ore-originated feedstocks.

Graphic abstract

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
[1]
go back to reference Armand M, Tarascon JM. Building better batteries. Nature. 2008;451:652. Armand M, Tarascon JM. Building better batteries. Nature. 2008;451:652.
[2]
go back to reference Bruce PG, Scrosati B, Tarascon JM. Nanomaterials for rechargeable lithium batteries. Angew Chem Int Ed. 2008;47(16):2930. Bruce PG, Scrosati B, Tarascon JM. Nanomaterials for rechargeable lithium batteries. Angew Chem Int Ed. 2008;47(16):2930.
[3]
go back to reference Tarascon JM, Armand M. Issues and challenges facing rechargeable lithium batteries. Nature. 2001;414(6861):359. Tarascon JM, Armand M. Issues and challenges facing rechargeable lithium batteries. Nature. 2001;414(6861):359.
[4]
go back to reference Ji YR, Weng ST, Li XY, Zhang QH, Gu L. Atomic-scale structural evolution of electrode materials in Li-ion batteries: a review. Rare Met. 2020;39(3):205. Ji YR, Weng ST, Li XY, Zhang QH, Gu L. Atomic-scale structural evolution of electrode materials in Li-ion batteries: a review. Rare Met. 2020;39(3):205.
[5]
go back to reference Liang Y, Zhao JT, Han ZJ, Wei HJ. Application of lithium rare metal in rechargeable batteries. Chin J Rare Met. 2019;43(11):1187. Liang Y, Zhao JT, Han ZJ, Wei HJ. Application of lithium rare metal in rechargeable batteries. Chin J Rare Met. 2019;43(11):1187.
[6]
go back to reference Goriparti S, Miele E, De Angelis F, Di Fabrizio E, Zaccaria RP, Capiglia C. Review on recent progress of nanostructured anode materials for Li-ion batteries. J Power Sour. 2014;257:421. Goriparti S, Miele E, De Angelis F, Di Fabrizio E, Zaccaria RP, Capiglia C. Review on recent progress of nanostructured anode materials for Li-ion batteries. J Power Sour. 2014;257:421.
[7]
go back to reference Loaiza LC, Monconduit L, Seznec V. Si and Ge-based anode materials for Li-, Na-, and K-ion batteries: a perspective from structure to electrochemical mechanism. Small. 2020;16(5):29. Loaiza LC, Monconduit L, Seznec V. Si and Ge-based anode materials for Li-, Na-, and K-ion batteries: a perspective from structure to electrochemical mechanism. Small. 2020;16(5):29.
[8]
go back to reference Wu MG, Xu BL, Zhang YF, Qi SH, Ni W, Hu J, Ma JM. Perspectives in emerging bismuth electrochemistry. Chem Eng J. 2020;381:17. Wu MG, Xu BL, Zhang YF, Qi SH, Ni W, Hu J, Ma JM. Perspectives in emerging bismuth electrochemistry. Chem Eng J. 2020;381:17.
[9]
go back to reference Grosjean C, Miranda PH, Perrin M, Poggi P. Assessment of world lithium resources and consequences of their geographic distribution on the expected development of the electric vehicle industry. Renew Sust Energy Rev. 2012;16(3):1735. Grosjean C, Miranda PH, Perrin M, Poggi P. Assessment of world lithium resources and consequences of their geographic distribution on the expected development of the electric vehicle industry. Renew Sust Energy Rev. 2012;16(3):1735.
[10]
go back to reference Ong SP, Chevrier VL, Hautier G, Jain A, Moore C, Kim S, Ma XH, Ceder G. Voltage, stability and diffusion barrier differences between sodium-ion and lithium-ion intercalation materials. Energy Environ Sci. 2011;4(9):3680. Ong SP, Chevrier VL, Hautier G, Jain A, Moore C, Kim S, Ma XH, Ceder G. Voltage, stability and diffusion barrier differences between sodium-ion and lithium-ion intercalation materials. Energy Environ Sci. 2011;4(9):3680.
[11]
go back to reference Kim SW, Seo DH, Ma XH, Ceder G, Kang K. Electrode materials for rechargeable sodium-ion batteries: potential alternatives to current lithium-ion batteries. Adv Energy Mater. 2012;2(7):710. Kim SW, Seo DH, Ma XH, Ceder G, Kang K. Electrode materials for rechargeable sodium-ion batteries: potential alternatives to current lithium-ion batteries. Adv Energy Mater. 2012;2(7):710.
[12]
go back to reference Palomares V, Casas-Cabanas M, Castillo-Martinez E, Han MH, Rojo T. Update on Na-based battery materials. A growing research path. Energy Environ Sci. 2013;6(8):2312. Palomares V, Casas-Cabanas M, Castillo-Martinez E, Han MH, Rojo T. Update on Na-based battery materials. A growing research path. Energy Environ Sci. 2013;6(8):2312.
[13]
go back to reference Pan HL, Hu YS, Chen LQ. Room-temperature stationary sodium-ion batteries for large-scale electric energy storage. Energy Environ Sci. 2013;6(8):2338. Pan HL, Hu YS, Chen LQ. Room-temperature stationary sodium-ion batteries for large-scale electric energy storage. Energy Environ Sci. 2013;6(8):2338.
[15]
go back to reference Yan ZH, Yang QW, Wang QH, Ma JM. Nitrogen doped porous carbon as excellent dual anodes for Li- and Na-ion batteries. Chin Chem Lett. 2020;31(2):583. Yan ZH, Yang QW, Wang QH, Ma JM. Nitrogen doped porous carbon as excellent dual anodes for Li- and Na-ion batteries. Chin Chem Lett. 2020;31(2):583.
[16]
go back to reference Luo W, Li F, Zhang WR, Han K, Gaumet JJ, Schaefer HE, Mai LQ. Encapsulating segment-like antimony nanorod in hollow carbon tube as long-lifespan, high-rate anodes for rechargeable K-ion batteries. Nano Res. 2019;12(5):1025. Luo W, Li F, Zhang WR, Han K, Gaumet JJ, Schaefer HE, Mai LQ. Encapsulating segment-like antimony nanorod in hollow carbon tube as long-lifespan, high-rate anodes for rechargeable K-ion batteries. Nano Res. 2019;12(5):1025.
[17]
go back to reference Saha P, Datta MK, Velikokhatnyi OI, Manivannan A, Alman D, Kumta PN. Rechargeable magnesium battery: current status and key challenges for the future. Prog Mater Sci. 2014;66:1. Saha P, Datta MK, Velikokhatnyi OI, Manivannan A, Alman D, Kumta PN. Rechargeable magnesium battery: current status and key challenges for the future. Prog Mater Sci. 2014;66:1.
[18]
go back to reference Wu DX, Zhang WC, Feng YZ, Ma JM. Necklace-like carbon nanofibers encapsulating V3S4 microspheres for ultrafast and stable potassium-ion storage. J Mater Chem A. 2020;8(5):2618. Wu DX, Zhang WC, Feng YZ, Ma JM. Necklace-like carbon nanofibers encapsulating V3S4 microspheres for ultrafast and stable potassium-ion storage. J Mater Chem A. 2020;8(5):2618.
[19]
go back to reference Jian ZL, Luo W, Ji XL. Carbon electrodes for K-ion batteries. J Am Chem Soc. 2015;137(36):11566. Jian ZL, Luo W, Ji XL. Carbon electrodes for K-ion batteries. J Am Chem Soc. 2015;137(36):11566.
[20]
go back to reference Xue LG, Li YT, Gao HC, Zhou WD, Lu XJ, Kaveevivitchai W, Manthiram A, Goodenough JB. Low-cost high-energy potassium cathode. J Am Chem Soc. 2017;139(6):2164. Xue LG, Li YT, Gao HC, Zhou WD, Lu XJ, Kaveevivitchai W, Manthiram A, Goodenough JB. Low-cost high-energy potassium cathode. J Am Chem Soc. 2017;139(6):2164.
[22]
go back to reference Obrovac MN. Si-alloy negative electrodes for Li-ion batteries. Curr Opin Electrochem. 2018;9:8. Obrovac MN. Si-alloy negative electrodes for Li-ion batteries. Curr Opin Electrochem. 2018;9:8.
[23]
go back to reference Zhang QB, Chen HX, Luo LL, Zhao BT, Luo H, Han X, Wang JW, Wang CM, Yang Y, Zhu T, Liu ML. Harnessing the concurrent reaction dynamics in active Si and Ge to achieve high performance lithium-ion batteries. Energy Environ Sci. 2018;11(3):669. Zhang QB, Chen HX, Luo LL, Zhao BT, Luo H, Han X, Wang JW, Wang CM, Yang Y, Zhu T, Liu ML. Harnessing the concurrent reaction dynamics in active Si and Ge to achieve high performance lithium-ion batteries. Energy Environ Sci. 2018;11(3):669.
[24]
go back to reference Liu ZM, Song T, Paik U. Sb-based electrode materials for rechargeable batteries. J Mater Chem A. 2018;6(18):8159. Liu ZM, Song T, Paik U. Sb-based electrode materials for rechargeable batteries. J Mater Chem A. 2018;6(18):8159.
[25]
go back to reference Sultana I, Ramireddy T, Rahman MM, Chen Y, Glushenkov AM. Tin-based composite anodes for potassium-ion batteries. Chem Commun. 2016;52(59):9279. Sultana I, Ramireddy T, Rahman MM, Chen Y, Glushenkov AM. Tin-based composite anodes for potassium-ion batteries. Chem Commun. 2016;52(59):9279.
[26]
go back to reference Huang JQ, Lin XY, Tan H, Zhang B. Bismuth microparticles as advanced anodes for potassium-ion battery. Adv Energy Mater. 2018;8(19):7. Huang JQ, Lin XY, Tan H, Zhang B. Bismuth microparticles as advanced anodes for potassium-ion battery. Adv Energy Mater. 2018;8(19):7.
[27]
go back to reference Singh N, Arthur TS, Ling C, Matsui M, Mizuno F. A high energy-density tin anode for rechargeable magnesium-ion batteries. Chem Commun. 2013;49(2):149. Singh N, Arthur TS, Ling C, Matsui M, Mizuno F. A high energy-density tin anode for rechargeable magnesium-ion batteries. Chem Commun. 2013;49(2):149.
[28]
go back to reference Tan YH, Yao WT, Zhang TW, Ma T, Lu LL, Zhou F, Yao HB, Yu SH. High voltage magnesium-ion battery enabled by nanocluster Mg3Bi2 alloy anode in noncorrosive electrolyte. ACS Nano. 2018;12(6):5856. Tan YH, Yao WT, Zhang TW, Ma T, Lu LL, Zhou F, Yao HB, Yu SH. High voltage magnesium-ion battery enabled by nanocluster Mg3Bi2 alloy anode in noncorrosive electrolyte. ACS Nano. 2018;12(6):5856.
[29]
go back to reference Malyi OI, Tan TL, Manzhos S. In search of high performance anode materials for Mg batteries: computational studies of Mg in Ge, Si, and Sn. J Power Sour. 2013;233:341. Malyi OI, Tan TL, Manzhos S. In search of high performance anode materials for Mg batteries: computational studies of Mg in Ge, Si, and Sn. J Power Sour. 2013;233:341.
[30]
go back to reference Arthur TS, Singh N, Matsui M. Electrodeposited Bi, Sb and Bi1−xSbx alloys as anodes for Mg-ion batteries. Electrochem Commun. 2012;16(1):103. Arthur TS, Singh N, Matsui M. Electrodeposited Bi, Sb and Bi1−xSbx alloys as anodes for Mg-ion batteries. Electrochem Commun. 2012;16(1):103.
[31]
go back to reference Wang XF, Lu XH, Liu B, Chen D, Tong YX, Shen GZ. Flexible energy-storage devices: design consideration and recent progress. Adv Mater. 2014;26(28):4763. Wang XF, Lu XH, Liu B, Chen D, Tong YX, Shen GZ. Flexible energy-storage devices: design consideration and recent progress. Adv Mater. 2014;26(28):4763.
[32]
go back to reference Zhou GM, Li F, Cheng HM. Progress in flexible lithium batteries and future prospects. Energy Environ Sci. 2014;7(4):1307. Zhou GM, Li F, Cheng HM. Progress in flexible lithium batteries and future prospects. Energy Environ Sci. 2014;7(4):1307.
[33]
go back to reference Delmas C. Sodium and sodium-ion batteries: 50 years of research. Adv Energy Mater. 2018;8(17):9. Delmas C. Sodium and sodium-ion batteries: 50 years of research. Adv Energy Mater. 2018;8(17):9.
[34]
go back to reference Xie HW, Zhao HJ, Qu JK, Song QS, Ning ZQ, Yin HY. Thermodynamic considerations of screening halide molten-salt electrolytes for electrochemical reduction of solid oxides/sulfides. J Solid State Electrochem. 2019;23(3):903. Xie HW, Zhao HJ, Qu JK, Song QS, Ning ZQ, Yin HY. Thermodynamic considerations of screening halide molten-salt electrolytes for electrochemical reduction of solid oxides/sulfides. J Solid State Electrochem. 2019;23(3):903.
[35]
go back to reference Chen GZ, Fray DJ, Farthing TW. Direct electrochemical reduction of titanium dioxide to titanium in molten calcium chloride. Nature. 2000;407(6802):361. Chen GZ, Fray DJ, Farthing TW. Direct electrochemical reduction of titanium dioxide to titanium in molten calcium chloride. Nature. 2000;407(6802):361.
[36]
go back to reference Abdelkader AM, Kilby KT, Cox A, Fray DJ. DC voltammetry of electro-deoxidation of solid oxides. Chem Rev. 2013;113(5):2863. Abdelkader AM, Kilby KT, Cox A, Fray DJ. DC voltammetry of electro-deoxidation of solid oxides. Chem Rev. 2013;113(5):2863.
[37]
go back to reference Xiao W, Wang DH. The electrochemical reduction processes of solid compounds in high temperature molten salts. Chem Soc Rev. 2014;43(10):3215. Xiao W, Wang DH. The electrochemical reduction processes of solid compounds in high temperature molten salts. Chem Soc Rev. 2014;43(10):3215.
[38]
go back to reference Zou X, Gu S, Lu X, Xie X, Lu C, Zhou Z, Ding W. Electroreduction of iron(III) oxide pellets to iron in alkaline media: a typical shrinking-core reaction process. Metall Mater Trans B. 2015;46(3):1262. Zou X, Gu S, Lu X, Xie X, Lu C, Zhou Z, Ding W. Electroreduction of iron(III) oxide pellets to iron in alkaline media: a typical shrinking-core reaction process. Metall Mater Trans B. 2015;46(3):1262.
[39]
go back to reference Qu J, Xie H, Song Q, Ning Z, Zhao H, Yin H. Electrochemical desulfurization of solid copper sulfides in strongly alkaline solutions. Electrochem Commun. 2018;92:14. Qu J, Xie H, Song Q, Ning Z, Zhao H, Yin H. Electrochemical desulfurization of solid copper sulfides in strongly alkaline solutions. Electrochem Commun. 2018;92:14.
[40]
go back to reference Li XY, Qu JK, Xie HW, Song QS, Fu GF, Yin HY. An electro-deoxidation approach to co-converting antimony oxide/graphene oxide to antimony/graphene composite for sodium-ion battery anode. Electrochim Acta. 2020;332:9. Li XY, Qu JK, Xie HW, Song QS, Fu GF, Yin HY. An electro-deoxidation approach to co-converting antimony oxide/graphene oxide to antimony/graphene composite for sodium-ion battery anode. Electrochim Acta. 2020;332:9.
[41]
go back to reference Qu JK, Li XY, Xie HW, Ning ZQ, Song QS, Zhao HJ, Yin HY. Electrochemical reduction of solid lead and antimony sulfides in strong alkaline solutions. J Electrochem Soc. 2019;166(2):E62. Qu JK, Li XY, Xie HW, Ning ZQ, Song QS, Zhao HJ, Yin HY. Electrochemical reduction of solid lead and antimony sulfides in strong alkaline solutions. J Electrochem Soc. 2019;166(2):E62.
[42]
go back to reference Yu ZL, Wang N, Fang S, Qi XP, Gao ZF, Yang JY, Lu SG. Pilot-plant production of high-performance silicon nanowires by molten salt electrolysis of silica. Ind Eng Chem Res. 2020;59(1):1. Yu ZL, Wang N, Fang S, Qi XP, Gao ZF, Yang JY, Lu SG. Pilot-plant production of high-performance silicon nanowires by molten salt electrolysis of silica. Ind Eng Chem Res. 2020;59(1):1.
[43]
go back to reference Peng KQ, Jie JS, Zhang WJ, Lee ST. Silicon nanowires for rechargeable lithium-ion battery anodes. Appl Phys Lett. 2008;93(3):3. Peng KQ, Jie JS, Zhang WJ, Lee ST. Silicon nanowires for rechargeable lithium-ion battery anodes. Appl Phys Lett. 2008;93(3):3.
[44]
go back to reference Zhang HG, Braun PV. Three-dimensional metal scaffold supported bicontinuous silicon battery anodes. Nano Lett. 2012;12(6):2778. Zhang HG, Braun PV. Three-dimensional metal scaffold supported bicontinuous silicon battery anodes. Nano Lett. 2012;12(6):2778.
[45]
go back to reference Liang B, Liu YP, Xu YH. Silicon-based materials as high capacity anodes for next generation lithium ion batteries. J Power Sources. 2014;267:469. Liang B, Liu YP, Xu YH. Silicon-based materials as high capacity anodes for next generation lithium ion batteries. J Power Sources. 2014;267:469.
[46]
go back to reference Li J, Yang JY, Wang JT, Lu SG. A scalable synthesis of silicon nanoparticles as high-performance anode material for lithium-ion batteries. Rare Met. 2019;38(3):199. Li J, Yang JY, Wang JT, Lu SG. A scalable synthesis of silicon nanoparticles as high-performance anode material for lithium-ion batteries. Rare Met. 2019;38(3):199.
[47]
go back to reference Agrawal AK, Austin AE. Electrodeposition of silicon from solutions of silicon halides in aprotic-solvents. J Electrochem Soc. 1981;128(11):2292. Agrawal AK, Austin AE. Electrodeposition of silicon from solutions of silicon halides in aprotic-solvents. J Electrochem Soc. 1981;128(11):2292.
[48]
go back to reference Juzeliu Nas E, Fray DJ. Silicon electrochemistry in molten salts. Chem Rev. 2020;120(3):1690. Juzeliu Nas E, Fray DJ. Silicon electrochemistry in molten salts. Chem Rev. 2020;120(3):1690.
[49]
go back to reference Chen XL, Gerasopoulos K, Guo JC, Brown A, Wang CS, Ghodssi R, Culver JN. A patterned 3D silicon anode fabricated by electrodeposition on a virus-structured current collector. Adv Funct Mater. 2011;21(2):380. Chen XL, Gerasopoulos K, Guo JC, Brown A, Wang CS, Ghodssi R, Culver JN. A patterned 3D silicon anode fabricated by electrodeposition on a virus-structured current collector. Adv Funct Mater. 2011;21(2):380.
[50]
go back to reference Kim DY, Suk J, Kim DW, Kang Y, Im SH, Yang Y, Park OO. An electrochemically grown three-dimensional porous Si@Ni inverse opal structure for high-performance Li ion battery anodes. J Mater Chem A. 2014;2(18):6396. Kim DY, Suk J, Kim DW, Kang Y, Im SH, Yang Y, Park OO. An electrochemically grown three-dimensional porous Si@Ni inverse opal structure for high-performance Li ion battery anodes. J Mater Chem A. 2014;2(18):6396.
[51]
go back to reference Qian X, Hang T, Nara H, Yokoshima T, Li M, Osaka T. Electrodeposited three-dimensional porous Si–O–C/Ni thick film as high performance anode for lithium-ion batteries. J Power Sour. 2014;272:794. Qian X, Hang T, Nara H, Yokoshima T, Li M, Osaka T. Electrodeposited three-dimensional porous Si–O–C/Ni thick film as high performance anode for lithium-ion batteries. J Power Sour. 2014;272:794.
[52]
go back to reference Li WT, Guo XW, Lu Y, Wang L, Fan AL, Sui ML, Yu HJ. Amorphous nanosized silicon with hierarchically porous structure for high-performance lithium ion batteries. Energy Storage Mater. 2017;7:203. Li WT, Guo XW, Lu Y, Wang L, Fan AL, Sui ML, Yu HJ. Amorphous nanosized silicon with hierarchically porous structure for high-performance lithium ion batteries. Energy Storage Mater. 2017;7:203.
[53]
go back to reference Vlaic CA, Ivanov S, Peipmann R, Eisenhardt A, Himmerlich M, Krischok S, Bund A. Electrochemical lithiation of thin silicon based layers potentiostatically deposited from ionic liquid. Electrochim Acta. 2015;168:403. Vlaic CA, Ivanov S, Peipmann R, Eisenhardt A, Himmerlich M, Krischok S, Bund A. Electrochemical lithiation of thin silicon based layers potentiostatically deposited from ionic liquid. Electrochim Acta. 2015;168:403.
[54]
go back to reference Ahn S, Jeong M, Yokoshima T, Nara H, Momma T, Osaka T. Electrophoretically deposited carbon nanotube anchor layer to improve areal capacity of Si–O–C composite anode for lithium secondary batteries. J Power Sour. 2016;336:203. Ahn S, Jeong M, Yokoshima T, Nara H, Momma T, Osaka T. Electrophoretically deposited carbon nanotube anchor layer to improve areal capacity of Si–O–C composite anode for lithium secondary batteries. J Power Sour. 2016;336:203.
[55]
go back to reference Jeong M, Ahn S, Yokoshima T, Nara H, Momma T, Osaka T. New approach for enhancing electrical conductivity of electrodeposited Si-based anode material for Li secondary batteries: self-incorporation of nano Cu metal in Si–O–C composite. Nano Energy. 2016;28:51. Jeong M, Ahn S, Yokoshima T, Nara H, Momma T, Osaka T. New approach for enhancing electrical conductivity of electrodeposited Si-based anode material for Li secondary batteries: self-incorporation of nano Cu metal in Si–O–C composite. Nano Energy. 2016;28:51.
[56]
go back to reference Ahn S, Kadoya T, Nara H, Yokoshima T, Momma T, Osaka T. Tin addition for mechanical and electronic improvement of electrodeposited Si–O–C composite anode for lithium-ion battery. J Power Sour. 2019;437:6. Ahn S, Kadoya T, Nara H, Yokoshima T, Momma T, Osaka T. Tin addition for mechanical and electronic improvement of electrodeposited Si–O–C composite anode for lithium-ion battery. J Power Sour. 2019;437:6.
[57]
go back to reference Jiang T, Xu X, Chen GZ. Silicon prepared by electro-reduction in molten salts as new energy materials. J Energy Chem. 2020;47:46. Jiang T, Xu X, Chen GZ. Silicon prepared by electro-reduction in molten salts as new energy materials. J Energy Chem. 2020;47:46.
[58]
go back to reference Fray D. Molten salts and energy related materials. Faraday Discuss. 2016;190:11. Fray D. Molten salts and energy related materials. Faraday Discuss. 2016;190:11.
[59]
go back to reference Nohira T, Yasuda K, Ito Y. Pinpoint and bulk electrochemical reduction of insulating silicon dioxide to silicon. Nat Mater. 2003;2(6):397. Nohira T, Yasuda K, Ito Y. Pinpoint and bulk electrochemical reduction of insulating silicon dioxide to silicon. Nat Mater. 2003;2(6):397.
[60]
go back to reference Dong Y, Slade T, Stolt MJ, Li L, Girard SN, Mai L, Jin S. Low-temperature molten-salt production of silicon nanowires by the electrochemical reduction of CaSiO3. Angew Chem Int Ed. 2017;56(46):14453. Dong Y, Slade T, Stolt MJ, Li L, Girard SN, Mai L, Jin S. Low-temperature molten-salt production of silicon nanowires by the electrochemical reduction of CaSiO3. Angew Chem Int Ed. 2017;56(46):14453.
[61]
go back to reference Weng W, Xiao W. Electrodeposited silicon nanowires from silica dissolved in molten salts as a binder-free anode for lithium-ion batteries. ACS Appl Energy Mater. 2018;2(1):804. Weng W, Xiao W. Electrodeposited silicon nanowires from silica dissolved in molten salts as a binder-free anode for lithium-ion batteries. ACS Appl Energy Mater. 2018;2(1):804.
[62]
go back to reference Yuan YT, Xiao W, Wang ZY, Fray DJ, Jin XB. Efficient nanostructuring of silicon by electrochemical alloying/dealloying in molten salts for improved lithium storage. Angew Chem Int Ed. 2018;57(48):15743. Yuan YT, Xiao W, Wang ZY, Fray DJ, Jin XB. Efficient nanostructuring of silicon by electrochemical alloying/dealloying in molten salts for improved lithium storage. Angew Chem Int Ed. 2018;57(48):15743.
[63]
go back to reference Zhao Z, Xie H, Qu J, Zhao H, Ma Q, Xing P, Song Q, Wang D, Yin H. A natural transporter of silicon and carbon: conversion of rice husks to silicon carbide or carbon-silicon hybrid for lithium-ion battery anodes via a molten salt electrolysis approach. Batter Supercaps. 2019;2(12):1007. Zhao Z, Xie H, Qu J, Zhao H, Ma Q, Xing P, Song Q, Wang D, Yin H. A natural transporter of silicon and carbon: conversion of rice husks to silicon carbide or carbon-silicon hybrid for lithium-ion battery anodes via a molten salt electrolysis approach. Batter Supercaps. 2019;2(12):1007.
[64]
go back to reference Sri Maha Vishnu D, Sure J, Kim HK, Kumar RV, Schwandt C. Solid state electrochemically synthesised β-SiC nanowires as the anode material in lithium ion batteries. Energy Storage Mater. 2020;26:234. Sri Maha Vishnu D, Sure J, Kim HK, Kumar RV, Schwandt C. Solid state electrochemically synthesised β-SiC nanowires as the anode material in lithium ion batteries. Energy Storage Mater. 2020;26:234.
[65]
go back to reference Zhang J, Fang S, Qi XP, Yu ZL, Wu ZH, Yang JY, Lu SG. Preparation of high-purity straight silicon nanowires by molten salt electrolysis. J Energy Chem. 2020;40:171. Zhang J, Fang S, Qi XP, Yu ZL, Wu ZH, Yang JY, Lu SG. Preparation of high-purity straight silicon nanowires by molten salt electrolysis. J Energy Chem. 2020;40:171.
[66]
go back to reference Sultana I, Rahman MM, Chen Y, Glushenkov AM. Potassium-ion battery anode materials operating through the alloying-dealloying reaction mechanism. Adv Funct Mater. 2018;28(5):18. Sultana I, Rahman MM, Chen Y, Glushenkov AM. Potassium-ion battery anode materials operating through the alloying-dealloying reaction mechanism. Adv Funct Mater. 2018;28(5):18.
[67]
go back to reference Songster J, Pelton AD. The Na–Si (sodium–silicon) system. J Phase Equilib. 1992;13(1):67. Songster J, Pelton AD. The Na–Si (sodium–silicon) system. J Phase Equilib. 1992;13(1):67.
[68]
go back to reference Lim CH, Huang TY, Shao PS, Chien JH, Weng YT, Huang HF, Hwang BJ, Wu NL. Experimental study on sodiation of amorphous silicon for use as sodium-ion battery anode. Electrochim Acta. 2016;211:265. Lim CH, Huang TY, Shao PS, Chien JH, Weng YT, Huang HF, Hwang BJ, Wu NL. Experimental study on sodiation of amorphous silicon for use as sodium-ion battery anode. Electrochim Acta. 2016;211:265.
[69]
go back to reference Jangid MK, Lakhnot AS, Vemulapally A, Sonia FJ, Sinha S, Dusane RO, Mukhopadhyay A. Crystalline core/amorphous shell structured silicon nanowires offer size and structure dependent reversible Na-storage. J Mater Chem A. 2018;6(8):3422. Jangid MK, Lakhnot AS, Vemulapally A, Sonia FJ, Sinha S, Dusane RO, Mukhopadhyay A. Crystalline core/amorphous shell structured silicon nanowires offer size and structure dependent reversible Na-storage. J Mater Chem A. 2018;6(8):3422.
[70]
go back to reference Han Y, Lin N, Xu TJ, Li TQ, Tian J, Zhu YC, Qian YT. An amorphous Si material with a sponge-like structure as an anode for Li-ion and Na-ion batteries. Nanoscale. 2018;10(7):3153. Han Y, Lin N, Xu TJ, Li TQ, Tian J, Zhu YC, Qian YT. An amorphous Si material with a sponge-like structure as an anode for Li-ion and Na-ion batteries. Nanoscale. 2018;10(7):3153.
[71]
go back to reference Yasuda K, Nohira T, Ogata YH, Ito Y. Direct electrolytic reduction of solid silicon dioxide in molten LiCl–KCl–CaCl2 at 773 K. J Electrochem Soc. 2005;152(11):D208. Yasuda K, Nohira T, Ogata YH, Ito Y. Direct electrolytic reduction of solid silicon dioxide in molten LiCl–KCl–CaCl2 at 773 K. J Electrochem Soc. 2005;152(11):D208.
[72]
go back to reference Kim MH, Kim YJ, Kim JY, Lee YK, Ascencio JA, Park JW. Electrochemical characteristics of Si/Mo multilayer anode for Li ion batteries. Rev Mex Fis. 2007;53(1):17. Kim MH, Kim YJ, Kim JY, Lee YK, Ascencio JA, Park JW. Electrochemical characteristics of Si/Mo multilayer anode for Li ion batteries. Rev Mex Fis. 2007;53(1):17.
[73]
go back to reference Yoon S, Park CM, Sohn HJ. Electrochemical characterizations of germanium and carbon-coated germanium composite anode for lithium-ion batteries. Electrochem Solid State Lett. 2008;11(4):A42. Yoon S, Park CM, Sohn HJ. Electrochemical characterizations of germanium and carbon-coated germanium composite anode for lithium-ion batteries. Electrochem Solid State Lett. 2008;11(4):A42.
[74]
go back to reference Liu X, Zhao JP, Hao J, Su BL, Li Y. 3D ordered macroporous germanium fabricated by electrodeposition from an ionic liquid and its lithium storage properties. J Mater Chem A. 2013;1(47):150781. Liu X, Zhao JP, Hao J, Su BL, Li Y. 3D ordered macroporous germanium fabricated by electrodeposition from an ionic liquid and its lithium storage properties. J Mater Chem A. 2013;1(47):150781.
[75]
go back to reference Liu XS, Hao J, Liu XX, Chi CX, Li N, Endres F, Zhang Y, Li Y, Zhao JP. Preparation of Ge nanotube arrays from an ionic liquid for lithium ion battery anodes with improved cycling stability. Chem Commun. 2015;51(11):2064. Liu XS, Hao J, Liu XX, Chi CX, Li N, Endres F, Zhang Y, Li Y, Zhao JP. Preparation of Ge nanotube arrays from an ionic liquid for lithium ion battery anodes with improved cycling stability. Chem Commun. 2015;51(11):2064.
[76]
go back to reference Hao J, Li N, Ma XX, Liu XX, Liu XS, Li Y, Xu HB, Zhao JP. Ionic liquid electrodeposition of germanium/carbon nanotube composite anode material for lithium ion batteries. Mater Lett. 2015;144:50. Hao J, Li N, Ma XX, Liu XX, Liu XS, Li Y, Xu HB, Zhao JP. Ionic liquid electrodeposition of germanium/carbon nanotube composite anode material for lithium ion batteries. Mater Lett. 2015;144:50.
[77]
go back to reference Chi C, Hao J, Liu X, Ma X, Yang Y, Liu X, Endres F, Zhao J, Li Y. UV-assisted, template-free electrodeposition of germanium nanowire cluster arrays from an ionic liquid for anodes in lithium-ion batteries. New J Chem. 2017;41(24):15210. Chi C, Hao J, Liu X, Ma X, Yang Y, Liu X, Endres F, Zhao J, Li Y. UV-assisted, template-free electrodeposition of germanium nanowire cluster arrays from an ionic liquid for anodes in lithium-ion batteries. New J Chem. 2017;41(24):15210.
[78]
go back to reference Kim SW, Ngo DT, Heo J, Park CN, Park CJ. Electrodeposited germanium/carbon composite as an anode material for lithium ion batteries. Electrochim Acta. 2017;238:319. Kim SW, Ngo DT, Heo J, Park CN, Park CJ. Electrodeposited germanium/carbon composite as an anode material for lithium ion batteries. Electrochim Acta. 2017;238:319.
[79]
go back to reference Saverina EA, Sivasankaran V, Kapaev RR, Galushko AS, Ananikov VP, Egorov MP, Jouikov VV, Troshin PA, Syroeshkin MA. An environment-friendly approach to produce nanostructured germanium anodes for lithium-ion batteries. Green Chem. 2020;22(2):359. Saverina EA, Sivasankaran V, Kapaev RR, Galushko AS, Ananikov VP, Egorov MP, Jouikov VV, Troshin PA, Syroeshkin MA. An environment-friendly approach to produce nanostructured germanium anodes for lithium-ion batteries. Green Chem. 2020;22(2):359.
[80]
go back to reference Yin HY, Xiao W, Mao XH, Wei WF, Zhu H, Wang DH. Template-free electrosynthesis of crystalline germanium nanowires from solid germanium oxide in molten CaCl2–NaCl. Electrochim Acta. 2013;102:369. Yin HY, Xiao W, Mao XH, Wei WF, Zhu H, Wang DH. Template-free electrosynthesis of crystalline germanium nanowires from solid germanium oxide in molten CaCl2–NaCl. Electrochim Acta. 2013;102:369.
[81]
go back to reference Xiao W, Zhou J, Yu L, Wang DH, Lou XW. Electrolytic formation of crystalline silicon/germanium alloy nanotubes and hollow particles with enhanced lithium-storage properties. Angew Chem Int Ed. 2016;55(26):7427. Xiao W, Zhou J, Yu L, Wang DH, Lou XW. Electrolytic formation of crystalline silicon/germanium alloy nanotubes and hollow particles with enhanced lithium-storage properties. Angew Chem Int Ed. 2016;55(26):7427.
[82]
go back to reference Weng W, Jiang B, Wang Z, Xiao W. In situ electrochemical conversion of CO2 in molten salts to advanced energy materials with reduced carbon emissions. Sci Adv. 2020;6(9):eaay9278. Weng W, Jiang B, Wang Z, Xiao W. In situ electrochemical conversion of CO2 in molten salts to advanced energy materials with reduced carbon emissions. Sci Adv. 2020;6(9):eaay9278.
[83]
go back to reference Chou C-Y, Lee M, Hwang GS. A comparative first-principles study on sodiation of silicon, germanium, and tin for sodium-ion batteries. J Phys Chem C. 2015;119(27):14843. Chou C-Y, Lee M, Hwang GS. A comparative first-principles study on sodiation of silicon, germanium, and tin for sodium-ion batteries. J Phys Chem C. 2015;119(27):14843.
[84]
go back to reference Yang Q, Wang Z, Xi W, He G. Tailoring nanoporous structures of Ge anodes for stable potassium-ion batteries. Electrochem Commun. 2019;101:68. Yang Q, Wang Z, Xi W, He G. Tailoring nanoporous structures of Ge anodes for stable potassium-ion batteries. Electrochem Commun. 2019;101:68.
[85]
go back to reference Legrain F, Malyi OI, Manzhos S. Comparative computational study of the diffusion of Li, Na, and Mg in silicon including the effect of vibrations. Solid State Ion. 2013;253:157. Legrain F, Malyi OI, Manzhos S. Comparative computational study of the diffusion of Li, Na, and Mg in silicon including the effect of vibrations. Solid State Ion. 2013;253:157.
[86]
go back to reference Baggetto L, Keum JK, Browning JF, Veith GM. Germanium as negative electrode material for sodium-ion batteries. Electrochem Commun. 2013;34:41. Baggetto L, Keum JK, Browning JF, Veith GM. Germanium as negative electrode material for sodium-ion batteries. Electrochem Commun. 2013;34:41.
[87]
go back to reference Wu H, Liu WJ, Zheng LH, Zhu DF, Du N, Xiao CM, Su LW, Wang LB. Facile synthesis of amorphous Ge supported by Ni nanopyramid arrays as an anode material for sodium-ion batteries. ChemistryOpen. 2019;8(3):298. Wu H, Liu WJ, Zheng LH, Zhu DF, Du N, Xiao CM, Su LW, Wang LB. Facile synthesis of amorphous Ge supported by Ni nanopyramid arrays as an anode material for sodium-ion batteries. ChemistryOpen. 2019;8(3):298.
[89]
go back to reference Yin H, Wang D. Electrolytic germanium for calcium storage. J Electrochem Soc. 2016;163(13):E351. Yin H, Wang D. Electrolytic germanium for calcium storage. J Electrochem Soc. 2016;163(13):E351.
[90]
go back to reference Darwiche A, Marino C, Sougrati MT, Fraisse B, Stievano L, Monconduit L. Better cycling performances of bulk Sb in Na-ion batteries compared to Li-ion systems: an unexpected electrochemical mechanism. J Am Chem Soc. 2012;134(51):20805. Darwiche A, Marino C, Sougrati MT, Fraisse B, Stievano L, Monconduit L. Better cycling performances of bulk Sb in Na-ion batteries compared to Li-ion systems: an unexpected electrochemical mechanism. J Am Chem Soc. 2012;134(51):20805.
[91]
go back to reference Yang YL, Li D, Zhang JQ, Suo GQ, Yu QY, Feng L, Hou XJ, Ye XH, Zhang L, Wang W. Sn nanoparticles anchored on N doped porous carbon as an anode for potassium ion batteries. Mater Lett. 2019;256:4. Yang YL, Li D, Zhang JQ, Suo GQ, Yu QY, Feng L, Hou XJ, Ye XH, Zhang L, Wang W. Sn nanoparticles anchored on N doped porous carbon as an anode for potassium ion batteries. Mater Lett. 2019;256:4.
[92]
go back to reference Lahiri A, Endres F. Review-electrodeposition of nanostructured materials from aqueous, organic and ionic liquid electrolytes for Li-ion and Na-ion batteries: a comparative review. J Electrochem Soc. 2017;164(9):D597. Lahiri A, Endres F. Review-electrodeposition of nanostructured materials from aqueous, organic and ionic liquid electrolytes for Li-ion and Na-ion batteries: a comparative review. J Electrochem Soc. 2017;164(9):D597.
[93]
go back to reference Lao MM, Zhang Y, Luo WB, Yan QY, Sun WP, Dou SX. Alloy-based anode materials toward advanced sodium-ion batteries. Adv Mater. 2017;29(48):23. Lao MM, Zhang Y, Luo WB, Yan QY, Sun WP, Dou SX. Alloy-based anode materials toward advanced sodium-ion batteries. Adv Mater. 2017;29(48):23.
[94]
go back to reference Bryngelsson H, Eskhult J, Nyholm L, Herranen M, Alm O, Edstrom K. Electrodeposited Sb and Sb/Sb2O3 nanoparticle coatings as anode materials for Li-ion batteries. Chem Mater. 2007;19(5):1170. Bryngelsson H, Eskhult J, Nyholm L, Herranen M, Alm O, Edstrom K. Electrodeposited Sb and Sb/Sb2O3 nanoparticle coatings as anode materials for Li-ion batteries. Chem Mater. 2007;19(5):1170.
[95]
go back to reference Bryngelsson H, Eskhult J, Nyholm L, Edstrom K. Thin films of Cu2Sb and Cu9Sb2 as anode materials in Li-ion batteries. Electrochim Acta. 2008;53(24):7226. Bryngelsson H, Eskhult J, Nyholm L, Edstrom K. Thin films of Cu2Sb and Cu9Sb2 as anode materials in Li-ion batteries. Electrochim Acta. 2008;53(24):7226.
[96]
go back to reference Yang YW, Chen YB, Liu F, Chen XY, Wu YC. Template-based fabrication and electrochemical performance of CoSb nanowire arrays. Electrochim Acta. 2011;56(18):6420. Yang YW, Chen YB, Liu F, Chen XY, Wu YC. Template-based fabrication and electrochemical performance of CoSb nanowire arrays. Electrochim Acta. 2011;56(18):6420.
[97]
go back to reference Yang YW, Li TY, Liu F, Zhu WB, Li XL, Wu YC, Kong MG. Electrodeposition of Ni5Sb2 nanowires array and its application as a high-performance anode material for lithium ion batteries. Microelectron Eng. 2013;104:1. Yang YW, Li TY, Liu F, Zhu WB, Li XL, Wu YC, Kong MG. Electrodeposition of Ni5Sb2 nanowires array and its application as a high-performance anode material for lithium ion batteries. Microelectron Eng. 2013;104:1.
[98]
go back to reference Al-Salman R, Sedlmaier SJ, Sommer H, Brezesinski T, Janek J. Facile synthesis of micrometer-long antimony nanowires by template-free electrodeposition for next generation Li-ion batteries. J Mater Chem A. 2016;4(33):12726. Al-Salman R, Sedlmaier SJ, Sommer H, Brezesinski T, Janek J. Facile synthesis of micrometer-long antimony nanowires by template-free electrodeposition for next generation Li-ion batteries. J Mater Chem A. 2016;4(33):12726.
[99]
go back to reference Zheng XM, Rong WQ, You JH, Tu GP, Zhang PY, Tao S, Wang YX, Huang L, Li JT. An electrodeposition strategy for the controllable and cost-effective fabrication of Sb–Fe–P anodes for Li ion batteries. Electrochim Acta. 2019;309:469. Zheng XM, Rong WQ, You JH, Tu GP, Zhang PY, Tao S, Wang YX, Huang L, Li JT. An electrodeposition strategy for the controllable and cost-effective fabrication of Sb–Fe–P anodes for Li ion batteries. Electrochim Acta. 2019;309:469.
[100]
go back to reference Nam DH, Hong KS, Lim SJ, Kwon HS. Electrochemical synthesis of a three-dimensional porous Sb/Cu2Sb anode for Na-ion batteries. J Power Sour. 2014;247:423. Nam DH, Hong KS, Lim SJ, Kwon HS. Electrochemical synthesis of a three-dimensional porous Sb/Cu2Sb anode for Na-ion batteries. J Power Sour. 2014;247:423.
[101]
go back to reference Nam DH, Hong KS, Lim SJ, Kim MJ, Kwon HS. High-performance Sb/Sb2O3 anode materials using a polypyrrole nanowire network for Na-ion batteries. Small. 2015;11(24):2885. Nam DH, Hong KS, Lim SJ, Kim MJ, Kwon HS. High-performance Sb/Sb2O3 anode materials using a polypyrrole nanowire network for Na-ion batteries. Small. 2015;11(24):2885.
[102]
go back to reference Liang LY, Xu Y, Li YL, Dong HS, Zhou M, Zhao HP, Kaiser U, Lei Y. Facile synthesis of hierarchical fern leaf-like Sb and its application as an additive-free anode for fast reversible Na-ion storage. J Mater Chem A. 2017;5(4):1749. Liang LY, Xu Y, Li YL, Dong HS, Zhou M, Zhao HP, Kaiser U, Lei Y. Facile synthesis of hierarchical fern leaf-like Sb and its application as an additive-free anode for fast reversible Na-ion storage. J Mater Chem A. 2017;5(4):1749.
[103]
go back to reference Li XY, Sun ML, Ni JF, Li L. Template-free construction of self-supported Sb prisms with stable sodium storage. Adv Energy Mater. 2019;9(24):7. Li XY, Sun ML, Ni JF, Li L. Template-free construction of self-supported Sb prisms with stable sodium storage. Adv Energy Mater. 2019;9(24):7.
[104]
go back to reference Schulze MC, Belson RM, Kraynak LA, Prieto AL. Electrodeposition of Sb/CNT composite films as anodes for Li- and Na-ion batteries. Energy Storage Mater. 2020;25:572. Schulze MC, Belson RM, Kraynak LA, Prieto AL. Electrodeposition of Sb/CNT composite films as anodes for Li- and Na-ion batteries. Energy Storage Mater. 2020;25:572.
[105]
go back to reference Tian Y, An YL, Xiong SL, Feng JK, Qian YT. A general method for constructing robust, flexible and freestanding MXene@metal anodes for high-performance potassium-ion batteries. J Mater Chem A. 2019;7(16):9716. Tian Y, An YL, Xiong SL, Feng JK, Qian YT. A general method for constructing robust, flexible and freestanding MXene@metal anodes for high-performance potassium-ion batteries. J Mater Chem A. 2019;7(16):9716.
[106]
go back to reference Jin Y, Liu K, Lang JL, Zhuo D, Huang ZY, Wang CA, Wu H, Cui Y. An intermediate temperature garnet-type solid electrolyte-based molten lithium battery for grid energy storage. Nat Energy. 2018;3(9):732. Jin Y, Liu K, Lang JL, Zhuo D, Huang ZY, Wang CA, Wu H, Cui Y. An intermediate temperature garnet-type solid electrolyte-based molten lithium battery for grid energy storage. Nat Energy. 2018;3(9):732.
[107]
go back to reference Kim H, Boysen DA, Newhouse JM, Spatocco BL, Chung B, Burke PJ, Bradwell DJ, Jiang K, Tomaszowska AA, Wang KL, Wei WF, Ortiz LA, Barriga SA, Poizeau SM, Sadoway DR. Liquid metal batteries: past, present, and future. Chem Rev. 2013;113(3):2075. Kim H, Boysen DA, Newhouse JM, Spatocco BL, Chung B, Burke PJ, Bradwell DJ, Jiang K, Tomaszowska AA, Wang KL, Wei WF, Ortiz LA, Barriga SA, Poizeau SM, Sadoway DR. Liquid metal batteries: past, present, and future. Chem Rev. 2013;113(3):2075.
[108]
go back to reference Yin HY, Chung B, Chen F, Ouchi T, Zhao J, Tanaka N, Sadoway DR. Faradaically selective membrane for liquid metal displacement batteries. Nat Energy. 2018;3(2):127. Yin HY, Chung B, Chen F, Ouchi T, Zhao J, Tanaka N, Sadoway DR. Faradaically selective membrane for liquid metal displacement batteries. Nat Energy. 2018;3(2):127.
[109]
go back to reference Wang KL, Jiang K, Chung B, Ouchi T, Burke PJ, Boysen DA, Bradwell DJ, Kim H, Muecke U, Sadoway DR. Lithium-antimony-lead liquid metal battery for grid-level energy storage. Nature. 2014;514(7522):348. Wang KL, Jiang K, Chung B, Ouchi T, Burke PJ, Boysen DA, Bradwell DJ, Kim H, Muecke U, Sadoway DR. Lithium-antimony-lead liquid metal battery for grid-level energy storage. Nature. 2014;514(7522):348.
[110]
go back to reference Bradwell DJ, Kim H, Sirk AHC, Sadoway DR. Magnesium-antimony liquid metal battery for stationary energy storage. J Am Chem Soc. 2012;134(4):1895. Bradwell DJ, Kim H, Sirk AHC, Sadoway DR. Magnesium-antimony liquid metal battery for stationary energy storage. J Am Chem Soc. 2012;134(4):1895.
[111]
go back to reference Lu XC, Li GS, Kim JY, Mei DH, Lemmon JP, Sprenkle VL, Liu J. Liquid-metal electrode to enable ultra-low temperature sodium-beta alumina batteries for renewable energy storage. Nat Commun. 2014;5:8. Lu XC, Li GS, Kim JY, Mei DH, Lemmon JP, Sprenkle VL, Liu J. Liquid-metal electrode to enable ultra-low temperature sodium-beta alumina batteries for renewable energy storage. Nat Commun. 2014;5:8.
[112]
go back to reference Ouchi T, Kim H, Spatocco BL, Sadoway DR. Calcium-based multi-element chemistry for grid-scale electrochemical energy storage. Nat Commun. 2016;7:5. Ouchi T, Kim H, Spatocco BL, Sadoway DR. Calcium-based multi-element chemistry for grid-scale electrochemical energy storage. Nat Commun. 2016;7:5.
[113]
go back to reference Yin H, Chung B, Sadoway DR. Electrolysis of a molten semiconductor. Nat Commun. 2016;7:12584. Yin H, Chung B, Sadoway DR. Electrolysis of a molten semiconductor. Nat Commun. 2016;7:12584.
[114]
go back to reference Li Z, Ding J, Mitlin D. Tin and tin compounds for sodium ion battery anodes: phase transformations and performance. Acc Chem Res. 2015;48(6):1657. Li Z, Ding J, Mitlin D. Tin and tin compounds for sodium ion battery anodes: phase transformations and performance. Acc Chem Res. 2015;48(6):1657.
[115]
go back to reference Ying HJ, Han WQ. Metallic Sn-based anode materials: application in high-performance lithium-ion and sodium-ion batteries. Adv Sci. 2017;4(11):21. Ying HJ, Han WQ. Metallic Sn-based anode materials: application in high-performance lithium-ion and sodium-ion batteries. Adv Sci. 2017;4(11):21.
[116]
go back to reference Wang BP, Lv R, Lan DS. Preparation and electrochemical properties of Sn/C composites. Rare Met. 2019;38(10):996. Wang BP, Lv R, Lan DS. Preparation and electrochemical properties of Sn/C composites. Rare Met. 2019;38(10):996.
[117]
go back to reference Morimoto H, Tobishima SI, Negishi H. Anode behavior of electroplated rough surface Sn thin films for lithium-ion batteries. J Power Sour. 2005;146(1–2):469. Morimoto H, Tobishima SI, Negishi H. Anode behavior of electroplated rough surface Sn thin films for lithium-ion batteries. J Power Sour. 2005;146(1–2):469.
[118]
go back to reference Lee JH, Kong BS, Yang SB, Jung HT. Fabrication of single-walled carbon nanotube/tin nanoparticle composites by electrochemical reduction combined with vacuum filtration and hybrid co-filtration for high-performance lithium battery electrodes. J Power Sour. 2009;194(1):520. Lee JH, Kong BS, Yang SB, Jung HT. Fabrication of single-walled carbon nanotube/tin nanoparticle composites by electrochemical reduction combined with vacuum filtration and hybrid co-filtration for high-performance lithium battery electrodes. J Power Sour. 2009;194(1):520.
[119]
go back to reference Gu CD, Zhang H, Wang XL, Tu JP. One-pot synthesis of SnO2/reduced graphene oxide nanocomposite in ionic liquid-based solution and its application for lithium ion batteries. Mater Res Bull. 2013;48(10):4112. Gu CD, Zhang H, Wang XL, Tu JP. One-pot synthesis of SnO2/reduced graphene oxide nanocomposite in ionic liquid-based solution and its application for lithium ion batteries. Mater Res Bull. 2013;48(10):4112.
[120]
go back to reference Elbasiony AMR, El Abedin SZ, Endres F. Electrochemical synthesis of freestanding tin nanowires from ionic liquids. J Solid State Electrochem. 2014;18(4):951. Elbasiony AMR, El Abedin SZ, Endres F. Electrochemical synthesis of freestanding tin nanowires from ionic liquids. J Solid State Electrochem. 2014;18(4):951.
[121]
go back to reference Lahiri A, Pulletikurthi G, El Abedin SZ, Endres F. Electrodeposition of Ge, Sn and GexSn1−x from two different room temperature ionic liquids. J Solid State Electrochem. 2015;19(3):7853. Lahiri A, Pulletikurthi G, El Abedin SZ, Endres F. Electrodeposition of Ge, Sn and GexSn1−x from two different room temperature ionic liquids. J Solid State Electrochem. 2015;19(3):7853.
[122]
go back to reference Kim M, Choi I, Kim JJ. Facile electrochemical synthesis of heterostructured amorphous-Sn@CuxO nanowire anode for Li-ion batteries with high stability and rate-performance. Appl Surf Sci. 2019;479:2253. Kim M, Choi I, Kim JJ. Facile electrochemical synthesis of heterostructured amorphous-Sn@CuxO nanowire anode for Li-ion batteries with high stability and rate-performance. Appl Surf Sci. 2019;479:2253.
[123]
go back to reference Gupta RD, Schwandt C, Fray DJ. Molten salt electrolytically produced carbon/tin nanomaterial as the anode in a lithium ion battery. Metall Mater Trans E Mater Energy Syst. 2017;4(1):22. Gupta RD, Schwandt C, Fray DJ. Molten salt electrolytically produced carbon/tin nanomaterial as the anode in a lithium ion battery. Metall Mater Trans E Mater Energy Syst. 2017;4(1):22.
[124]
go back to reference Nam DH, Hong KS, Lim SJ, Kim TH, Kwon HS. Electrochemical properties of electrodeposited Sn anodes for Na-ion batteries. J Phys Chem C. 2014;118(35):20086. Nam DH, Hong KS, Lim SJ, Kim TH, Kwon HS. Electrochemical properties of electrodeposited Sn anodes for Na-ion batteries. J Phys Chem C. 2014;118(35):20086.
[125]
go back to reference Ma J, Prieto AL. Electrodeposition of pure phase SnSb exhibiting high stability as a sodium-ion battery anode. Chem Commun. 2019;55(48):6938. Ma J, Prieto AL. Electrodeposition of pure phase SnSb exhibiting high stability as a sodium-ion battery anode. Chem Commun. 2019;55(48):6938.
[126]
go back to reference DiLeo RA, Zhang Q, Marschilok AC, Takeuchi KJ, Takeuchi ES. Composite anodes for secondary magnesium ion batteries prepared via electrodeposition of nanostructured bismuth on carbon nanotube substrates. ECS Electrochem Lett. 2014;4(1):A10. DiLeo RA, Zhang Q, Marschilok AC, Takeuchi KJ, Takeuchi ES. Composite anodes for secondary magnesium ion batteries prepared via electrodeposition of nanostructured bismuth on carbon nanotube substrates. ECS Electrochem Lett. 2014;4(1):A10.
[127]
go back to reference Shao YY, Gu M, Li XL, Nie ZM, Zuo PJ, Li GS, Liu TB, Xiao J, Cheng YW, Wang CM, Zhang JG, Liu J. Highly reversible Mg insertion in nanostructured Bi for Mg ion batteries. Nano Lett. 2014;14(1):255. Shao YY, Gu M, Li XL, Nie ZM, Zuo PJ, Li GS, Liu TB, Xiao J, Cheng YW, Wang CM, Zhang JG, Liu J. Highly reversible Mg insertion in nanostructured Bi for Mg ion batteries. Nano Lett. 2014;14(1):255.
[128]
go back to reference Finke A, Poizot P, Guery C, Dupont L, Taberna PL, Simon P, Tarascon JM. Electrochemical method for direct deposition of nanometric bismuth and its electrochemical properties vs Li. Electrochem Solid State Lett. 2008;11(3):E5. Finke A, Poizot P, Guery C, Dupont L, Taberna PL, Simon P, Tarascon JM. Electrochemical method for direct deposition of nanometric bismuth and its electrochemical properties vs Li. Electrochem Solid State Lett. 2008;11(3):E5.
Metadata
Title
Electrolytic alloy-type anodes for metal-ion batteries
Authors
Xian-Yang Li
Jia-Kang Qu
Hua-Yi Yin
Publication date
24-08-2020
Publisher
Nonferrous Metals Society of China
Published in
Rare Metals / Issue 2/2021
Print ISSN: 1001-0521
Electronic ISSN: 1867-7185
DOI
https://doi.org/10.1007/s12598-020-01537-8

Other articles of this Issue 2/2021

Rare Metals 2/2021 Go to the issue

Premium Partners