Skip to main content
Erschienen in: Rare Metals 9/2020

19.06.2020

Recent progress in plant-derived hard carbon anode materials for sodium-ion batteries: a review

verfasst von: Peng Yu, Wei Tang, Fang-Fang Wu, Chun Zhang, Hua-Yun Luo, Hui Liu, Zhi-Guo Wang

Erschienen in: Rare Metals | Ausgabe 9/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Sodium-ion batteries (SIBs) have been considered as a promising alternative to the commercialized lithium ion batteries (LIBs) in large-scale energy storage field for its rich reserve in the earth. Hard carbon has been expected to the first commercial anode material for SIBs. Among various of hard carbon materials, plant-derived carbon is prominent because of abundant source, low cost and excellent electrochemical performance. This review focuses on the recent progress in the development of plant-derived hard carbon anodes for SIBs. We summarized the microstructure and electrochemical performance of hard carbon materials pyrolyzed from different parts of plants at different temperatures. It aims to present a full scope of plant-derived hard carbon anode materials and provide in-depth understanding and guideline for the design of high-performance hard carbon for sodium ion anodes.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
[1]
Zurück zum Zitat Abbasi T, Abbasi SA. Biomass energy and the environmental impacts associated with its production and utilization. Renew Sustain Energy Rev. 2010;14(3):919. Abbasi T, Abbasi SA. Biomass energy and the environmental impacts associated with its production and utilization. Renew Sustain Energy Rev. 2010;14(3):919.
[2]
Zurück zum Zitat Zhang LL, Zhao XS. Carbon-based materials as supercapacitor electrodes. Chem Soc Rev. 2009;38(9):2520. Zhang LL, Zhao XS. Carbon-based materials as supercapacitor electrodes. Chem Soc Rev. 2009;38(9):2520.
[3]
Zurück zum Zitat Zhang Y, Liu X, Wang S, Li L, Dou S. Bio-nanotechnology in high-performance supercapacitors. Adv Energy Mater. 2017;7(21):1700592. Zhang Y, Liu X, Wang S, Li L, Dou S. Bio-nanotechnology in high-performance supercapacitors. Adv Energy Mater. 2017;7(21):1700592.
[4]
Zurück zum Zitat Jiao C, Zhao C, Zhang L, Sun H, Lu S. High loading sulfur electrode modified by porous carbon layer. Chin J Rare Met. 2019;43(4):390. Jiao C, Zhao C, Zhang L, Sun H, Lu S. High loading sulfur electrode modified by porous carbon layer. Chin J Rare Met. 2019;43(4):390.
[5]
Zurück zum Zitat Delmas C. Sodium and sodium-ion batteries: 50 years of research. Adv Energy Mater. 2018;8(17):1703137. Delmas C. Sodium and sodium-ion batteries: 50 years of research. Adv Energy Mater. 2018;8(17):1703137.
[6]
Zurück zum Zitat Hwang JY, Myung ST, Sun YK. Recent progress in rechargeable potassium batteries. Adv Funct Mater. 2018;28(43):1802938. Hwang JY, Myung ST, Sun YK. Recent progress in rechargeable potassium batteries. Adv Funct Mater. 2018;28(43):1802938.
[7]
Zurück zum Zitat Xie X, Qi S, Wu D, Wang H, Li F, Peng X, Cai J, Liang J, Ma J. Porous surfur-doped hard carbon for excellent potassium storage. Chin Chem Lett. 2020;31(1):223. Xie X, Qi S, Wu D, Wang H, Li F, Peng X, Cai J, Liang J, Ma J. Porous surfur-doped hard carbon for excellent potassium storage. Chin Chem Lett. 2020;31(1):223.
[8]
Zurück zum Zitat Xu B, Qi S, Li F, Peng X, Cai J, Liang J, Ma J. Cotton-derived oxygen/sulfur co-doped hard carbon as advanced anode material for potassium-ion batteries. Chin Chem Lett. 2020;31(1):217. Xu B, Qi S, Li F, Peng X, Cai J, Liang J, Ma J. Cotton-derived oxygen/sulfur co-doped hard carbon as advanced anode material for potassium-ion batteries. Chin Chem Lett. 2020;31(1):217.
[9]
Zurück zum Zitat Hong W, Zhang Y, Yang L, Tian Y, Ge P, Hu J, Wei W, Zou G, Hou H, Ji X. Carbon quantum dot micelles tailored hollow carbon anode for fast potassium and sodium storage. Nano Energy. 2019;65:104038. Hong W, Zhang Y, Yang L, Tian Y, Ge P, Hu J, Wei W, Zou G, Hou H, Ji X. Carbon quantum dot micelles tailored hollow carbon anode for fast potassium and sodium storage. Nano Energy. 2019;65:104038.
[10]
Zurück zum Zitat Vaalma C, Buchholz D, Weil M, Passerini S. A cost and resource analysis of sodium-ion batteries. Nat Rev Mater. 2018;3:18013. Vaalma C, Buchholz D, Weil M, Passerini S. A cost and resource analysis of sodium-ion batteries. Nat Rev Mater. 2018;3:18013.
[11]
Zurück zum Zitat Cheng DL, Yang LC, Zhu M. High-performance anode materials for Na-ion batteries. Rare Met. 2018;37(3):167. Cheng DL, Yang LC, Zhu M. High-performance anode materials for Na-ion batteries. Rare Met. 2018;37(3):167.
[12]
Zurück zum Zitat Qiu S, Xiao L, Ai X, Yang H, Cao Y. Yolk–shell TiO2@C nanocomposite as high-performance anode material for sodium-ion batteries. ACS Appl Mater Interfaces. 2017;9(1):345. Qiu S, Xiao L, Ai X, Yang H, Cao Y. Yolk–shell TiO2@C nanocomposite as high-performance anode material for sodium-ion batteries. ACS Appl Mater Interfaces. 2017;9(1):345.
[13]
Zurück zum Zitat Xu Y, Memarzadeh Lotfabad E, Wang H, Farbod B, Xu Z, Kohandehghan A, Mitlin D. Nanocrystalline anatase TiO2: a new anode material for rechargeable sodium ion batteries. Chem Commun. 2013;49(79):8973. Xu Y, Memarzadeh Lotfabad E, Wang H, Farbod B, Xu Z, Kohandehghan A, Mitlin D. Nanocrystalline anatase TiO2: a new anode material for rechargeable sodium ion batteries. Chem Commun. 2013;49(79):8973.
[14]
Zurück zum Zitat Naeyaert PJP, Avdeev M, Sharma N, Yahia HB, Ling CD. Synthetic, structural, and electrochemical study of monoclinic Na4Ti5O12 as a sodium-ion battery anode material. Chem Mater. 2014;26(24):7267. Naeyaert PJP, Avdeev M, Sharma N, Yahia HB, Ling CD. Synthetic, structural, and electrochemical study of monoclinic Na4Ti5O12 as a sodium-ion battery anode material. Chem Mater. 2014;26(24):7267.
[15]
Zurück zum Zitat Wu D, Li X, Xu B, Twu N, Liu L, Ceder G. NaTiO2: a layered anode material for sodium-ion batteries. Adv Funct Mater. 2015;8(1):195. Wu D, Li X, Xu B, Twu N, Liu L, Ceder G. NaTiO2: a layered anode material for sodium-ion batteries. Adv Funct Mater. 2015;8(1):195.
[16]
Zurück zum Zitat Ni D, Sun W, Wang Z, Bai Y, Lei H, Lai X, Sun K. Heteroatom-doped mesoporous hollow carbon spheres for fast sodium storage with an ultralong cycle life. Adv Energy Mater. 2019;9(19):1900036. Ni D, Sun W, Wang Z, Bai Y, Lei H, Lai X, Sun K. Heteroatom-doped mesoporous hollow carbon spheres for fast sodium storage with an ultralong cycle life. Adv Energy Mater. 2019;9(19):1900036.
[17]
Zurück zum Zitat Tang K, Fu L, White RJ, Yu L, Titirici MM, Antonietti M, Maier J. Hollow carbon nanospheres with superior rate capability for sodium-based batteries. Adv Energy Mater. 2012;2(7):873. Tang K, Fu L, White RJ, Yu L, Titirici MM, Antonietti M, Maier J. Hollow carbon nanospheres with superior rate capability for sodium-based batteries. Adv Energy Mater. 2012;2(7):873.
[18]
Zurück zum Zitat Gaddam RR, Yang D, Narayan R, Raju K, Kumar NA, Zhao XS. Biomass derived carbon nanoparticle as anodes for high performance sodium and lithium ion batteries. Nano Energy. 2016;26:346. Gaddam RR, Yang D, Narayan R, Raju K, Kumar NA, Zhao XS. Biomass derived carbon nanoparticle as anodes for high performance sodium and lithium ion batteries. Nano Energy. 2016;26:346.
[19]
Zurück zum Zitat Liu M, Zhang P, Qu Z, Yan Y, Lai C, Liu T, Zhang S. Conductive carbon nanofiber interpenetrated graphene architecture for ultra-stable sodium ion battery. Nat Commun. 2019;10(1):1. Liu M, Zhang P, Qu Z, Yan Y, Lai C, Liu T, Zhang S. Conductive carbon nanofiber interpenetrated graphene architecture for ultra-stable sodium ion battery. Nat Commun. 2019;10(1):1.
[20]
Zurück zum Zitat Chen W, Zhang X, Mi L, Liu C, Zhang J, Cui S, Feng X, Cao Y, Shen C. High-performance flexible freestanding anode with hierarchical 3D carbon-networks/Fe7S8/graphene for applicable sodium-ion batteries. Adv Mater. 2019;31(8):1806664. Chen W, Zhang X, Mi L, Liu C, Zhang J, Cui S, Feng X, Cao Y, Shen C. High-performance flexible freestanding anode with hierarchical 3D carbon-networks/Fe7S8/graphene for applicable sodium-ion batteries. Adv Mater. 2019;31(8):1806664.
[21]
Zurück zum Zitat Hou H, Banks CE, Jing M, Zhang Y, Ji X. Carbon quantum dots and their derivative 3D porous carbon frameworks for sodium-ion batteries with ultralong cycle life. Adv Mater. 2015;27(47):7861. Hou H, Banks CE, Jing M, Zhang Y, Ji X. Carbon quantum dots and their derivative 3D porous carbon frameworks for sodium-ion batteries with ultralong cycle life. Adv Mater. 2015;27(47):7861.
[22]
Zurück zum Zitat Pham XM, Ngo DT, Le HTT, Didwal PN, Verma R, Min CW, Park CN, Park CJ. A self-encapsulated porous Sb–C nanocomposite anode with excellent Na-ion storage performance. Nanoscale. 2018;10(41):19399. Pham XM, Ngo DT, Le HTT, Didwal PN, Verma R, Min CW, Park CN, Park CJ. A self-encapsulated porous Sb–C nanocomposite anode with excellent Na-ion storage performance. Nanoscale. 2018;10(41):19399.
[23]
Zurück zum Zitat Wu L, Hu X, Qian J, Pei F, Wu F, Mao R, Ai X, Yang H, Cao Y. Sb–C nanofibers with long cycle life as an anode material for high-performance sodium-ion batteries. Energy Environ Sci. 2014;7(1):323. Wu L, Hu X, Qian J, Pei F, Wu F, Mao R, Ai X, Yang H, Cao Y. Sb–C nanofibers with long cycle life as an anode material for high-performance sodium-ion batteries. Energy Environ Sci. 2014;7(1):323.
[24]
Zurück zum Zitat Liu Y, Zhang N, Jiao L, Tao Z, Chen J. Ultrasmall Sn nanoparticles embedded in carbon as high-performance anode for sodium-ion batteries. Adv Funct Mater. 2015;25(2):214. Liu Y, Zhang N, Jiao L, Tao Z, Chen J. Ultrasmall Sn nanoparticles embedded in carbon as high-performance anode for sodium-ion batteries. Adv Funct Mater. 2015;25(2):214.
[25]
Zurück zum Zitat Xiao L, Cao Y, Xiao J, Wang W, Kovarik L, Nie Z, Liu J. High capacity, reversible alloying reactions in SnSb/C nanocomposites for Na-ion battery applications. Chem Commun. 2012;48(27):3321. Xiao L, Cao Y, Xiao J, Wang W, Kovarik L, Nie Z, Liu J. High capacity, reversible alloying reactions in SnSb/C nanocomposites for Na-ion battery applications. Chem Commun. 2012;48(27):3321.
[26]
Zurück zum Zitat Balogun MS, Luo Y, Qiu W, Liu P, Tong Y. A review of carbon materials and their composites with alloy metals for sodium ion battery anodes. Carbon. 2016;98:162. Balogun MS, Luo Y, Qiu W, Liu P, Tong Y. A review of carbon materials and their composites with alloy metals for sodium ion battery anodes. Carbon. 2016;98:162.
[27]
Zurück zum Zitat Xu B, Qi S, He P, Ma J. Antimony- and bismuth-based chalcogenides for sodium-ion batteries. Chem Asian J. 2019;14(17):2925. Xu B, Qi S, He P, Ma J. Antimony- and bismuth-based chalcogenides for sodium-ion batteries. Chem Asian J. 2019;14(17):2925.
[28]
Zurück zum Zitat Wu M, Liao J, Yu L, Lv R, Li P, Sun W, Tan R, Duan X, Zhang L, Li F. 2020 Roadmap on carbon materials in energy storage and conversion. Chem Asian J. 2020;15(7):995. Wu M, Liao J, Yu L, Lv R, Li P, Sun W, Tan R, Duan X, Zhang L, Li F. 2020 Roadmap on carbon materials in energy storage and conversion. Chem Asian J. 2020;15(7):995.
[29]
Zurück zum Zitat Doeff MM, Ma Y, Visco SJ, De Jonghe LC. Electrochemical insertion of sodium into carbon. J Electrochem Soc. 1993;140(12):L169. Doeff MM, Ma Y, Visco SJ, De Jonghe LC. Electrochemical insertion of sodium into carbon. J Electrochem Soc. 1993;140(12):L169.
[30]
Zurück zum Zitat Xiao B, Rojo T, Li X. Hard carbon as sodium-ion battery anodes: progress and challenges. ChemSusChem. 2018;12(1):133. Xiao B, Rojo T, Li X. Hard carbon as sodium-ion battery anodes: progress and challenges. ChemSusChem. 2018;12(1):133.
[31]
Zurück zum Zitat Xu D, Chen C, Xie J, Zhang B, Miao L, Cai J, Huang Y, Zhang L. A hierarchical N/S-codoped carbon anode fabricated facilely from cellulose/polyaniline microspheres for high-performance sodium-ion batteries. Adv Energy Mater. 2016;6(6):1501929. Xu D, Chen C, Xie J, Zhang B, Miao L, Cai J, Huang Y, Zhang L. A hierarchical N/S-codoped carbon anode fabricated facilely from cellulose/polyaniline microspheres for high-performance sodium-ion batteries. Adv Energy Mater. 2016;6(6):1501929.
[32]
Zurück zum Zitat Zhang Q, Fu L, Luan J, Huang X, Tang Y, Xie H, Wang H. Surface engineering induced core–shell Prussian blue@polyaniline nanocubes as a high-rate and long-life sodium-ion battery cathode. J Power Sources. 2018;395(15):305. Zhang Q, Fu L, Luan J, Huang X, Tang Y, Xie H, Wang H. Surface engineering induced core–shell Prussian blue@polyaniline nanocubes as a high-rate and long-life sodium-ion battery cathode. J Power Sources. 2018;395(15):305.
[33]
Zurück zum Zitat Beda A, Taberna PL, Simon P, Ghimbeu CM. Hard carbons derived from green phenolic resins for Na-ion batteries. Carbon. 2018;139:248. Beda A, Taberna PL, Simon P, Ghimbeu CM. Hard carbons derived from green phenolic resins for Na-ion batteries. Carbon. 2018;139:248.
[34]
Zurück zum Zitat Wang Y, Li Y, Mao SS, Ye D, Liu W, Guo R, Feng Z, Kong J, Xie J. N-doped porous hard-carbon derived from recycled separators for efficient lithium-ion and sodium-ion batteries. Sustain Energy Fuels. 2019;3(3):717. Wang Y, Li Y, Mao SS, Ye D, Liu W, Guo R, Feng Z, Kong J, Xie J. N-doped porous hard-carbon derived from recycled separators for efficient lithium-ion and sodium-ion batteries. Sustain Energy Fuels. 2019;3(3):717.
[35]
Zurück zum Zitat Jiang L, Sheng L, Fan Z. Biomass-derived carbon materials with structural diversities and their applications in energy storage. Sci China Mater. 2017;61(2):133. Jiang L, Sheng L, Fan Z. Biomass-derived carbon materials with structural diversities and their applications in energy storage. Sci China Mater. 2017;61(2):133.
[36]
Zurück zum Zitat Ou J, Yang L, Zhang Z. Chrysanthemum derived hierarchically porous nitrogen-doped carbon as high performance anode material for lithium/sodium ion batteries. Powder Technol. 2019;344:89. Ou J, Yang L, Zhang Z. Chrysanthemum derived hierarchically porous nitrogen-doped carbon as high performance anode material for lithium/sodium ion batteries. Powder Technol. 2019;344:89.
[37]
Zurück zum Zitat Yang T, Qian T, Wang M, Shen X, Xu N, Sun Z, Yan C. A sustainable route from biomass byproduct okara to high content nitrogen-doped carbon sheets for efficient sodium ion batteries. Adv Mater. 2016;28(3):539. Yang T, Qian T, Wang M, Shen X, Xu N, Sun Z, Yan C. A sustainable route from biomass byproduct okara to high content nitrogen-doped carbon sheets for efficient sodium ion batteries. Adv Mater. 2016;28(3):539.
[38]
Zurück zum Zitat Yan Z, Yang QW, Wang Q, Ma J. Nitrogen doped porous carbon as excellent dual anodes for Li-and Na-ion batteries. Chin Chem Lett. 2020;31(2):583. Yan Z, Yang QW, Wang Q, Ma J. Nitrogen doped porous carbon as excellent dual anodes for Li-and Na-ion batteries. Chin Chem Lett. 2020;31(2):583.
[39]
Zurück zum Zitat Wang P, Qiao B, Du Y, Li Y, Zhou X, Dai Z, Bao J. Fluorine-doped carbon particles derived from lotus petioles as high-performance anode materials for sodium-ion batteries. J Phys Chem C. 2015;119(37):21336. Wang P, Qiao B, Du Y, Li Y, Zhou X, Dai Z, Bao J. Fluorine-doped carbon particles derived from lotus petioles as high-performance anode materials for sodium-ion batteries. J Phys Chem C. 2015;119(37):21336.
[40]
Zurück zum Zitat Lu M, Yu W, Shi J, Liu W, Chen S, Wang X, Wang H. Self-doped carbon architectures with heteroatoms containing nitrogen, oxygen and sulfur as high-performance anodes for lithium- and sodium-ion batteries. Electrochim Acta. 2017;251:396. Lu M, Yu W, Shi J, Liu W, Chen S, Wang X, Wang H. Self-doped carbon architectures with heteroatoms containing nitrogen, oxygen and sulfur as high-performance anodes for lithium- and sodium-ion batteries. Electrochim Acta. 2017;251:396.
[41]
Zurück zum Zitat Wu T, Zhang C, Zou G, Hu J, Zhu L, Cao X, Hou H, Ji X. The bond evolution mechanism of covalent sulfurized carbon during electrochemical sodium storage process. Sci China Mater. 2019;62(8):1127. Wu T, Zhang C, Zou G, Hu J, Zhu L, Cao X, Hou H, Ji X. The bond evolution mechanism of covalent sulfurized carbon during electrochemical sodium storage process. Sci China Mater. 2019;62(8):1127.
[42]
Zurück zum Zitat Lu P-R, Xia J-L, Dong X-L. Rapid sodium-ion storage in hard carbon anode material derived from Ganoderma lucidum residue with inherent open channels. ACS Sustain Chem Eng. 2019;7(17):14841. Lu P-R, Xia J-L, Dong X-L. Rapid sodium-ion storage in hard carbon anode material derived from Ganoderma lucidum residue with inherent open channels. ACS Sustain Chem Eng. 2019;7(17):14841.
[43]
Zurück zum Zitat Wu F, Liu L, Yuan Y, Li Y, Bai Y, Li T, Lu J, Wu C. Expanding interlayer spacing of hard carbon by natural K+ doping to boost Na-ion storage. ACS Appl Mater Interfaces. 2018;10(32):27030. Wu F, Liu L, Yuan Y, Li Y, Bai Y, Li T, Lu J, Wu C. Expanding interlayer spacing of hard carbon by natural K+ doping to boost Na-ion storage. ACS Appl Mater Interfaces. 2018;10(32):27030.
[44]
Zurück zum Zitat Huang S, Li Z, Wang B, Zhang J, Peng Z, Qi R, Wang J, Zhao Y. N-doping and defective nanographitic domain coupled hard carbon nanoshells for high performance lithium/sodium storage. Adv Funct Mater. 2018;28(10):1706294. Huang S, Li Z, Wang B, Zhang J, Peng Z, Qi R, Wang J, Zhao Y. N-doping and defective nanographitic domain coupled hard carbon nanoshells for high performance lithium/sodium storage. Adv Funct Mater. 2018;28(10):1706294.
[45]
Zurück zum Zitat Hou H, Yu C, Liu X, Yao Y, Dai Z, Li D. The effect of carbonization temperature of waste cigarette butts on Na-storage capacity of N-doped hard carbon anode. Chem Pap. 2019;73(5):1237. Hou H, Yu C, Liu X, Yao Y, Dai Z, Li D. The effect of carbonization temperature of waste cigarette butts on Na-storage capacity of N-doped hard carbon anode. Chem Pap. 2019;73(5):1237.
[46]
Zurück zum Zitat Zhang T, Chen J, Yang B, Li H, Lei S, Ding X. Enhanced capacities of carbon nanosheets derived from functionalized bacterial cellulose as anodes for sodium ion batteries. RSC Adv. 2017;7(79):50336. Zhang T, Chen J, Yang B, Li H, Lei S, Ding X. Enhanced capacities of carbon nanosheets derived from functionalized bacterial cellulose as anodes for sodium ion batteries. RSC Adv. 2017;7(79):50336.
[47]
Zurück zum Zitat Liu H, Jia M, Yue S, Cao B, Zhu Q, Sun N, Xu B. Creative utilization of natural nanocomposites: nitrogen-rich mesoporous carbon for a high-performance sodium ion battery. J Mater Chem A. 2017;5(20):9572. Liu H, Jia M, Yue S, Cao B, Zhu Q, Sun N, Xu B. Creative utilization of natural nanocomposites: nitrogen-rich mesoporous carbon for a high-performance sodium ion battery. J Mater Chem A. 2017;5(20):9572.
[48]
Zurück zum Zitat Guo Y, Liu W, Wu R, Sun L, Zhang Y, Cui Y, Liu S, Wang H, Shan B. Marine biomass-derived porous carbon sheets with tunable N-doping content for superior sodium ion storage. ACS Appl Mater Interfaces. 2018;10(44):38376. Guo Y, Liu W, Wu R, Sun L, Zhang Y, Cui Y, Liu S, Wang H, Shan B. Marine biomass-derived porous carbon sheets with tunable N-doping content for superior sodium ion storage. ACS Appl Mater Interfaces. 2018;10(44):38376.
[49]
Zurück zum Zitat Jiang Q, Zhang ZH, Yin SY, Guo ZP, Wang SQ, Feng CQ. Biomass carbon micro/nano-structures derived from ramie fibers and corncobs as anode materials for lithium-ion and sodium-ion batteries. Appl Surf Sci. 2016;379:73. Jiang Q, Zhang ZH, Yin SY, Guo ZP, Wang SQ, Feng CQ. Biomass carbon micro/nano-structures derived from ramie fibers and corncobs as anode materials for lithium-ion and sodium-ion batteries. Appl Surf Sci. 2016;379:73.
[50]
Zurück zum Zitat Zhang F, Yao Y, Wan J, Henderson D, Zhang X, Hu L. High temperature carbonized grass as a high performance sodium ion battery anode. ACS Appl Mater Interfaces. 2017;9(1):391. Zhang F, Yao Y, Wan J, Henderson D, Zhang X, Hu L. High temperature carbonized grass as a high performance sodium ion battery anode. ACS Appl Mater Interfaces. 2017;9(1):391.
[51]
Zurück zum Zitat Dou X, Hasa I, Hekmatfar M, Diemant T, Behm RJ, Buchholz D, Passerini S. Pectin, hemicellulose, or lignin? Impact of the biowaste source on the performance of hard carbons for sodium-ion batteries. ChemSusChem. 2017;10(12):2668. Dou X, Hasa I, Hekmatfar M, Diemant T, Behm RJ, Buchholz D, Passerini S. Pectin, hemicellulose, or lignin? Impact of the biowaste source on the performance of hard carbons for sodium-ion batteries. ChemSusChem. 2017;10(12):2668.
[52]
Zurück zum Zitat Liu P, Li YM, Hu YS, Li H, Chen LQ, Huang XJ. A waste biomass derived hard carbon as a high-performance anode material for sodium-ion batteries. J Mater Chem A. 2016;4(34):13046. Liu P, Li YM, Hu YS, Li H, Chen LQ, Huang XJ. A waste biomass derived hard carbon as a high-performance anode material for sodium-ion batteries. J Mater Chem A. 2016;4(34):13046.
[53]
Zurück zum Zitat Rybarczyk MK, Li Y, Qiao M, Hu YS, Titirici MM, Lieder M. Hard carbon derived from rice husk as low cost negative electrodes in Na-ion batteries. J Energy Chem. 2019;29:17. Rybarczyk MK, Li Y, Qiao M, Hu YS, Titirici MM, Lieder M. Hard carbon derived from rice husk as low cost negative electrodes in Na-ion batteries. J Energy Chem. 2019;29:17.
[54]
Zurück zum Zitat Yu C, Hou H, Liu X, Yao Y, Liao Q, Dai Z, Li D. Old-loofah-derived hard carbon for long cyclicity anode in sodium ion battery. Int J Hydrog Energy. 2018;43(6):3253. Yu C, Hou H, Liu X, Yao Y, Liao Q, Dai Z, Li D. Old-loofah-derived hard carbon for long cyclicity anode in sodium ion battery. Int J Hydrog Energy. 2018;43(6):3253.
[55]
Zurück zum Zitat Wang PZ, Zhu XS, Wang QQ, Xu X, Zhou XS, Bao JC. Kelp-derived hard carbons as advanced anode materials for sodium-ion batteries. J Mater Chem A. 2017;5(12):5761. Wang PZ, Zhu XS, Wang QQ, Xu X, Zhou XS, Bao JC. Kelp-derived hard carbons as advanced anode materials for sodium-ion batteries. J Mater Chem A. 2017;5(12):5761.
[56]
Zurück zum Zitat Wang QQ, Zhu XS, Liu YH, Fang YY, Zhou XS, Bao JC. Rice husk-derived hard carbons as high-performance anode materials for sodium-ion batteries. Carbon. 2018;127:658. Wang QQ, Zhu XS, Liu YH, Fang YY, Zhou XS, Bao JC. Rice husk-derived hard carbons as high-performance anode materials for sodium-ion batteries. Carbon. 2018;127:658.
[57]
Zurück zum Zitat Wang P, Fan L, Yan L, Shi Z. Low-cost water caltrop shell-derived hard carbons with high initial coulombic efficiency for sodium-ion battery anodes. J Alloys Compd. 2019;775:1028. Wang P, Fan L, Yan L, Shi Z. Low-cost water caltrop shell-derived hard carbons with high initial coulombic efficiency for sodium-ion battery anodes. J Alloys Compd. 2019;775:1028.
[58]
Zurück zum Zitat Zhu YY, Chen MM, Li Q, Yuan C, Wang CY. A porous biomass-derived anode for high-performance sodium-ion batteries. Carbon. 2018;129:695. Zhu YY, Chen MM, Li Q, Yuan C, Wang CY. A porous biomass-derived anode for high-performance sodium-ion batteries. Carbon. 2018;129:695.
[59]
Zurück zum Zitat Li R, Huang J, Li W, Li J, Cao L, Xu Z, He Y, Yu A, Lu G. Controlling carbon-oxygen double bond and pseudographic structure in shaddock peel derived hard carbon for enhanced sodium storage properties. Electrochim Acta. 2019;313:109. Li R, Huang J, Li W, Li J, Cao L, Xu Z, He Y, Yu A, Lu G. Controlling carbon-oxygen double bond and pseudographic structure in shaddock peel derived hard carbon for enhanced sodium storage properties. Electrochim Acta. 2019;313:109.
[60]
Zurück zum Zitat Lotfabad EM, Ding J, Cui K, Kohandehghan A, Kalisvaart WP, Hazelton M, Mitlin D. High-density sodium and lithium ion battery anodes from banana peels. ACS Nano. 2014;8(7):7115. Lotfabad EM, Ding J, Cui K, Kohandehghan A, Kalisvaart WP, Hazelton M, Mitlin D. High-density sodium and lithium ion battery anodes from banana peels. ACS Nano. 2014;8(7):7115.
[61]
Zurück zum Zitat Sun N, Liu H, Xu B. Facile synthesis of high performance hard carbon anode materials for sodium ion batteries. J Mater Chem A. 2015;3(41):20560. Sun N, Liu H, Xu B. Facile synthesis of high performance hard carbon anode materials for sodium ion batteries. J Mater Chem A. 2015;3(41):20560.
[62]
Zurück zum Zitat Li H, Shen F, Luo W, Dai J, Han X, Chen Y, Yao Y, Zhu H, Fu K, Hitz E, Hu L. Carbonized-leaf membrane with anisotropic surfaces for sodium-ion battery. ACS Appl Mater Interfaces. 2016;8(3):2204. Li H, Shen F, Luo W, Dai J, Han X, Chen Y, Yao Y, Zhu H, Fu K, Hitz E, Hu L. Carbonized-leaf membrane with anisotropic surfaces for sodium-ion battery. ACS Appl Mater Interfaces. 2016;8(3):2204.
[63]
Zurück zum Zitat Shen F, Luo W, Dai J, Yao Y, Zhu M, Hitz E, Tang Y, Chen Y, Sprenkle VL, Li X, Hu L. Ultra-thick, low-tortuosity, and mesoporous wood carbon anode for high-performance sodium-ion batteries. Adv Energy Mater. 2016;6(14):1600377. Shen F, Luo W, Dai J, Yao Y, Zhu M, Hitz E, Tang Y, Chen Y, Sprenkle VL, Li X, Hu L. Ultra-thick, low-tortuosity, and mesoporous wood carbon anode for high-performance sodium-ion batteries. Adv Energy Mater. 2016;6(14):1600377.
[64]
Zurück zum Zitat Li Y, Hu YS, Titirici MM, Chen L, Huang X. Hard carbon microtubes made from renewable cotton as high-performance anode material for sodium-ion batteries. Adv Energy Mater. 2016;6(18):1600659. Li Y, Hu YS, Titirici MM, Chen L, Huang X. Hard carbon microtubes made from renewable cotton as high-performance anode material for sodium-ion batteries. Adv Energy Mater. 2016;6(18):1600659.
[65]
Zurück zum Zitat Wang C, Huang J, Qi H, Cao L, Xu Z, Cheng Y, Zhao X, Li J. Controlling pseudographtic domain dimension of dandelion derived biomass carbon for excellent sodium-ion storage. J Power Sources. 2017;358:85. Wang C, Huang J, Qi H, Cao L, Xu Z, Cheng Y, Zhao X, Li J. Controlling pseudographtic domain dimension of dandelion derived biomass carbon for excellent sodium-ion storage. J Power Sources. 2017;358:85.
[66]
Zurück zum Zitat Zhang N, Liu Q, Chen WL, Wan M, Li XC, Wang LL, Xue LH, Zhang WX. High capacity hard carbon derived from lotus stem as anode for sodium ion batteries. J Power Sources. 2018;378:331. Zhang N, Liu Q, Chen WL, Wan M, Li XC, Wang LL, Xue LH, Zhang WX. High capacity hard carbon derived from lotus stem as anode for sodium ion batteries. J Power Sources. 2018;378:331.
[67]
Zurück zum Zitat Zhu Z, Liang F, Zhou Z, Zeng X, Wang D, Dong P, Zhao J, Sun S, Zhang Y, Li X. Expanded biomass-derived hard carbon with ultra-stable performance in sodium-ion batteries. J Mater Chem A. 2018;6(4):1513. Zhu Z, Liang F, Zhou Z, Zeng X, Wang D, Dong P, Zhao J, Sun S, Zhang Y, Li X. Expanded biomass-derived hard carbon with ultra-stable performance in sodium-ion batteries. J Mater Chem A. 2018;6(4):1513.
[68]
Zurück zum Zitat Dahbi M, Kiso M, Kubota K, Horiba T, Chafik T, Hida K, Matsuyama T, Komaba S. Synthesis of hard carbon from argan shells for Na-ion batteries. J Mater Chem A. 2017;5(20):9917. Dahbi M, Kiso M, Kubota K, Horiba T, Chafik T, Hida K, Matsuyama T, Komaba S. Synthesis of hard carbon from argan shells for Na-ion batteries. J Mater Chem A. 2017;5(20):9917.
[69]
Zurück zum Zitat Zhang T, Mao J, Liu XL, Xuan MJ, Bi K, Zhang XL, Hu JH, Fan JJ, Chen SM, Shao GS. Pinecone biomass-derived hard carbon anodes for high-performance sodium-ion batteries. RSC Adv. 2017;7(66):41504. Zhang T, Mao J, Liu XL, Xuan MJ, Bi K, Zhang XL, Hu JH, Fan JJ, Chen SM, Shao GS. Pinecone biomass-derived hard carbon anodes for high-performance sodium-ion batteries. RSC Adv. 2017;7(66):41504.
[70]
Zurück zum Zitat Zheng YH, Wang YS, Lu YX, Hu YS, Li J. A high-performance sodium-ion battery enhanced by macadamia shell derived hard carbon anode. Nano Energy. 2017;39:489. Zheng YH, Wang YS, Lu YX, Hu YS, Li J. A high-performance sodium-ion battery enhanced by macadamia shell derived hard carbon anode. Nano Energy. 2017;39:489.
[71]
Zurück zum Zitat Wang Y, Feng Z, Zhu W, Gariepy V, Gagnon C, Provencher M, Laul D, Veillette R, Trudeau ML, Guerfi A, Zaghib K. High capacity and high efficiency maple tree-biomass-derived hard carbon as an anode material for sodium-ion batteries. Materials (Basel). 2018;11(8):1294. Wang Y, Feng Z, Zhu W, Gariepy V, Gagnon C, Provencher M, Laul D, Veillette R, Trudeau ML, Guerfi A, Zaghib K. High capacity and high efficiency maple tree-biomass-derived hard carbon as an anode material for sodium-ion batteries. Materials (Basel). 2018;11(8):1294.
[72]
Zurück zum Zitat Wang J, Yan L, Ren QJ, Fan LL, Zhang FM, Shi ZQ. Facile hydrothermal treatment route of reed straw-derived hard carbon for high performance sodium ion battery. Electrochim Acta. 2018;291:188. Wang J, Yan L, Ren QJ, Fan LL, Zhang FM, Shi ZQ. Facile hydrothermal treatment route of reed straw-derived hard carbon for high performance sodium ion battery. Electrochim Acta. 2018;291:188.
[73]
Zurück zum Zitat Zheng Y, Lu Y, Qi X, Wang Y, Mu L, Li Y, Ma Q, Li J, Hu Y-S. Superior electrochemical performance of sodium-ion full-cell using poplar wood derived hard carbon anode. Energy Storage Mater. 2019;18:269. Zheng Y, Lu Y, Qi X, Wang Y, Mu L, Li Y, Ma Q, Li J, Hu Y-S. Superior electrochemical performance of sodium-ion full-cell using poplar wood derived hard carbon anode. Energy Storage Mater. 2019;18:269.
[74]
Zurück zum Zitat Izanzar I, Dahbi M, Kiso M, Doubaji S, Komaba S, Saadoune I. Hard carbons issued from date palm as efficient anode materials for sodium-ion batteries. Carbon. 2018;137:165. Izanzar I, Dahbi M, Kiso M, Doubaji S, Komaba S, Saadoune I. Hard carbons issued from date palm as efficient anode materials for sodium-ion batteries. Carbon. 2018;137:165.
[75]
Zurück zum Zitat Zhang S, Li Y, Li M. Porous hard carbon derived from walnut shell as an anode material for sodium-ion batteries. JOM. 2018;70(8):1387. Zhang S, Li Y, Li M. Porous hard carbon derived from walnut shell as an anode material for sodium-ion batteries. JOM. 2018;70(8):1387.
[76]
Zurück zum Zitat Xu S-D, Zhao Y, Liu S, Ren X, Chen L, Shi W, Wang X, Zhang D. Curly hard carbon derived from pistachio shells as high-performance anode materials for sodium-ion batteries. J Mater Sci. 2018;53(17):12334. Xu S-D, Zhao Y, Liu S, Ren X, Chen L, Shi W, Wang X, Zhang D. Curly hard carbon derived from pistachio shells as high-performance anode materials for sodium-ion batteries. J Mater Sci. 2018;53(17):12334.
[77]
Zurück zum Zitat Rath PC, Patra J, Huang HT, Bresser D, Wu TY, Chang JK. Carbonaceous anodes derived from sugarcane bagasse for sodium-ion batteries. ChemSusChem. 2019;12(10):2302. Rath PC, Patra J, Huang HT, Bresser D, Wu TY, Chang JK. Carbonaceous anodes derived from sugarcane bagasse for sodium-ion batteries. ChemSusChem. 2019;12(10):2302.
[78]
Zurück zum Zitat Wu F, Zhang M, Bai Y, Wang X, Dong R, Wu C. Lotus seedpod-derived hard carbon with hierarchical porous structure as stable anode for sodium-ion batteries. ACS Appl Mater Interfaces. 2019;11(13):12554. Wu F, Zhang M, Bai Y, Wang X, Dong R, Wu C. Lotus seedpod-derived hard carbon with hierarchical porous structure as stable anode for sodium-ion batteries. ACS Appl Mater Interfaces. 2019;11(13):12554.
[79]
Zurück zum Zitat Li X, Zeng X, Ren T, Zhao J, Zhu Z, Sun S, Zhang Y. The transport properties of sodium-ion in the low potential platform region of oatmeal-derived hard carbon for sodium-ion batteries. J Alloys Compd. 2019;787:229. Li X, Zeng X, Ren T, Zhao J, Zhu Z, Sun S, Zhang Y. The transport properties of sodium-ion in the low potential platform region of oatmeal-derived hard carbon for sodium-ion batteries. J Alloys Compd. 2019;787:229.
[80]
Zurück zum Zitat Arie AA, Tekin B, Demir E, Demir-Cakan R. Hard carbons derived from waste tea bag powder as anodes for sodium ion battery. Mater Technol. 2019;34(9):515. Arie AA, Tekin B, Demir E, Demir-Cakan R. Hard carbons derived from waste tea bag powder as anodes for sodium ion battery. Mater Technol. 2019;34(9):515.
[81]
Zurück zum Zitat Li Y, Lu Y, Meng Q, Jensen ACS, Zhang Q, Zhang Q, Tong Y, Qi Y, Gu L, Titirici MM, Hu YS. Regulating pore structure of hierarchical porous waste cork-derived hard carbon anode for enhanced Na storage performance. Adv Energy Mater. 2019;9(48):1902852. Li Y, Lu Y, Meng Q, Jensen ACS, Zhang Q, Zhang Q, Tong Y, Qi Y, Gu L, Titirici MM, Hu YS. Regulating pore structure of hierarchical porous waste cork-derived hard carbon anode for enhanced Na storage performance. Adv Energy Mater. 2019;9(48):1902852.
[82]
Zurück zum Zitat Meng Q, Lu Y, Ding F, Zhang Q, Chen L, Hu YS. Tuning the closed pore structure of hard carbons with the highest na storage capacity. ACS Energy Lett. 2019;4(11):2608. Meng Q, Lu Y, Ding F, Zhang Q, Chen L, Hu YS. Tuning the closed pore structure of hard carbons with the highest na storage capacity. ACS Energy Lett. 2019;4(11):2608.
[83]
Zurück zum Zitat Zhang Y, Li X, Dong P, Wu G, Xiao J, Zeng X, Zhang Y, Sun X. Honeycomb-like hard carbon derived from pine pollen as high-performance anode material for sodium-ion battery. ACS Appl Mater Interfaces. 2018;10(49):42796. Zhang Y, Li X, Dong P, Wu G, Xiao J, Zeng X, Zhang Y, Sun X. Honeycomb-like hard carbon derived from pine pollen as high-performance anode material for sodium-ion battery. ACS Appl Mater Interfaces. 2018;10(49):42796.
[84]
Zurück zum Zitat Raj KA, Panda MR, Dutta DP, Mitra S. Bio-derived mesoporous disordered carbon: an excellent anode in sodium-ion battery and full-cell lab prototype. Carbon. 2019;143:402. Raj KA, Panda MR, Dutta DP, Mitra S. Bio-derived mesoporous disordered carbon: an excellent anode in sodium-ion battery and full-cell lab prototype. Carbon. 2019;143:402.
[85]
Zurück zum Zitat Wen Y, He K, Zhu Y, Han F, Xu Y, Matsuda I, Ishii Y, Cumings J, Wang C. Expanded graphite as superior anode for sodium-ion batteries. Nat Commun. 2014;5:1 Wen Y, He K, Zhu Y, Han F, Xu Y, Matsuda I, Ishii Y, Cumings J, Wang C. Expanded graphite as superior anode for sodium-ion batteries. Nat Commun. 2014;5:1
[86]
Zurück zum Zitat Lu H, Ai F, Jia Y, Tang C, Zhang X, Huang Y, Yang H, Cao Y. Exploring sodium-ion storage mechanism in hard carbons with different microstructure prepared by ball-milling method. Small. 2018;14(39):1802694. Lu H, Ai F, Jia Y, Tang C, Zhang X, Huang Y, Yang H, Cao Y. Exploring sodium-ion storage mechanism in hard carbons with different microstructure prepared by ball-milling method. Small. 2018;14(39):1802694.
[87]
Zurück zum Zitat Xiao LF, Cao YL, Henderson WA, Sushko ML, Shao YY, Xiao J, Wang W, Engelhard MH, Nie ZM, Liu J. Hard carbon nanoparticles as high-capacity, high-stability anodic materials for Na-ion batteries. Nano Energy. 2016;19:279. Xiao LF, Cao YL, Henderson WA, Sushko ML, Shao YY, Xiao J, Wang W, Engelhard MH, Nie ZM, Liu J. Hard carbon nanoparticles as high-capacity, high-stability anodic materials for Na-ion batteries. Nano Energy. 2016;19:279.
[88]
Zurück zum Zitat Sun N, Guan Z, Liu Y, Cao Y, Zhu Q, Liu H, Wang Z, Zhang P, Xu B. Extended “adsorption–insertion” model: a new insight into the sodium storage mechanism of hard carbons. Adv Energy Mater. 2019;9(32):1901351. Sun N, Guan Z, Liu Y, Cao Y, Zhu Q, Liu H, Wang Z, Zhang P, Xu B. Extended “adsorption–insertion” model: a new insight into the sodium storage mechanism of hard carbons. Adv Energy Mater. 2019;9(32):1901351.
[89]
Zurück zum Zitat Xiao L, Lu H, Fang Y, Sushko ML, Cao Y, Ai X, Yang H, Liu J. Low-defect and low-porosity hard carbon with high coulombic efficiency and high capacity for practical sodium ion battery anode. Adv Energy Mater. 2018;8(20):1703238. Xiao L, Lu H, Fang Y, Sushko ML, Cao Y, Ai X, Yang H, Liu J. Low-defect and low-porosity hard carbon with high coulombic efficiency and high capacity for practical sodium ion battery anode. Adv Energy Mater. 2018;8(20):1703238.
[90]
Zurück zum Zitat Luo W, Bommier C, Jian Z, Li X, Carter R, Vail S, Lu Y, Lee JJ, Ji X. Low-surface-area hard carbon anode for Na-ion batteries via graphene oxide as a dehydration agent. ACS Appl Mater Interfaces. 2015;7(4):2626. Luo W, Bommier C, Jian Z, Li X, Carter R, Vail S, Lu Y, Lee JJ, Ji X. Low-surface-area hard carbon anode for Na-ion batteries via graphene oxide as a dehydration agent. ACS Appl Mater Interfaces. 2015;7(4):2626.
[91]
Zurück zum Zitat Augustyn V, Come J, Lowe MA, Kim JW, Taberna PL, Tolbert SH, Abruña HD, Simon P, Dunn B. High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance. Nat Mater. 2013;12(6):518. Augustyn V, Come J, Lowe MA, Kim JW, Taberna PL, Tolbert SH, Abruña HD, Simon P, Dunn B. High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance. Nat Mater. 2013;12(6):518.
[92]
Zurück zum Zitat Yang C, Xiong J, Ou X, Wu CF, Xiong X, Wang JH, Huang K, Liu M. A renewable natural cotton derived and nitrogen/sulfur co-doped carbon as a high-performance sodium ion battery anode. Mater Today Energy. 2018;8:37. Yang C, Xiong J, Ou X, Wu CF, Xiong X, Wang JH, Huang K, Liu M. A renewable natural cotton derived and nitrogen/sulfur co-doped carbon as a high-performance sodium ion battery anode. Mater Today Energy. 2018;8:37.
[93]
Zurück zum Zitat Weppner W, Huggins R. Determination of the kinetic parameters of mixed-conducting electrodes and application to the system Li3Sb. J Electrochem Soc. 1977;124(10):1569. Weppner W, Huggins R. Determination of the kinetic parameters of mixed-conducting electrodes and application to the system Li3Sb. J Electrochem Soc. 1977;124(10):1569.
[94]
Zurück zum Zitat Li Z, Du F, Bie X, Zhang D, Cai Y, Cui X, Wang C, Chen G, Wei Y. Electrochemical kinetics of the Li[Li0.23Co0.3Mn0.47]O2 cathode material studied by GITT and EIS. J Phys Chem C. 2010;114(51):22751. Li Z, Du F, Bie X, Zhang D, Cai Y, Cui X, Wang C, Chen G, Wei Y. Electrochemical kinetics of the Li[Li0.23Co0.3Mn0.47]O2 cathode material studied by GITT and EIS. J Phys Chem C. 2010;114(51):22751.
[95]
Zurück zum Zitat Winter M, Besenhard JO, Spahr ME, Novák P. Insertion electrode materials for rechargeable lithium batteries. Adv Mater. 1998;10(10):725. Winter M, Besenhard JO, Spahr ME, Novák P. Insertion electrode materials for rechargeable lithium batteries. Adv Mater. 1998;10(10):725.
[96]
Zurück zum Zitat Seidl L, Bucher N, Chu E, Hartung S, Martens S, Schneider O, Stimming U. Intercalation of solvated Na-ions into graphite. Energy Environ Sci. 2017;10(7):1631. Seidl L, Bucher N, Chu E, Hartung S, Martens S, Schneider O, Stimming U. Intercalation of solvated Na-ions into graphite. Energy Environ Sci. 2017;10(7):1631.
[97]
Zurück zum Zitat Stevens DA, Dahn JR. High capacity anode materials for rechargeable sodium-ion batteries. J Electrochem Soc. 2000;147(4):1271. Stevens DA, Dahn JR. High capacity anode materials for rechargeable sodium-ion batteries. J Electrochem Soc. 2000;147(4):1271.
[98]
Zurück zum Zitat Cao Y, Xiao L, Sushko ML, Wang W, Schwenzer B, Xiao J, Nie Z, Saraf LV, Yang Z, Liu J. Sodium ion insertion in hollow carbon nanowires for battery applications. Nano Lett. 2012;12(7):3783. Cao Y, Xiao L, Sushko ML, Wang W, Schwenzer B, Xiao J, Nie Z, Saraf LV, Yang Z, Liu J. Sodium ion insertion in hollow carbon nanowires for battery applications. Nano Lett. 2012;12(7):3783.
[99]
Zurück zum Zitat Qiu S, Xiao L, Sushko ML, Han KS, Shao Y, Yan M, Liang X, Mai L, Feng J, Cao Y, Ai X, Yang H, Liu J. Manipulating adsorption–insertion mechanisms in nanostructured carbon materials for high-efficiency sodium ion storage. Adv Energy Mater. 2017;7(17):1700403. Qiu S, Xiao L, Sushko ML, Han KS, Shao Y, Yan M, Liang X, Mai L, Feng J, Cao Y, Ai X, Yang H, Liu J. Manipulating adsorption–insertion mechanisms in nanostructured carbon materials for high-efficiency sodium ion storage. Adv Energy Mater. 2017;7(17):1700403.
[100]
Zurück zum Zitat Zhang B, Ghimbeu CM, Laberty C, Vix-Guterl C, Tarascon JM. Correlation between microstructure and Na storage behavior in hard carbon. Adv Energy Mater. 2016;6(1):1501588. Zhang B, Ghimbeu CM, Laberty C, Vix-Guterl C, Tarascon JM. Correlation between microstructure and Na storage behavior in hard carbon. Adv Energy Mater. 2016;6(1):1501588.
[101]
Zurück zum Zitat Zou G, Wang C, Hou H, Wang C, Qiu X, Ji X. Controllable interlayer spacing of sulfur-doped graphitic carbon nanosheets for fast sodium-ion batteries. Small. 2017;13(31):1700762. Zou G, Wang C, Hou H, Wang C, Qiu X, Ji X. Controllable interlayer spacing of sulfur-doped graphitic carbon nanosheets for fast sodium-ion batteries. Small. 2017;13(31):1700762.
[102]
Zurück zum Zitat Paraknowitsch JP, Thomas A. Doping carbons beyond nitrogen: an overview of advanced heteroatom doped carbons with boron, sulphur and phosphorus for energy applications. Energy Environ Sci. 2013;6(10):2839. Paraknowitsch JP, Thomas A. Doping carbons beyond nitrogen: an overview of advanced heteroatom doped carbons with boron, sulphur and phosphorus for energy applications. Energy Environ Sci. 2013;6(10):2839.
[103]
Zurück zum Zitat Selvamani V, Ravikumar R, Suryanarayanan V, Velayutham D, Gopukumar S. Garlic peel derived high capacity hierarchical N-doped porous carbon anode for sodium/lithium ion cell. Electrochim Acta. 2016;190:337. Selvamani V, Ravikumar R, Suryanarayanan V, Velayutham D, Gopukumar S. Garlic peel derived high capacity hierarchical N-doped porous carbon anode for sodium/lithium ion cell. Electrochim Acta. 2016;190:337.
[104]
Zurück zum Zitat Hong KL, Qie L, Zeng R, Yi ZQ, Zhang W, Wang D, Yin W, Wu C, Fan QJ, Zhang WX, Huang YH. Biomass derived hard carbon used as a high performance anode material for sodium ion batteries. J Mater Chem A. 2014;2(32):12733. Hong KL, Qie L, Zeng R, Yi ZQ, Zhang W, Wang D, Yin W, Wu C, Fan QJ, Zhang WX, Huang YH. Biomass derived hard carbon used as a high performance anode material for sodium ion batteries. J Mater Chem A. 2014;2(32):12733.
[105]
Zurück zum Zitat Hou H, Shao L, Zhang Y, Zou G, Chen J, Ji X. Large-area carbon nanosheets doped with phosphorus: a high-performance anode material for sodium-ion batteries. Adv Sci. 2017;4(1):1600243. Hou H, Shao L, Zhang Y, Zou G, Chen J, Ji X. Large-area carbon nanosheets doped with phosphorus: a high-performance anode material for sodium-ion batteries. Adv Sci. 2017;4(1):1600243.
[106]
Zurück zum Zitat Gaddam RR, Farokh Niaei AH, Hankel M, Searles DJ, Kumar NA, Zhao XS. Capacitance-enhanced sodium-ion storage in nitrogen-rich hard carbon. J Mater Chem A. 2017;5(42):22186. Gaddam RR, Farokh Niaei AH, Hankel M, Searles DJ, Kumar NA, Zhao XS. Capacitance-enhanced sodium-ion storage in nitrogen-rich hard carbon. J Mater Chem A. 2017;5(42):22186.
[107]
Zurück zum Zitat Zhao BS, Ding YC, Wen ZH. From jackfruit rags to hierarchical porous N-doped carbon: a high-performance anode material for sodium-ion batteries. Trans Tianjin Univ. 2019;25(5):429. Zhao BS, Ding YC, Wen ZH. From jackfruit rags to hierarchical porous N-doped carbon: a high-performance anode material for sodium-ion batteries. Trans Tianjin Univ. 2019;25(5):429.
[108]
Zurück zum Zitat Zhao G, Zou G, Hou H, Ge P, Cao X, Ji X. Sulfur-doped carbon employing biomass-activated carbon as a carrier with enhanced sodium storage behavior. J Mater Chem A. 2017;5(46):24353. Zhao G, Zou G, Hou H, Ge P, Cao X, Ji X. Sulfur-doped carbon employing biomass-activated carbon as a carrier with enhanced sodium storage behavior. J Mater Chem A. 2017;5(46):24353.
[109]
Zurück zum Zitat Qin D, Liu Z, Zhao Y, Xu G, Zhang F, Zhang X. A sustainable route from corn stalks to N, P-dual doping carbon sheets toward high performance sodium-ion batteries anode. Carbon. 2018;130:664. Qin D, Liu Z, Zhao Y, Xu G, Zhang F, Zhang X. A sustainable route from corn stalks to N, P-dual doping carbon sheets toward high performance sodium-ion batteries anode. Carbon. 2018;130:664.
[110]
Zurück zum Zitat Fu H, Xu Z, Li R, Guan W, Yao K, Huang J, Yang J, Shen X. Network carbon with macropores from apple pomace for stable and high areal capacity of sodium storage. ACS Sustain Chem Eng. 2018;6(11):14751. Fu H, Xu Z, Li R, Guan W, Yao K, Huang J, Yang J, Shen X. Network carbon with macropores from apple pomace for stable and high areal capacity of sodium storage. ACS Sustain Chem Eng. 2018;6(11):14751.
[111]
Zurück zum Zitat Xiang JY, Lv WM, Mu CP, Zhao J, Wang BC. Activated hard carbon from orange peel for lithium/sodium ion battery anode with long cycle life. J Alloys Compd. 2017;701:870. Xiang JY, Lv WM, Mu CP, Zhao J, Wang BC. Activated hard carbon from orange peel for lithium/sodium ion battery anode with long cycle life. J Alloys Compd. 2017;701:870.
[112]
Zurück zum Zitat Wang HL, Yu WH, Shi J, Mao N, Chen SG, Liu W. Biomass derived hierarchical porous carbons as high-performance anodes for sodium-ion batteries. Electrochim Acta. 2016;188:103. Wang HL, Yu WH, Shi J, Mao N, Chen SG, Liu W. Biomass derived hierarchical porous carbons as high-performance anodes for sodium-ion batteries. Electrochim Acta. 2016;188:103.
[113]
Zurück zum Zitat Hu FY, Liu SY, Wang JY, Li SM, Jian XG. Carbon nanosheet frameworks derived from pine cone shells as sodium-ion battery anodes. Mater Sci Forum. 2019;956:3. Hu FY, Liu SY, Wang JY, Li SM, Jian XG. Carbon nanosheet frameworks derived from pine cone shells as sodium-ion battery anodes. Mater Sci Forum. 2019;956:3.
Metadaten
Titel
Recent progress in plant-derived hard carbon anode materials for sodium-ion batteries: a review
verfasst von
Peng Yu
Wei Tang
Fang-Fang Wu
Chun Zhang
Hua-Yun Luo
Hui Liu
Zhi-Guo Wang
Publikationsdatum
19.06.2020
Verlag
Nonferrous Metals Society of China
Erschienen in
Rare Metals / Ausgabe 9/2020
Print ISSN: 1001-0521
Elektronische ISSN: 1867-7185
DOI
https://doi.org/10.1007/s12598-020-01443-z

Weitere Artikel der Ausgabe 9/2020

Rare Metals 9/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.