Skip to main content
Erschienen in: Rare Metals 9/2020

19.06.2020

Research progress on tin-based anode materials for sodium ion batteries

verfasst von: Ju-Mei Liang, Li-Juan Zhang, De-Ge XiLi, Jing Kang

Erschienen in: Rare Metals | Ausgabe 9/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Sodium ion batteries (SIBs) is considered as a promising alternative to the widely used lithium ion batteries in view of the abundant resources and uniform distribution of sodium on the earth. However, due to the lack of suitable anode and cathode materials, especially the anode materials with excellent performance, its practical application is trapped. In recent years, lots of attentions are devoted to developing new electrode materials with high sodium storage capacity and long life. In a large number of anode material libraries, tin-based materials with alloying reaction mechanism show great potential for application in high-energy SIBs due to their high theoretical specific capacity. In this paper, detailed and comprehensive research progress on tin-based anodes (including tin metal, tin alloy as well as its compounds) in recent years is summarized. Specific efforts to improve the electrochemical properties of tin-based anode materials are discussed. Moreover, the challenges and prospects of these anode materials are also proposed in this review.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
[1]
Zurück zum Zitat Hwang JY, Myung ST, Sun YK. Sodium-ion batteries: present and future. Chem Soc Rev. 2017;46(12):3529. Hwang JY, Myung ST, Sun YK. Sodium-ion batteries: present and future. Chem Soc Rev. 2017;46(12):3529.
[2]
Zurück zum Zitat Chen D, Tan H, Rui X, Zhang Q, Feng Y, Geng H, Yu Y. Oxyvanite V3O5: a new intercalation-type anode for lithium-ion battery. InfoMat. 2019;1(2):251. Chen D, Tan H, Rui X, Zhang Q, Feng Y, Geng H, Yu Y. Oxyvanite V3O5: a new intercalation-type anode for lithium-ion battery. InfoMat. 2019;1(2):251.
[3]
Zurück zum Zitat Edison E, Sreejith S, Lim CT, Madhavi S. Beyond intercalation based sodium-ion batteries: the role of alloying anodes, efficient sodiation mechanisms and recent progress. Sustain Energy Fuels. 2018;2(12):2567. Edison E, Sreejith S, Lim CT, Madhavi S. Beyond intercalation based sodium-ion batteries: the role of alloying anodes, efficient sodiation mechanisms and recent progress. Sustain Energy Fuels. 2018;2(12):2567.
[4]
Zurück zum Zitat Li BQ, Kong L, Zhao CX, Jin Q, Chen X, Peng HJ, Huang JQ. Expediting redox kinetics of sulfur species by atomic-scale electrocatalysts in lithium-sulfur batteries. InfoMat. 2019;1(4):533. Li BQ, Kong L, Zhao CX, Jin Q, Chen X, Peng HJ, Huang JQ. Expediting redox kinetics of sulfur species by atomic-scale electrocatalysts in lithium-sulfur batteries. InfoMat. 2019;1(4):533.
[5]
Zurück zum Zitat Kundu D, Talaie E, Duffort V, Nazar LF. The emerging chemistry of sodium ion batteries for electrochemical energy storage. Angew Chem Int Ed. 2015;54(11):3431. Kundu D, Talaie E, Duffort V, Nazar LF. The emerging chemistry of sodium ion batteries for electrochemical energy storage. Angew Chem Int Ed. 2015;54(11):3431.
[6]
Zurück zum Zitat Cheng DL, Yang LC, Zhu M. High-performance anode materials for Na-ion batteries. Rare Met. 2018;37(3):167. Cheng DL, Yang LC, Zhu M. High-performance anode materials for Na-ion batteries. Rare Met. 2018;37(3):167.
[7]
Zurück zum Zitat Kim SW, Seo DH, Ma X, Ceder G, Kang K. Electrode materials for rechargeable sodium-ion batteries: potential alternatives to current lithium-ion batteries. Adv Energy Mater. 2012;2(7):710. Kim SW, Seo DH, Ma X, Ceder G, Kang K. Electrode materials for rechargeable sodium-ion batteries: potential alternatives to current lithium-ion batteries. Adv Energy Mater. 2012;2(7):710.
[8]
Zurück zum Zitat Slater MD, Kim D, Lee E, Johnson CS. Sodium-ion batteries. Adv Funct Mater. 2013;23(8):947. Slater MD, Kim D, Lee E, Johnson CS. Sodium-ion batteries. Adv Funct Mater. 2013;23(8):947.
[9]
Zurück zum Zitat Li T, Liu Z, Gu Y, Tang Y, Huang F. Hierarchically porous hard carbon with graphite nanocrystals for high-rate sodium ion batteries with improved initial Coulombic efficiency. J Alloys Compd. 2020;817:152703. Li T, Liu Z, Gu Y, Tang Y, Huang F. Hierarchically porous hard carbon with graphite nanocrystals for high-rate sodium ion batteries with improved initial Coulombic efficiency. J Alloys Compd. 2020;817:152703.
[10]
Zurück zum Zitat Li Y, Hu YS, Li H, Chen L, Huang X. A superior low-cost amorphous carbon anode made from pitch and lignin for sodium-ion batteries. J Mater Chem A. 2016;4(1):96. Li Y, Hu YS, Li H, Chen L, Huang X. A superior low-cost amorphous carbon anode made from pitch and lignin for sodium-ion batteries. J Mater Chem A. 2016;4(1):96.
[11]
Zurück zum Zitat Nakabayashi K, Yi H, Ryu DY, Chung D, Miyawaki J, Yoon SH. Enhancement of first cycle coulombic efficiency of hard carbon derived from eucalyptus in a sodium ion battery. Chem Lett. 2019;48(7):753. Nakabayashi K, Yi H, Ryu DY, Chung D, Miyawaki J, Yoon SH. Enhancement of first cycle coulombic efficiency of hard carbon derived from eucalyptus in a sodium ion battery. Chem Lett. 2019;48(7):753.
[12]
Zurück zum Zitat Cao Y, Liu Y, Zhao D, Xia X, Zhang LC, Zhang J, Xia Y. A highly stable Na3Fe2(PO4)3@hard carbon sodium-ion full cell for low cost energy storage. ACS Sustain Chem Eng. 2020;8(3):1380. Cao Y, Liu Y, Zhao D, Xia X, Zhang LC, Zhang J, Xia Y. A highly stable Na3Fe2(PO4)3@hard carbon sodium-ion full cell for low cost energy storage. ACS Sustain Chem Eng. 2020;8(3):1380.
[13]
Zurück zum Zitat Li Y, Mu L, Hu YS, Li H, Chen L, Huang X. Pitch-derived amorphous carbon as high performance anode for sodium-ion batteries. Energy Storage Mater. 2016;2:139. Li Y, Mu L, Hu YS, Li H, Chen L, Huang X. Pitch-derived amorphous carbon as high performance anode for sodium-ion batteries. Energy Storage Mater. 2016;2:139.
[14]
Zurück zum Zitat Yasin G, Arif M, Mehtab T, Shakeel M, Mushtaq MA, Kumar A, Song H. A novel strategy for the synthesis of hard carbon spheres encapsulated with graphene networks as a low-cost and large-scalable anode material for fast sodium storage with an ultralong cycle life. Inorg Chem Front. 2020;7:402. Yasin G, Arif M, Mehtab T, Shakeel M, Mushtaq MA, Kumar A, Song H. A novel strategy for the synthesis of hard carbon spheres encapsulated with graphene networks as a low-cost and large-scalable anode material for fast sodium storage with an ultralong cycle life. Inorg Chem Front. 2020;7:402.
[15]
Zurück zum Zitat Radhakrishnan AK, Nair S, Santhanagopalan D. N-doped carbon nanosheets as high-performance anodes for Li-and Na-ion batteries. J Mater Res. 2020;35(1):12. Radhakrishnan AK, Nair S, Santhanagopalan D. N-doped carbon nanosheets as high-performance anodes for Li-and Na-ion batteries. J Mater Res. 2020;35(1):12.
[16]
Zurück zum Zitat Yan R, Leus K, Hofmann JP, Antonietti M, Oschatz M. Porous nitrogen-doped carbon/carbon nanocomposite electrodes enable sodium ion capacitors with high capacity and rate capability. Nano Energy. 2020;67:104240. Yan R, Leus K, Hofmann JP, Antonietti M, Oschatz M. Porous nitrogen-doped carbon/carbon nanocomposite electrodes enable sodium ion capacitors with high capacity and rate capability. Nano Energy. 2020;67:104240.
[17]
Zurück zum Zitat Cao B, Liu H, Xu B, Lei Y, Chen X, Song H. Mesoporous soft carbon as an anode material for sodium ion batteries with superior rate and cycling performance. J Mater Chem A. 2016;4(17):6472. Cao B, Liu H, Xu B, Lei Y, Chen X, Song H. Mesoporous soft carbon as an anode material for sodium ion batteries with superior rate and cycling performance. J Mater Chem A. 2016;4(17):6472.
[18]
Zurück zum Zitat Jache B, Adelhelm P. Use of graphite as a highly reversible electrode with superior cycle life for sodium-ion batteries by making use of co-intercalation phenomena. Angew Chem. 2014;53(38):10169. Jache B, Adelhelm P. Use of graphite as a highly reversible electrode with superior cycle life for sodium-ion batteries by making use of co-intercalation phenomena. Angew Chem. 2014;53(38):10169.
[19]
Zurück zum Zitat Wen Y, He K, Zhu Y, Han F, Xu Y, Matsuda I, Wang C. Expanded graphite as superior anode for sodium-ion batteries. Nat Commun. 2014;5(4033):1. Wen Y, He K, Zhu Y, Han F, Xu Y, Matsuda I, Wang C. Expanded graphite as superior anode for sodium-ion batteries. Nat Commun. 2014;5(4033):1.
[20]
Zurück zum Zitat Datta D, Li J, Shenoy VB. Defective graphene as a high capacity anode material for Na and Ca ion batteries. ACS Appl Mater Interfaces. 2014;6(3):1788. Datta D, Li J, Shenoy VB. Defective graphene as a high capacity anode material for Na and Ca ion batteries. ACS Appl Mater Interfaces. 2014;6(3):1788.
[21]
Zurück zum Zitat Huang S, Li Z, Wang B, Zhang J, Peng Z, Qi R, Zhao Y. N-Doping and defective nanographitic domain coupled hard carbon nanoshells for high performance lithium/sodium storage. Adv Funct Mater. 2018;28(10):1706294. Huang S, Li Z, Wang B, Zhang J, Peng Z, Qi R, Zhao Y. N-Doping and defective nanographitic domain coupled hard carbon nanoshells for high performance lithium/sodium storage. Adv Funct Mater. 2018;28(10):1706294.
[22]
Zurück zum Zitat Li D, Chen H, Liu G, Wei M, Ding LX, Wang S, Wang H. Porous nitrogen doped carbon sphere as high performance anode of sodium-ion battery. Carbon. 2015;94:888. Li D, Chen H, Liu G, Wei M, Ding LX, Wang S, Wang H. Porous nitrogen doped carbon sphere as high performance anode of sodium-ion battery. Carbon. 2015;94:888.
[23]
Zurück zum Zitat Liu H, Jia M, Sun N, Cao B, Chen R, Zhu Q, Xu B. Nitrogen-rich mesoporous carbon as anode material for high-performance sodium-ion batteries. ACS Appl Mater Interfaces. 2015;7(49):27124. Liu H, Jia M, Sun N, Cao B, Chen R, Zhu Q, Xu B. Nitrogen-rich mesoporous carbon as anode material for high-performance sodium-ion batteries. ACS Appl Mater Interfaces. 2015;7(49):27124.
[24]
Zurück zum Zitat Li W, Zhou M, Li H, Wang K, Cheng S, Jiang K. A high performance sulfur-doped disordered carbon anode for sodium ion batteries. Energy Environ Sci. 2015;8(10):2916. Li W, Zhou M, Li H, Wang K, Cheng S, Jiang K. A high performance sulfur-doped disordered carbon anode for sodium ion batteries. Energy Environ Sci. 2015;8(10):2916.
[25]
Zurück zum Zitat Liu J, Muhammad S, Wei Z, Zhu J, Duan X. Hierarchical N-doping germanium/carbon nanofibers as anode for high-performance lithium-ion and sodium-ion batteries. Nanotechnology. 2019;31(1):015402. Liu J, Muhammad S, Wei Z, Zhu J, Duan X. Hierarchical N-doping germanium/carbon nanofibers as anode for high-performance lithium-ion and sodium-ion batteries. Nanotechnology. 2019;31(1):015402.
[26]
Zurück zum Zitat Li R, Huang J, Li J, Cao L, Luo Y, He Y, Chen S. Nitrogen-doped hard carbon on nickel foam as free-standing anodes for high-performance sodium-ion batteries. ChemElectroChem. 2020;7(3):604. Li R, Huang J, Li J, Cao L, Luo Y, He Y, Chen S. Nitrogen-doped hard carbon on nickel foam as free-standing anodes for high-performance sodium-ion batteries. ChemElectroChem. 2020;7(3):604.
[27]
Zurück zum Zitat Ning XM, Zhou XS, Luo J, Ma L, Zhan L. Ion-assisted construction of Sb/N-doped graphene as an anode for Li/Na ion batteries. Nanotechnology. 2019;31(9):095404. Ning XM, Zhou XS, Luo J, Ma L, Zhan L. Ion-assisted construction of Sb/N-doped graphene as an anode for Li/Na ion batteries. Nanotechnology. 2019;31(9):095404.
[28]
Zurück zum Zitat Yu ZE, Lyu Y, Wang Y, Xu S, Cheng H, Mu X, Guo B. Hard carbon micro-nano tubes derived from kapok fiber as anode materials for sodium-ion batteries and the sodium-ion storage mechanism. Chem Commun. 2020;56(5):778. Yu ZE, Lyu Y, Wang Y, Xu S, Cheng H, Mu X, Guo B. Hard carbon micro-nano tubes derived from kapok fiber as anode materials for sodium-ion batteries and the sodium-ion storage mechanism. Chem Commun. 2020;56(5):778.
[29]
Zurück zum Zitat Shan C, Feng X, Yang J, Yang X, Guan HY, Argueta M, Yue Y. Hierarchical porous carbon pellicles: electrospinning synthesis and applications as anodes for sodium-ion batteries with an outstanding performance. Carbon. 2020;157:308. Shan C, Feng X, Yang J, Yang X, Guan HY, Argueta M, Yue Y. Hierarchical porous carbon pellicles: electrospinning synthesis and applications as anodes for sodium-ion batteries with an outstanding performance. Carbon. 2020;157:308.
[30]
Zurück zum Zitat Li W, Zeng L, Yang Z, Gu L, Wang J, Liu X, Yu Y. Free-standing and binder-free sodium-ion electrodes with ultralong cycle life and high rate performance based on porous carbon nanofibers. Nanoscale. 2014;6(2):693. Li W, Zeng L, Yang Z, Gu L, Wang J, Liu X, Yu Y. Free-standing and binder-free sodium-ion electrodes with ultralong cycle life and high rate performance based on porous carbon nanofibers. Nanoscale. 2014;6(2):693.
[31]
Zurück zum Zitat Lu P, Sun Y, Xiang H, Liang X, Yu Y. 3D amorphous carbon with controlled porous and disordered structures as a high-rate anode material for sodium-ion batteries. Adv Energy Mater. 2018;8(8):1702434. Lu P, Sun Y, Xiang H, Liang X, Yu Y. 3D amorphous carbon with controlled porous and disordered structures as a high-rate anode material for sodium-ion batteries. Adv Energy Mater. 2018;8(8):1702434.
[32]
Zurück zum Zitat Wang P, Zhu K, Ye K, Gong Z, Liu R, Cheng K, Cao D. Three-dimensional biomass derived hard carbon with reconstructed surface as a free-standing anode for sodium-ion batteries. J Colloid Interface Sci. 2020;561:203. Wang P, Zhu K, Ye K, Gong Z, Liu R, Cheng K, Cao D. Three-dimensional biomass derived hard carbon with reconstructed surface as a free-standing anode for sodium-ion batteries. J Colloid Interface Sci. 2020;561:203.
[33]
Zurück zum Zitat Hou H, Banks CE, Jing M, Zhang Y, Ji X. Carbon quantum dots and their derivative 3D porous carbon frameworks for sodium ion batteries with ultralong cycle life. Adv Mater. 2015;27(47):7895. Hou H, Banks CE, Jing M, Zhang Y, Ji X. Carbon quantum dots and their derivative 3D porous carbon frameworks for sodium ion batteries with ultralong cycle life. Adv Mater. 2015;27(47):7895.
[34]
Zurück zum Zitat Zhou C, Wang D, Li A, Pan E, Liu H, Chen X, Song H. Three-dimensional porous carbon doped with N, O and P heteroatoms as high-performance anode materials for sodium ion batteries. Chem Eng J. 2020;380:122457. Zhou C, Wang D, Li A, Pan E, Liu H, Chen X, Song H. Three-dimensional porous carbon doped with N, O and P heteroatoms as high-performance anode materials for sodium ion batteries. Chem Eng J. 2020;380:122457.
[35]
Zurück zum Zitat Nie W, Liu X, Xiao Q, Li L, Chen G, Li D, Zhong S. Hierarchical porous carbon anode materials derived from rice husks with a high capacity and long cycling stability for sodium ion batteries. ChemElectroChem. 2020;7(3):631. Nie W, Liu X, Xiao Q, Li L, Chen G, Li D, Zhong S. Hierarchical porous carbon anode materials derived from rice husks with a high capacity and long cycling stability for sodium ion batteries. ChemElectroChem. 2020;7(3):631.
[36]
Zurück zum Zitat Xie F, Xu Z, Jensen AC, Ding F, Au H, Feng J, Drew AJ. Unveiling the role of hydrothermal carbon dots as anodes in sodium-ion batteries with ultrahigh initial coulombic efficiency. J Mater Chem A. 2019;7(48):27567. Xie F, Xu Z, Jensen AC, Ding F, Au H, Feng J, Drew AJ. Unveiling the role of hydrothermal carbon dots as anodes in sodium-ion batteries with ultrahigh initial coulombic efficiency. J Mater Chem A. 2019;7(48):27567.
[37]
Zurück zum Zitat Wan F, Wu XL, Guo JZ, Li JY, Zhang JP, Niu L, Wang RS. Nanoeffects promote the electrochemical properties of organic Na2C8H4O4 as anode material for sodium-ion batteries. Nano Energy. 2015;13:450. Wan F, Wu XL, Guo JZ, Li JY, Zhang JP, Niu L, Wang RS. Nanoeffects promote the electrochemical properties of organic Na2C8H4O4 as anode material for sodium-ion batteries. Nano Energy. 2015;13:450.
[38]
Zurück zum Zitat Zhao L, Zhao J, Hu YS, Li H, Zhou Z, Armand M, Chen L. Disodium terephthalate (Na2C8H4O4) as high performance anode material for low-cost room-temperature sodium-ion battery. Adv Energy Mater. 2012;2(8):962. Zhao L, Zhao J, Hu YS, Li H, Zhou Z, Armand M, Chen L. Disodium terephthalate (Na2C8H4O4) as high performance anode material for low-cost room-temperature sodium-ion battery. Adv Energy Mater. 2012;2(8):962.
[39]
Zurück zum Zitat Gu J, Gu Y, Yang S. 3D organic Na4C6O6/graphene architecture for fast sodium storage with ultralong cycle life. Chem Commun. 2017;53(94):12642. Gu J, Gu Y, Yang S. 3D organic Na4C6O6/graphene architecture for fast sodium storage with ultralong cycle life. Chem Commun. 2017;53(94):12642.
[40]
Zurück zum Zitat Liu H, Luo SH, Hu DB, Liu X, Wang Q, Wang ZY, Zhang YH. Design and synthesis of carbon-coated α-Fe2O3@Fe3O4 heterostructured as anode materials for lithium ion batteries. Appl Surf Sci. 2019;495:143590. Liu H, Luo SH, Hu DB, Liu X, Wang Q, Wang ZY, Zhang YH. Design and synthesis of carbon-coated α-Fe2O3@Fe3O4 heterostructured as anode materials for lithium ion batteries. Appl Surf Sci. 2019;495:143590.
[41]
Zurück zum Zitat Qi H, Cao L, Li J, Huang J, Xu Z, Jie Y, Wang C. Thin carbon layer coated porous Fe3O4 particles supported by rGO sheets for improved stable sodium storage. ChemistrySelect. 2019;4(9):2668. Qi H, Cao L, Li J, Huang J, Xu Z, Jie Y, Wang C. Thin carbon layer coated porous Fe3O4 particles supported by rGO sheets for improved stable sodium storage. ChemistrySelect. 2019;4(9):2668.
[42]
Zurück zum Zitat Zhao Y, Wang F, Wang C, Wang S, Wang C, Zhao Z, Zhao D. Encapsulating highly crystallized mesoporous Fe3O4 in hollow N-doped carbon nanospheres for high-capacity long-life sodium-ion batteries. Nano Energy. 2019;56:426. Zhao Y, Wang F, Wang C, Wang S, Wang C, Zhao Z, Zhao D. Encapsulating highly crystallized mesoporous Fe3O4 in hollow N-doped carbon nanospheres for high-capacity long-life sodium-ion batteries. Nano Energy. 2019;56:426.
[43]
Zurück zum Zitat Haridas AK, Heo J, Li X, Ahn HJ, Zhao X, Deng Z, Ahn JH. A flexible and free-standing FeS/sulfurized polyacrylonitrile hybrid anode material for high-rate sodium-ion storage. Chem Eng J. 2020;385:123453. Haridas AK, Heo J, Li X, Ahn HJ, Zhao X, Deng Z, Ahn JH. A flexible and free-standing FeS/sulfurized polyacrylonitrile hybrid anode material for high-rate sodium-ion storage. Chem Eng J. 2020;385:123453.
[44]
Zurück zum Zitat Choi J, Yoon SU, Lee ME, Park SI, Myung Y, Jin HJ, Yun YS. High-performance nanohybrid anode based on FeS2 nanocubes and nitrogen-rich graphene oxide nanoribbons for sodium ion batteries. J Ind Eng Chem. 2020;81:61. Choi J, Yoon SU, Lee ME, Park SI, Myung Y, Jin HJ, Yun YS. High-performance nanohybrid anode based on FeS2 nanocubes and nitrogen-rich graphene oxide nanoribbons for sodium ion batteries. J Ind Eng Chem. 2020;81:61.
[45]
Zurück zum Zitat Lu Z, Zhai Y, Wang N, Zhang Y, Xue P, Guo M, Dou S. FeS2 nanoparticles embedded in N/S co-doped porous carbon fibers as anode for sodium-ion batteries. Chem Eng J. 2020;380:122455. Lu Z, Zhai Y, Wang N, Zhang Y, Xue P, Guo M, Dou S. FeS2 nanoparticles embedded in N/S co-doped porous carbon fibers as anode for sodium-ion batteries. Chem Eng J. 2020;380:122455.
[46]
Zurück zum Zitat Wang F, Zhang W, Zhou H, Chen H, Huang Z, Yan Z, Kuang Y. Preparation of porous FeS2-C/RG composite for sodium ion batteries. Chem Eng J. 2020;380:122549. Wang F, Zhang W, Zhou H, Chen H, Huang Z, Yan Z, Kuang Y. Preparation of porous FeS2-C/RG composite for sodium ion batteries. Chem Eng J. 2020;380:122549.
[47]
Zurück zum Zitat Chen Z, Li S, Zhao Y, Aboud MFA, Shakir I, Xu Y. Ultrafine FeS2 nanocrystals/porous nitrogen-doped carbon hybrid nanospheres encapsulated in three-dimensional graphene for simultaneous efficient lithium and sodium ion storage. J Mater Chem A. 2019;7(46):26342. Chen Z, Li S, Zhao Y, Aboud MFA, Shakir I, Xu Y. Ultrafine FeS2 nanocrystals/porous nitrogen-doped carbon hybrid nanospheres encapsulated in three-dimensional graphene for simultaneous efficient lithium and sodium ion storage. J Mater Chem A. 2019;7(46):26342.
[48]
Zurück zum Zitat Fan H, Qin B, Wang Z, Li H, Guo J, Wu X, Zhang J. Pseudocapacitive sodium storage of Fe1−xS@N-doped carbon for low-temperature operation. Sci China Mater. 2019;63(4):505. Fan H, Qin B, Wang Z, Li H, Guo J, Wu X, Zhang J. Pseudocapacitive sodium storage of Fe1−xS@N-doped carbon for low-temperature operation. Sci China Mater. 2019;63(4):505.
[49]
Zurück zum Zitat Guo YM, Zhang LJ, Wang JT, Liang JM, Xi Li DG. Facile method for adjustable preparation of nano-Fe7S8 supported by carbon as the anode for enhanced lithium/sodium storage properties in Li/Na-ion batteries. Electrochim Acta. 2019;322:134763. Guo YM, Zhang LJ, Wang JT, Liang JM, Xi Li DG. Facile method for adjustable preparation of nano-Fe7S8 supported by carbon as the anode for enhanced lithium/sodium storage properties in Li/Na-ion batteries. Electrochim Acta. 2019;322:134763.
[50]
Zurück zum Zitat He Q, Rui K, Yang J, Wen Z. Fe7S8 nanoparticles anchored on nitrogen-doped graphene nanosheets as anode materials for high-performance sodium-ion batteries. ACS Appl Mater Interfaces. 2018;10(35):29476. He Q, Rui K, Yang J, Wen Z. Fe7S8 nanoparticles anchored on nitrogen-doped graphene nanosheets as anode materials for high-performance sodium-ion batteries. ACS Appl Mater Interfaces. 2018;10(35):29476.
[51]
Zurück zum Zitat Dong C, Guo L, Li H, Zhang B, Gao X, Tian F, Xu L. Rational fabrication of CoS2/Co4S3@N-doped carbon microspheres as excellent cycling performance anode for half/full sodium ion batteries. Energy Storage Mater. 2019;25:679. Dong C, Guo L, Li H, Zhang B, Gao X, Tian F, Xu L. Rational fabrication of CoS2/Co4S3@N-doped carbon microspheres as excellent cycling performance anode for half/full sodium ion batteries. Energy Storage Mater. 2019;25:679.
[53]
Zurück zum Zitat He X, Bi L, Li Y, Xu C, Lin D. CoS2 embedded graphitic structured N-doped carbon spheres interlinked by rGO as anode materials for high-performance sodium-ion batteries. Electrochim Acta. 2020;332:135453. He X, Bi L, Li Y, Xu C, Lin D. CoS2 embedded graphitic structured N-doped carbon spheres interlinked by rGO as anode materials for high-performance sodium-ion batteries. Electrochim Acta. 2020;332:135453.
[54]
Zurück zum Zitat Zhang Z, Huang Y, Liu X, Chen C, Xu Z, Liu P. Zeolitic imidazolate frameworks derived ZnS/Co3S4 composite nanoparticles doping on polyhedral carbon framework for efficient lithium/sodium storage anode materials. Carbon. 2020;157:244. Zhang Z, Huang Y, Liu X, Chen C, Xu Z, Liu P. Zeolitic imidazolate frameworks derived ZnS/Co3S4 composite nanoparticles doping on polyhedral carbon framework for efficient lithium/sodium storage anode materials. Carbon. 2020;157:244.
[55]
Zurück zum Zitat Zhang W, Yue Z, Wang Q, Zeng X, Fu C, Li Q, Li L. Carbon-encapsulated CoS2 nanoparticles anchored on N-doped carbon nanofibers derived from ZIF-8/ZIF-67 as anode for sodium-ion batteries. Chem Eng J. 2020;380:122548. Zhang W, Yue Z, Wang Q, Zeng X, Fu C, Li Q, Li L. Carbon-encapsulated CoS2 nanoparticles anchored on N-doped carbon nanofibers derived from ZIF-8/ZIF-67 as anode for sodium-ion batteries. Chem Eng J. 2020;380:122548.
[56]
Zurück zum Zitat Liao Y, Wu C, Zhong Y, Chen M, Cai L, Wang H, Li W. Highly dispersed Co–Mo sulfide nanoparticles on reduced graphene oxide for lithium and sodium ion storage. Nano Res. 2020;13(1):188. Liao Y, Wu C, Zhong Y, Chen M, Cai L, Wang H, Li W. Highly dispersed Co–Mo sulfide nanoparticles on reduced graphene oxide for lithium and sodium ion storage. Nano Res. 2020;13(1):188.
[57]
Zurück zum Zitat Liu Y, Jiang W, Liu M, Zhang L, Qiang C, Fang Z. Ultrafine Co1−xS attached to porous interconnected carbon skeleton for sodium-ion batteries. Langmuir. 2019;35(50):16487. Liu Y, Jiang W, Liu M, Zhang L, Qiang C, Fang Z. Ultrafine Co1−xS attached to porous interconnected carbon skeleton for sodium-ion batteries. Langmuir. 2019;35(50):16487.
[58]
Zurück zum Zitat Yao X, Cheng H, Huang Y, Jiang Z, Han Q, Wang S. Double-layer carbon protected CoS2 nanoparticles as an advanced anode for sodium-ion batteries. RSC Adv. 2019;9(70):40956. Yao X, Cheng H, Huang Y, Jiang Z, Han Q, Wang S. Double-layer carbon protected CoS2 nanoparticles as an advanced anode for sodium-ion batteries. RSC Adv. 2019;9(70):40956.
[59]
Zurück zum Zitat Liao SY, Cui TT, Zhang SY, Cai JJ, Zheng F, Liu YD, Min YG. Cross-nanoflower CoS2 in situ self-assembled on rGO sheet as advanced anode for lithium/sodium ion battery. Electrochim Acta. 2019;326:134992. Liao SY, Cui TT, Zhang SY, Cai JJ, Zheng F, Liu YD, Min YG. Cross-nanoflower CoS2 in situ self-assembled on rGO sheet as advanced anode for lithium/sodium ion battery. Electrochim Acta. 2019;326:134992.
[60]
Zurück zum Zitat Zhang X, Ma T, Fang T, Gao Y, Gao S, Wang W, Liao L. A novel MoS2@C framework architecture composites with three-dimensional cross-linked porous carbon supporting MoS2 nanosheets for sodium storage. J Alloys Compd. 2020;818:152821. Zhang X, Ma T, Fang T, Gao Y, Gao S, Wang W, Liao L. A novel MoS2@C framework architecture composites with three-dimensional cross-linked porous carbon supporting MoS2 nanosheets for sodium storage. J Alloys Compd. 2020;818:152821.
[61]
Zurück zum Zitat Choi JH, Park SK, Kang YC. N-doped carbon coated Ni–Mo sulfide tubular structure decorated with nanobubbles for enhanced sodium storage performance. Chem Eng J. 2020;383:123112. Choi JH, Park SK, Kang YC. N-doped carbon coated Ni–Mo sulfide tubular structure decorated with nanobubbles for enhanced sodium storage performance. Chem Eng J. 2020;383:123112.
[62]
Zurück zum Zitat Li J, Li J, Ding Z, Zhang X, Li Y, Lu T, Pan L. In-situ encapsulation of Ni3S2 nanoparticles into N-doped interconnected carbon networks for efficient lithium storage. Chem Eng J. 2019;378:122108. Li J, Li J, Ding Z, Zhang X, Li Y, Lu T, Pan L. In-situ encapsulation of Ni3S2 nanoparticles into N-doped interconnected carbon networks for efficient lithium storage. Chem Eng J. 2019;378:122108.
[63]
Zurück zum Zitat Zhao Y, Wang J, Ma C, Li Y, Shi J, Shao Z. Interconnected graphene nanosheets with confined FeS2/FeS binary nanoparticles as anode material of sodium-ion batteries. Chem Eng J. 2019;378:122168. Zhao Y, Wang J, Ma C, Li Y, Shi J, Shao Z. Interconnected graphene nanosheets with confined FeS2/FeS binary nanoparticles as anode material of sodium-ion batteries. Chem Eng J. 2019;378:122168.
[64]
Zurück zum Zitat Fan S, Huang S, Chen Y, Shang Y, Wang Y, Kong D, Yang HY. Construction of complex NiS multi-shelled hollow structures with enhanced sodium storage. Energy Storage Mater. 2019;23:17. Fan S, Huang S, Chen Y, Shang Y, Wang Y, Kong D, Yang HY. Construction of complex NiS multi-shelled hollow structures with enhanced sodium storage. Energy Storage Mater. 2019;23:17.
[65]
Zurück zum Zitat Cao D, Kang W, Huang Z, Li H, Yang M, Li J, Sun D. N-doped carbon matrix supported Fe3Ni6S8 hierarchical architecture with excellent sodium storage capability and electrocatalytic properties. Electrochim Acta. 2019;325:134925. Cao D, Kang W, Huang Z, Li H, Yang M, Li J, Sun D. N-doped carbon matrix supported Fe3Ni6S8 hierarchical architecture with excellent sodium storage capability and electrocatalytic properties. Electrochim Acta. 2019;325:134925.
[66]
Zurück zum Zitat Ellis LD, Hatchard TD, Obrovac MN. Reversible insertion of sodium in tin. J Electrochem Soc. 2012;159(11):A1801. Ellis LD, Hatchard TD, Obrovac MN. Reversible insertion of sodium in tin. J Electrochem Soc. 2012;159(11):A1801.
[67]
Zurück zum Zitat Wang JW, Liu XH, Mao SX, Huang JY. Microstructural evolution of tin nanoparticles during in situ sodium insertion and extraction. Nano Lett. 2012;12(11):5897. Wang JW, Liu XH, Mao SX, Huang JY. Microstructural evolution of tin nanoparticles during in situ sodium insertion and extraction. Nano Lett. 2012;12(11):5897.
[68]
Zurück zum Zitat Chevrier VL, Ceder G. Challenges for Na-ion negative electrodes. J Electrochem Soc. 2011;158(9):A1011. Chevrier VL, Ceder G. Challenges for Na-ion negative electrodes. J Electrochem Soc. 2011;158(9):A1011.
[69]
Zurück zum Zitat Baggetto L, Ganesh P, Meisner RP, Unocic RR, Jumas JC, Bridges CA, Veith GM. Charact erization of sodium ion electrochemical reaction with tin anodes: experiment and theory. J Power Sources. 2013;234:48. Baggetto L, Ganesh P, Meisner RP, Unocic RR, Jumas JC, Bridges CA, Veith GM. Charact erization of sodium ion electrochemical reaction with tin anodes: experiment and theory. J Power Sources. 2013;234:48.
[70]
Zurück zum Zitat Baggetto L, Bridges CA, Jumas JC, Mullins DR, Carroll KJ, Meisner RA, Veith GM. The local atomic structure and chemical bonding in sodium tin phases. J Mater Chem A. 2014;2(44):18959. Baggetto L, Bridges CA, Jumas JC, Mullins DR, Carroll KJ, Meisner RA, Veith GM. The local atomic structure and chemical bonding in sodium tin phases. J Mater Chem A. 2014;2(44):18959.
[71]
Zurück zum Zitat Du Z, Dunlap RA, Obrovac MN. Investigation of the reversible sodiation of Sn foil by ex situ X-ray diffractometry and Mössbauer effect spectroscopy. J Alloys Compd. 2014;617:271. Du Z, Dunlap RA, Obrovac MN. Investigation of the reversible sodiation of Sn foil by ex situ X-ray diffractometry and Mössbauer effect spectroscopy. J Alloys Compd. 2014;617:271.
[72]
Zurück zum Zitat Stratford JM, Mayo M, Allan PK, Pecher O, Borkiewicz OJ, Wiaderek KM, Grey CP. Investigating sodium storage mechanisms in tin anodes: a combined pair distribution function analysis, density functional theory, and solid-state NMR approach. J Am Chem Soc. 2017;139(21):7273. Stratford JM, Mayo M, Allan PK, Pecher O, Borkiewicz OJ, Wiaderek KM, Grey CP. Investigating sodium storage mechanisms in tin anodes: a combined pair distribution function analysis, density functional theory, and solid-state NMR approach. J Am Chem Soc. 2017;139(21):7273.
[73]
Zurück zum Zitat Palaniselvam T, Goktas M, Anothumakkool B, Sun YN, Schmuch R, Zhao L, Adelhelm P. Sodium storage and electrode dynamics of tin-carbon composite electrodes from bulk precursors for sodium-ion batteries. Adv Funct Mater. 2019;29(18):1900790. Palaniselvam T, Goktas M, Anothumakkool B, Sun YN, Schmuch R, Zhao L, Adelhelm P. Sodium storage and electrode dynamics of tin-carbon composite electrodes from bulk precursors for sodium-ion batteries. Adv Funct Mater. 2019;29(18):1900790.
[74]
Zurück zum Zitat Tian H, Liang Y, Repac J, Zhang S, LuoC Liou SC, Han W. Rational design of core–shell-structured particles by a one-step and template-free process for high-performance lithium/sodium-ion batteries. J Phys Chem C. 2018;122(39):22232. Tian H, Liang Y, Repac J, Zhang S, LuoC Liou SC, Han W. Rational design of core–shell-structured particles by a one-step and template-free process for high-performance lithium/sodium-ion batteries. J Phys Chem C. 2018;122(39):22232.
[75]
Zurück zum Zitat Luo L, Song J, Song L, Zhang H, Bi Y, Liu L, Wang G. Flexible conductive anodes based on 3D hierarchical Sn/NS-CNFs@rGO network for sodium-ion batteries. Nano-Micro Lett. 2019;11(1):63. Luo L, Song J, Song L, Zhang H, Bi Y, Liu L, Wang G. Flexible conductive anodes based on 3D hierarchical Sn/NS-CNFs@rGO network for sodium-ion batteries. Nano-Micro Lett. 2019;11(1):63.
[76]
Zurück zum Zitat Sha M, Zhang H, Nie Y, Nie K, Lv X, Sun N, Sun X. Sn nanoparticles@nitrogen-doped carbon nanofiber composites as high-performance anodes for sodium-ion batteries. J Mater Chem A. 2017;5(13):6277. Sha M, Zhang H, Nie Y, Nie K, Lv X, Sun N, Sun X. Sn nanoparticles@nitrogen-doped carbon nanofiber composites as high-performance anodes for sodium-ion batteries. J Mater Chem A. 2017;5(13):6277.
[77]
Zurück zum Zitat Li J, Xu X, Luo Z, Zhang C, Yu X, Zuo Y, Liu J. Compositionally tuned NixSn alloys as anode materials for lithium-ion and sodium-ion batteries with a high pseudocapacitive contribution. Electrochim Acta. 2019;304:246. Li J, Xu X, Luo Z, Zhang C, Yu X, Zuo Y, Liu J. Compositionally tuned NixSn alloys as anode materials for lithium-ion and sodium-ion batteries with a high pseudocapacitive contribution. Electrochim Acta. 2019;304:246.
[78]
Zurück zum Zitat Xie H, Tan X, Luber EJ, Olsen BC, Kalisvaart WP, Jungjohann K, Buriak JM. β-SnSb for sodium ion battery anodes: phase transformations responsible for enhanced cycling stability revealed by in situ TEM. ACS Energy Lett. 2018;3(7):1670. Xie H, Tan X, Luber EJ, Olsen BC, Kalisvaart WP, Jungjohann K, Buriak JM. β-SnSb for sodium ion battery anodes: phase transformations responsible for enhanced cycling stability revealed by in situ TEM. ACS Energy Lett. 2018;3(7):1670.
[79]
Zurück zum Zitat Ma W, Yin K, Gao H, Niu J, Peng Z, Zhang Z. Alloying boosting superior sodium storage performance in nanoporous tin-antimony alloy anode for sodium ion batteries. Nano Energy. 2018;54:349. Ma W, Yin K, Gao H, Niu J, Peng Z, Zhang Z. Alloying boosting superior sodium storage performance in nanoporous tin-antimony alloy anode for sodium ion batteries. Nano Energy. 2018;54:349.
[80]
Zurück zum Zitat Wang L, Ni Y, Lei K, Dong H, Tian S, Li F. 3D porous tin created by tuning the redox potential acts as an advanced electrode for sodium-ion batteries. Chemsuschem. 2018;11(19):3376. Wang L, Ni Y, Lei K, Dong H, Tian S, Li F. 3D porous tin created by tuning the redox potential acts as an advanced electrode for sodium-ion batteries. Chemsuschem. 2018;11(19):3376.
[81]
Zurück zum Zitat Huang B, Yang J, Li Y, Xiao S, Chen Q. Carbon encapsulated Sn–Co alloy: a stabilized tin-based material for sodium storage. Mater Lett. 2018;210:321. Huang B, Yang J, Li Y, Xiao S, Chen Q. Carbon encapsulated Sn–Co alloy: a stabilized tin-based material for sodium storage. Mater Lett. 2018;210:321.
[82]
Zurück zum Zitat Youn DH, Park H, Loeffler KE, Kim JH, Heller A, Mullins CB. Enhanced electrochemical performance of a tin-antimony alloy/N-doped carbon nanocomposite as a sodium-ion battery anode. ChemElectroChem. 2018;5(2):391. Youn DH, Park H, Loeffler KE, Kim JH, Heller A, Mullins CB. Enhanced electrochemical performance of a tin-antimony alloy/N-doped carbon nanocomposite as a sodium-ion battery anode. ChemElectroChem. 2018;5(2):391.
[83]
Zurück zum Zitat Pan E, Jin Y, Zhao C, Jia M, Chang Q, Zhang R, Jia M. Mesoporous Sn4P3-graphene aerogel composite as a high-performance anode in sodium ion batteries. Appl Surf Sci. 2019;475:12. Pan E, Jin Y, Zhao C, Jia M, Chang Q, Zhang R, Jia M. Mesoporous Sn4P3-graphene aerogel composite as a high-performance anode in sodium ion batteries. Appl Surf Sci. 2019;475:12.
[84]
Zurück zum Zitat Jin C, Wei M, Wang Y, Sui J, Yang R, Li C. PPy-derived sandwich-structured hollow carbon fiber anchoring Sn4P3 as anode materials with improved Na+ storage. ChemNanoMat. 2019;5(12):1471. Jin C, Wei M, Wang Y, Sui J, Yang R, Li C. PPy-derived sandwich-structured hollow carbon fiber anchoring Sn4P3 as anode materials with improved Na+ storage. ChemNanoMat. 2019;5(12):1471.
[85]
Zurück zum Zitat Choi J, Kim WS, Kim KH, Hong SH. Sn4P3–C nanospheres as high capacitive and ultra-stable anodes for sodium ion and lithium ion batteries. J Mater Chem A. 2018;6(36):17437. Choi J, Kim WS, Kim KH, Hong SH. Sn4P3–C nanospheres as high capacitive and ultra-stable anodes for sodium ion and lithium ion batteries. J Mater Chem A. 2018;6(36):17437.
[86]
Zurück zum Zitat Lan D, Wang W, Li Q. Cu4SnP10 as a promising anode material for sodium ion batteries. Nano Energy. 2017;39:506. Lan D, Wang W, Li Q. Cu4SnP10 as a promising anode material for sodium ion batteries. Nano Energy. 2017;39:506.
[87]
Zurück zum Zitat Zhang W, Mao J, Pang WK, Guo Z, Chen Z. Large-scale synthesis of ternary Sn5SbP3/C composite by ball milling for superior stable sodium-ion battery anode. Electrochim Acta. 2017;235:107. Zhang W, Mao J, Pang WK, Guo Z, Chen Z. Large-scale synthesis of ternary Sn5SbP3/C composite by ball milling for superior stable sodium-ion battery anode. Electrochim Acta. 2017;235:107.
[88]
Zurück zum Zitat Zhao X, Luo M, Zhao W, Xu R, Liu Y, Shen H. SnO2 nanosheets anchored on a 3D, bicontinuous electron and ion transport carbon network for high-performance sodium-ion batteries. ACS Appl Mater Interfaces. 2018;10(44):38006. Zhao X, Luo M, Zhao W, Xu R, Liu Y, Shen H. SnO2 nanosheets anchored on a 3D, bicontinuous electron and ion transport carbon network for high-performance sodium-ion batteries. ACS Appl Mater Interfaces. 2018;10(44):38006.
[89]
Zurück zum Zitat Qin J, Zhao N, Shi C, Liu E, He F, Ma L, He C. Sandwiched C@SnO2@C hollow nanostructures as an ultralong-lifespan high-rate anode material for lithium-ion and sodium-ion batteries. J Mater Chem A. 2017;5(22):10946. Qin J, Zhao N, Shi C, Liu E, He F, Ma L, He C. Sandwiched C@SnO2@C hollow nanostructures as an ultralong-lifespan high-rate anode material for lithium-ion and sodium-ion batteries. J Mater Chem A. 2017;5(22):10946.
[90]
Zurück zum Zitat Wang W, Shi L, Lan D, Li Q. Improving cycle stability of SnS anode for sodium-ion batteries by limiting Sn agglomeration. J Power Sources. 2018;377:1. Wang W, Shi L, Lan D, Li Q. Improving cycle stability of SnS anode for sodium-ion batteries by limiting Sn agglomeration. J Power Sources. 2018;377:1.
[91]
Zurück zum Zitat Chao D, Ouyang B, Liang P, Huong TTT, Jia G, Huang H, Fan HJ. C-plasma of hierarchical graphene survives SnS bundles for ultrastable and high volumetric na-ion storage. Adv Mater. 2018;30(49):1804833. Chao D, Ouyang B, Liang P, Huong TTT, Jia G, Huang H, Fan HJ. C-plasma of hierarchical graphene survives SnS bundles for ultrastable and high volumetric na-ion storage. Adv Mater. 2018;30(49):1804833.
[92]
Zurück zum Zitat Kim JH, Jung YH, Yun JH, Ragupathy P, Kim DK. Enhancing the sequential conversion-alloying reaction of mixed Sn–S hybrid anode for efficient sodium storage by a carbon healed graphene oxide. Small. 2018;14(4):1702605. Kim JH, Jung YH, Yun JH, Ragupathy P, Kim DK. Enhancing the sequential conversion-alloying reaction of mixed Sn–S hybrid anode for efficient sodium storage by a carbon healed graphene oxide. Small. 2018;14(4):1702605.
[93]
Zurück zum Zitat Yuan S, Zhu YH, Li W, Wang S, Xu D, Li L, Zhang XB. Surfactant-free aqueous synthesis of pure single-crystalline SnSe nanosheet clusters as anode for high energy-and power-density sodium-ion batteries. Adv Mater. 2017;29(4):1602469. Yuan S, Zhu YH, Li W, Wang S, Xu D, Li L, Zhang XB. Surfactant-free aqueous synthesis of pure single-crystalline SnSe nanosheet clusters as anode for high energy-and power-density sodium-ion batteries. Adv Mater. 2017;29(4):1602469.
[94]
Zurück zum Zitat Cheng D, Yang L, Hu R, Liu J, Che R, Cui J, Zhao YJ. Sn–C and Se–C co-bonding SnSe/few-layer graphene micro-nano structure: a route to a densely compacted and durable anode for lithium/sodium-ion batteries. ACS Appl Mater Interfaces. 2019;11(40):36685. Cheng D, Yang L, Hu R, Liu J, Che R, Cui J, Zhao YJ. Sn–C and Se–C co-bonding SnSe/few-layer graphene micro-nano structure: a route to a densely compacted and durable anode for lithium/sodium-ion batteries. ACS Appl Mater Interfaces. 2019;11(40):36685.
[95]
Zurück zum Zitat Ren X, Wang J, Zhu D, Li Q, Tian W, Wang L, Huo K. Sn–C bonding riveted SnSe nanoplates vertically grown on nitrogen-doped carbon nanobelts for high-performance sodium-ion battery anodes. Nano Energy. 2018;54:322. Ren X, Wang J, Zhu D, Li Q, Tian W, Wang L, Huo K. Sn–C bonding riveted SnSe nanoplates vertically grown on nitrogen-doped carbon nanobelts for high-performance sodium-ion battery anodes. Nano Energy. 2018;54:322.
[96]
Zurück zum Zitat Zhao W, Ma X, Li Y, Wang G, Long X. Achieving ultrastable cyclability and pseudocapacitive sodium storage in SnSe quantum-dots sheathed in nitrogen doped carbon nanofibers. Appl Surf Sci. 2020;504:144455. Zhao W, Ma X, Li Y, Wang G, Long X. Achieving ultrastable cyclability and pseudocapacitive sodium storage in SnSe quantum-dots sheathed in nitrogen doped carbon nanofibers. Appl Surf Sci. 2020;504:144455.
[97]
Zurück zum Zitat Lu X, Yang T, Xiong Q, Hu X, Guo J, Ji Z. Constructing hierarchical cobalt doped SnO2/carbon cluster as high reversible and high capacity anodes for sodium storage. J Electroanal Chem. 2019;848:113327. Lu X, Yang T, Xiong Q, Hu X, Guo J, Ji Z. Constructing hierarchical cobalt doped SnO2/carbon cluster as high reversible and high capacity anodes for sodium storage. J Electroanal Chem. 2019;848:113327.
[98]
Zurück zum Zitat Tang Q, Cui Y, Wu J, Qu D, Baker AP, Ma Y, Liu Y. Ternary tin selenium sulfide (SnSe0.5S0.5) nano alloy as the high-performance anode for lithium-ion and sodium-ion batteries. Nano Energy. 2017;41:377. Tang Q, Cui Y, Wu J, Qu D, Baker AP, Ma Y, Liu Y. Ternary tin selenium sulfide (SnSe0.5S0.5) nano alloy as the high-performance anode for lithium-ion and sodium-ion batteries. Nano Energy. 2017;41:377.
[99]
Zurück zum Zitat Fu L, Li G, Shang C, Mao E, Huang L, Wang X, Zhou G. Reduced graphene oxide boosted ultrafine Cu2SnS3 nanoparticles for high-performance sodium storage. ChemElectroChem. 2019;6(11):2949. Fu L, Li G, Shang C, Mao E, Huang L, Wang X, Zhou G. Reduced graphene oxide boosted ultrafine Cu2SnS3 nanoparticles for high-performance sodium storage. ChemElectroChem. 2019;6(11):2949.
[100]
Zurück zum Zitat Chen R, Li S, Liu J, Li Y, Ma F, Liang J, Li Q. Hierarchical Cu doped SnSe nanoclusters as high-performance anode for sodium-ion batteries. Electrochim Acta. 2018;282:973. Chen R, Li S, Liu J, Li Y, Ma F, Liang J, Li Q. Hierarchical Cu doped SnSe nanoclusters as high-performance anode for sodium-ion batteries. Electrochim Acta. 2018;282:973.
Metadaten
Titel
Research progress on tin-based anode materials for sodium ion batteries
verfasst von
Ju-Mei Liang
Li-Juan Zhang
De-Ge XiLi
Jing Kang
Publikationsdatum
19.06.2020
Verlag
Nonferrous Metals Society of China
Erschienen in
Rare Metals / Ausgabe 9/2020
Print ISSN: 1001-0521
Elektronische ISSN: 1867-7185
DOI
https://doi.org/10.1007/s12598-020-01453-x

Weitere Artikel der Ausgabe 9/2020

Rare Metals 9/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.