Skip to main content
Top
Published in: Journal of Materials Science 27/2021

30-06-2021 | Energy materials

Electrospun nanofiber separator derived from nano-SiO2-modified polyimide with superior mechanical flexibility for high-performance lithium-ion battery

Authors: Jian-hui Deng, Dong-qing Cao, Liang-jun Li, You-peng Chen, Guo-qing Zhang, Xiao-qing Yang

Published in: Journal of Materials Science | Issue 27/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Nowadays, commercial polypropylene (PP) and polyethylene separators in lithium-ion batteries (LIBs) still remain significant challenges of irreversible deformation, thermal shrinkage or even melting phenomena under external forces and high operating temperature, resulting in short circuit and thermal runaway of the LIBs. Herein, a kind of biphenyl polyimide (PI) nanofiber separator coated with SiO2 nanoparticles (SiO2–PI) is prepared via a simple and effective in situ dispersion method coupled with electrospinning technology and used as the separator of LIBs. The combination effect of the three-dimensional network and the extremely high porosity of 92% originating from the electrospinning technology as well as the well-dispersed SiO2 nanoparticles provides an ultrahigh mechanical flexibility, thermal stability, electrolyte wettability and ionic conductivity of the obtained SiO2–PI separator compared to the classical PP separator. These superior properties of the SiO2–PI separator endow the obtained LIBs with much enhanced electrochemical performances. For example, the initial specific discharge capacity of the SiO2–PI-based LIB is up to 158.4 mAh g−1 at 0.1 C and 125.7 mAh g−1 at 1 C, which can be retained at 90% after 100 cycles. These values, are much better than those of the PP-based LIB, i.e., 156.1 mAh g−1, 100.8 mAh g−1 and 76%, respectively.

Graphical abstract

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Zubi G, Dufo-López R, Carvalho M et al (2018) The lithium-ion battery: state of the art and future perspectives. Renew Sustain Energy Rev 89:292–308 Zubi G, Dufo-López R, Carvalho M et al (2018) The lithium-ion battery: state of the art and future perspectives. Renew Sustain Energy Rev 89:292–308
2.
go back to reference Cheng H, Shapter JG, Li Y et al (2021) Recent progress of advanced anode materials of lithium-ion batteries. J Energy Chem 57:451–468 Cheng H, Shapter JG, Li Y et al (2021) Recent progress of advanced anode materials of lithium-ion batteries. J Energy Chem 57:451–468
3.
go back to reference Karuppiah C, Hsieh Y, Beshahwured SL et al (2020) Poly (vinyl alcohol)/melamine composite containing LATP nanocrystals as a high-performing nanofibrous membrane separator for high-power, high-voltage lithium-ion batteries. ACS Appl Energy Mater 3(9):8487–8499 Karuppiah C, Hsieh Y, Beshahwured SL et al (2020) Poly (vinyl alcohol)/melamine composite containing LATP nanocrystals as a high-performing nanofibrous membrane separator for high-power, high-voltage lithium-ion batteries. ACS Appl Energy Mater 3(9):8487–8499
4.
go back to reference Patel A, Wilcox K, Li Z et al (2020) High modulus, thermally stable, and self-extinguishing aramid nanofiber separators. ACS Appl Mater Interfaces 12(23):25756–25766 Patel A, Wilcox K, Li Z et al (2020) High modulus, thermally stable, and self-extinguishing aramid nanofiber separators. ACS Appl Mater Interfaces 12(23):25756–25766
5.
go back to reference Zhang T, Tian T, Shen B et al (2019) Recent advances on biopolymer fiber based membranes for lithium-ion battery separators. Compos Commun 14:7–14 Zhang T, Tian T, Shen B et al (2019) Recent advances on biopolymer fiber based membranes for lithium-ion battery separators. Compos Commun 14:7–14
6.
go back to reference Pai J, Hsieh C, Lee C et al (2021) Engineering of electrospun polyimide separators for electrical double-layer capacitors and lithium-ion cells. J Power Sources 482:229054 Pai J, Hsieh C, Lee C et al (2021) Engineering of electrospun polyimide separators for electrical double-layer capacitors and lithium-ion cells. J Power Sources 482:229054
7.
go back to reference Costa CM, Lizundia E, Lanceros-Méndez S (2020) Polymers for advanced lithium-ion batteries: state of the art and future needs on polymers for the different battery components. Prog Energy Combust Sci 79:100846 Costa CM, Lizundia E, Lanceros-Méndez S (2020) Polymers for advanced lithium-ion batteries: state of the art and future needs on polymers for the different battery components. Prog Energy Combust Sci 79:100846
8.
go back to reference Kong L, Liu B, Ding J et al (2018) Robust polyetherimide fibrous membrane with crosslinked topographies fabricated via in-situ micro-melting and its application as superior lithium-ion battery separator with shutdown function. J Membr Sci 549:244–250 Kong L, Liu B, Ding J et al (2018) Robust polyetherimide fibrous membrane with crosslinked topographies fabricated via in-situ micro-melting and its application as superior lithium-ion battery separator with shutdown function. J Membr Sci 549:244–250
10.
go back to reference Dong G, Liu B, Sun G et al (2019) TiO2 nanoshell@polyimide nanofiber membrane prepared via a surface-alkaline-etching and in-situ complexation-hydrolysis strategy for advanced and safe LIB separator. J Membr Sci 577:249–257 Dong G, Liu B, Sun G et al (2019) TiO2 nanoshell@polyimide nanofiber membrane prepared via a surface-alkaline-etching and in-situ complexation-hydrolysis strategy for advanced and safe LIB separator. J Membr Sci 577:249–257
11.
go back to reference Chen W, Liu Y, Ma Y et al (2015) Improved performance of lithium ion battery separator enabled by co-electrospinnig polyimide/poly (vinylidene fluoride-co-hexafluoropropylene) and the incorporation of TiO2-(2-hydroxyethyl methacrylate). J Power Sources 273:1127–1135 Chen W, Liu Y, Ma Y et al (2015) Improved performance of lithium ion battery separator enabled by co-electrospinnig polyimide/poly (vinylidene fluoride-co-hexafluoropropylene) and the incorporation of TiO2-(2-hydroxyethyl methacrylate). J Power Sources 273:1127–1135
12.
go back to reference Arifeen WU, Kim M, Ting D et al (2020) Hybrid thermal resistant electrospun polymer membrane as the separator of lithium ion batteries. Mater Chem Phys 245:122780 Arifeen WU, Kim M, Ting D et al (2020) Hybrid thermal resistant electrospun polymer membrane as the separator of lithium ion batteries. Mater Chem Phys 245:122780
14.
go back to reference Zhou X, Yue L, Zhang J et al (2013) A core-shell structured polysulfonamide-based composite nonwoven towards high power lithium ion battery separator. J Electrochem Soc 160(9):A1341–A1347 Zhou X, Yue L, Zhang J et al (2013) A core-shell structured polysulfonamide-based composite nonwoven towards high power lithium ion battery separator. J Electrochem Soc 160(9):A1341–A1347
15.
go back to reference Li Z, Wang W, Han Y et al (2018) Ether modified poly (ether ether ketone) nonwoven membrane with excellent wettability and stability as a lithium ion battery separator. J Power Sources 378:176–183 Li Z, Wang W, Han Y et al (2018) Ether modified poly (ether ether ketone) nonwoven membrane with excellent wettability and stability as a lithium ion battery separator. J Power Sources 378:176–183
16.
go back to reference Ma X, Kolla P, Yang R et al (2017) Electrospun polyacrylonitrile nanofibrous membranes with varied fiber diameters and different membrane porosities as lithium-ion battery separators. Electrochim Acta 236:417–423 Ma X, Kolla P, Yang R et al (2017) Electrospun polyacrylonitrile nanofibrous membranes with varied fiber diameters and different membrane porosities as lithium-ion battery separators. Electrochim Acta 236:417–423
17.
go back to reference Orendorff CJ, Lambert TN, Chavez CA et al (2013) Polyester separators for lithium-ion cells: improving thermal stability and abuse tolerance. Adv Energy Mater 3(3):314–320 Orendorff CJ, Lambert TN, Chavez CA et al (2013) Polyester separators for lithium-ion cells: improving thermal stability and abuse tolerance. Adv Energy Mater 3(3):314–320
18.
go back to reference Shi C, Dai J, Huang S et al (2016) A simple method to prepare a polydopamine modified core-shell structure composite separator for application in high-safety lithium-ion batteries. J Membr Sci 518:168–177 Shi C, Dai J, Huang S et al (2016) A simple method to prepare a polydopamine modified core-shell structure composite separator for application in high-safety lithium-ion batteries. J Membr Sci 518:168–177
19.
go back to reference Sarkar A, Shrotriya P, Chandra A (2019) Modeling of separator failure in lithium-ion pouch cells under compression. J Power Sources 435:226756 Sarkar A, Shrotriya P, Chandra A (2019) Modeling of separator failure in lithium-ion pouch cells under compression. J Power Sources 435:226756
20.
go back to reference Yanilmaz M, Dirican M, Zhang X (2014) Evaluation of electrospun SiO2/nylon 6,6 nanofiber membranes as a thermally-stable separator for lithium-ion batteries. Electrochim Acta 133:501–508 Yanilmaz M, Dirican M, Zhang X (2014) Evaluation of electrospun SiO2/nylon 6,6 nanofiber membranes as a thermally-stable separator for lithium-ion batteries. Electrochim Acta 133:501–508
21.
go back to reference Li M, Sheng L, Xu R et al (2021) Enhanced the mechanical strength of polyimide (PI) nanofiber separator via PAALi binder for lithium ion battery. Compos Commun 24:100607 Li M, Sheng L, Xu R et al (2021) Enhanced the mechanical strength of polyimide (PI) nanofiber separator via PAALi binder for lithium ion battery. Compos Commun 24:100607
22.
go back to reference Lu Z, Sui F, Miao Y et al (2021) Polyimide separators for rechargeable batteries. J Energy Chem 58:170–197 Lu Z, Sui F, Miao Y et al (2021) Polyimide separators for rechargeable batteries. J Energy Chem 58:170–197
23.
go back to reference Ding Y, Hou H, Zhao Y et al (2016) Electrospun polyimide nanofibers and their applications. Prog Polym Sci 61:67–103 Ding Y, Hou H, Zhao Y et al (2016) Electrospun polyimide nanofibers and their applications. Prog Polym Sci 61:67–103
24.
go back to reference Sun G, Dong G, Kong L et al (2018) Robust polyimide nanofibrous membrane with porous-layer-coated morphology by in situ self-bonding and micro-crosslinking for lithium-ion battery separator. Nanoscale 10(47):22439–22447 Sun G, Dong G, Kong L et al (2018) Robust polyimide nanofibrous membrane with porous-layer-coated morphology by in situ self-bonding and micro-crosslinking for lithium-ion battery separator. Nanoscale 10(47):22439–22447
25.
go back to reference Wang L, Liu F, Shao W et al (2019) Graphite oxide dopping polyimide nanofiber membrane via electrospinning for high performance lithium-ion batteries. Composites Commun 16:150–157 Wang L, Liu F, Shao W et al (2019) Graphite oxide dopping polyimide nanofiber membrane via electrospinning for high performance lithium-ion batteries. Composites Commun 16:150–157
26.
go back to reference Dai J, Shi C, Li C et al (2016) A rational design of separator with substantially enhanced thermal features for lithium-ion batteries by the polydopamine–ceramic composite modification of polyolefin membranes. Energy Environ Sci 9(10):3252–3261 Dai J, Shi C, Li C et al (2016) A rational design of separator with substantially enhanced thermal features for lithium-ion batteries by the polydopamine–ceramic composite modification of polyolefin membranes. Energy Environ Sci 9(10):3252–3261
28.
go back to reference Shayapat J, Chung OH, Park JS (2015) Electrospun polyimide-composite separator for lithium-ion batteries. Electrochim Acta 170:110–121 Shayapat J, Chung OH, Park JS (2015) Electrospun polyimide-composite separator for lithium-ion batteries. Electrochim Acta 170:110–121
30.
go back to reference Cai M, Yuan D, Zhang X et al (2020) Lithium ion battery separator with improved performance via side-by-side bicomponent electrospinning of PVDF-HFP/PI followed by 3D thermal crosslinking. J Power Sources 461:228123 Cai M, Yuan D, Zhang X et al (2020) Lithium ion battery separator with improved performance via side-by-side bicomponent electrospinning of PVDF-HFP/PI followed by 3D thermal crosslinking. J Power Sources 461:228123
31.
go back to reference Li Y, Li Q, Tan Z (2019) A review of electrospun nanofiber-based separators for rechargeable lithium-ion batteries. J Power Sources 443:227262 Li Y, Li Q, Tan Z (2019) A review of electrospun nanofiber-based separators for rechargeable lithium-ion batteries. J Power Sources 443:227262
32.
go back to reference Xu K, Qin Y, Xu T et al (2019) Combining polymeric membranes with inorganic woven fabric: towards the continuous and affordable fabrication of a multifunctional separator for lithium-ion battery. J Membr Sci 592:117364 Xu K, Qin Y, Xu T et al (2019) Combining polymeric membranes with inorganic woven fabric: towards the continuous and affordable fabrication of a multifunctional separator for lithium-ion battery. J Membr Sci 592:117364
33.
go back to reference Zheng H, Wang Z, Shi L et al (2019) Enhanced thermal stability and lithium ion conductivity of polyethylene separator by coating colloidal SiO2 nanoparticles with porous shell. J Colloid Interface Sci 554:29–38 Zheng H, Wang Z, Shi L et al (2019) Enhanced thermal stability and lithium ion conductivity of polyethylene separator by coating colloidal SiO2 nanoparticles with porous shell. J Colloid Interface Sci 554:29–38
34.
go back to reference Yanilmaz M, Lu Y, Zhu J et al (2016) Silica/polyacrylonitrile hybrid nanofiber membrane separators via sol–gel and electrospinning techniques for lithium-ion batteries. J Power Sources 313:205–212 Yanilmaz M, Lu Y, Zhu J et al (2016) Silica/polyacrylonitrile hybrid nanofiber membrane separators via sol–gel and electrospinning techniques for lithium-ion batteries. J Power Sources 313:205–212
35.
go back to reference Yanilmaz M, Lu Y, Dirican M et al (2014) Nanoparticle-on-nanofiber hybrid membrane separators for lithium-ion batteries via combining electrospraying and electrospinning techniques. J Membr Sci 456:57–65 Yanilmaz M, Lu Y, Dirican M et al (2014) Nanoparticle-on-nanofiber hybrid membrane separators for lithium-ion batteries via combining electrospraying and electrospinning techniques. J Membr Sci 456:57–65
36.
go back to reference Cho J, Jung Y, Lee YS et al (2017) High performance separator coated with amino-functionalized SiO2 particles for safety enhanced lithium-ion batteries. J Membr Sci 535:151–157 Cho J, Jung Y, Lee YS et al (2017) High performance separator coated with amino-functionalized SiO2 particles for safety enhanced lithium-ion batteries. J Membr Sci 535:151–157
37.
go back to reference Topuz F, Abdulhamid MA, Holtzl T et al (2021) Nanofiber engineering of microporous polyimides through electrospinning: influence of electrospinning parameters and salt addition. Mater Des 198:109280 Topuz F, Abdulhamid MA, Holtzl T et al (2021) Nanofiber engineering of microporous polyimides through electrospinning: influence of electrospinning parameters and salt addition. Mater Des 198:109280
38.
go back to reference Allen J (2020) Review of polymers in the prevention of thermal runaway in lithium-ion batteries. Energy Rep 6:217–224 Allen J (2020) Review of polymers in the prevention of thermal runaway in lithium-ion batteries. Energy Rep 6:217–224
39.
go back to reference Wang Q, Mao B, Stoliarov SI et al (2019) A review of lithium ion battery failure mechanisms and fire prevention strategies. Prog Energy Combust Sci 73:95–131 Wang Q, Mao B, Stoliarov SI et al (2019) A review of lithium ion battery failure mechanisms and fire prevention strategies. Prog Energy Combust Sci 73:95–131
40.
go back to reference Sun G, Kong L, Liu B et al (2019) Ultrahigh-strength, nonflammable and high-wettability separators based on novel polyimide-core@polybenzimidazole-sheath nanofibers for advanced and safe lithium-ion batteries. J Membr Sci 582:132–139 Sun G, Kong L, Liu B et al (2019) Ultrahigh-strength, nonflammable and high-wettability separators based on novel polyimide-core@polybenzimidazole-sheath nanofibers for advanced and safe lithium-ion batteries. J Membr Sci 582:132–139
41.
go back to reference Sun G, Liu B, Niu H et al (2020) In situ welding: superb strength, good wettability and fire resistance tri-layer separator with shutdown function for high-safety lithium ion battery. J Membr Sci 595:117509 Sun G, Liu B, Niu H et al (2020) In situ welding: superb strength, good wettability and fire resistance tri-layer separator with shutdown function for high-safety lithium ion battery. J Membr Sci 595:117509
42.
go back to reference Tang Z, Li S, Li Y et al (2020) Lithium metal electrode protected by stiff and tough self-compacting separator. Nano Energy 69:104399 Tang Z, Li S, Li Y et al (2020) Lithium metal electrode protected by stiff and tough self-compacting separator. Nano Energy 69:104399
43.
go back to reference Kong L, Wang Y, Yu H et al (2019) In situ armoring: a robust, High-wettability, and fire-resistant hybrid Separator for advanced and safe batteries. ACS Appl Mater Interfaces 11(3):2978–2988 Kong L, Wang Y, Yu H et al (2019) In situ armoring: a robust, High-wettability, and fire-resistant hybrid Separator for advanced and safe batteries. ACS Appl Mater Interfaces 11(3):2978–2988
44.
go back to reference Costa CM, Lee Y, Kim J et al (2019) Recent advances on separator membranes for lithium-ion battery applications: from porous membranes to solid electrolytes. Energy Storage Mate 22:346–375 Costa CM, Lee Y, Kim J et al (2019) Recent advances on separator membranes for lithium-ion battery applications: from porous membranes to solid electrolytes. Energy Storage Mate 22:346–375
45.
go back to reference Wang Y, Wang S, Fang J et al (2017) A nano-silica modified polyimide nanofiber separator with enhanced thermal and wetting properties for high safety lithium-ion batteries. J Membr Sci 537:248–254 Wang Y, Wang S, Fang J et al (2017) A nano-silica modified polyimide nanofiber separator with enhanced thermal and wetting properties for high safety lithium-ion batteries. J Membr Sci 537:248–254
46.
go back to reference Yim T, Ha H, Park M et al (2013) A facile method for construction of a functionalized multi-layered separator to enhance cycle performance of lithium manganese oxide. RSC Adv 3(48):25657–25661 Yim T, Ha H, Park M et al (2013) A facile method for construction of a functionalized multi-layered separator to enhance cycle performance of lithium manganese oxide. RSC Adv 3(48):25657–25661
47.
go back to reference Cho W, Kim S, Song JH et al (2015) Improved electrochemical and thermal properties of nickel rich LiNi0.6Co0.2Mn0.2O2 cathode materials by SiO2 coating. J Power Sources 282:45–50 Cho W, Kim S, Song JH et al (2015) Improved electrochemical and thermal properties of nickel rich LiNi0.6Co0.2Mn0.2O2 cathode materials by SiO2 coating. J Power Sources 282:45–50
48.
go back to reference Yoo J, Shin W, Koo SM et al (2015) Lithium-ion polymer cells assembled with a reactive composite separator containing vinyl-functionalized SiO2 particles. J Power Sources 295:149–155 Yoo J, Shin W, Koo SM et al (2015) Lithium-ion polymer cells assembled with a reactive composite separator containing vinyl-functionalized SiO2 particles. J Power Sources 295:149–155
Metadata
Title
Electrospun nanofiber separator derived from nano-SiO2-modified polyimide with superior mechanical flexibility for high-performance lithium-ion battery
Authors
Jian-hui Deng
Dong-qing Cao
Liang-jun Li
You-peng Chen
Guo-qing Zhang
Xiao-qing Yang
Publication date
30-06-2021
Publisher
Springer US
Published in
Journal of Materials Science / Issue 27/2021
Print ISSN: 0022-2461
Electronic ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-021-06201-9

Other articles of this Issue 27/2021

Journal of Materials Science 27/2021 Go to the issue

Premium Partners