Skip to main content
Top
Published in: Journal of Computational Neuroscience 1/2017

27-09-2016

Emergence of gamma motor activity in an artificial neural network model of the corticospinal system

Authors: Bernard Grandjean, Marc A Maier

Published in: Journal of Computational Neuroscience | Issue 1/2017

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Muscle spindle discharge during active movement is a function of mechanical and neural parameters. Muscle length changes (and their derivatives) represent its primary mechanical, fusimotor drive its neural component. However, neither the action nor the function of fusimotor and in particular of γ-drive, have been clearly established, since γ-motor activity during voluntary, non-locomotor movements remains largely unknown. Here, using a computational approach, we explored whether γ-drive emerges in an artificial neural network model of the corticospinal system linked to a biomechanical antagonist wrist simulator. The wrist simulator included length-sensitive and γ-drive-dependent type Ia and type II muscle spindle activity. Network activity and connectivity were derived by a gradient descent algorithm to generate reciprocal, known target α-motor unit activity during wrist flexion-extension (F/E) movements. Two tasks were simulated: an alternating F/E task and a slow F/E tracking task. Emergence of γ-motor activity in the alternating F/E network was a function of α-motor unit drive: if muscle afferent (together with supraspinal) input was required for driving α-motor units, then γ-drive emerged in the form of α-γ coactivation, as predicted by empirical studies. In the slow F/E tracking network, γ-drive emerged in the form of α-γ dissociation and provided critical, bidirectional muscle afferent activity to the cortical network, containing known bidirectional target units. The model thus demonstrates the complementary aspects of spindle output and hence γ-drive: i) muscle spindle activity as a driving force of α-motor unit activity, and ii) afferent activity providing continuous sensory information, both of which crucially depend on γ-drive.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
go back to reference Appelberg, B., Jeneskog, T., & Johansson, H. (1975). Rubrospinal control of static and dynamic fusimotor neurones. Acta Physiologica Scandinavica, 95(4), 431–440.CrossRefPubMed Appelberg, B., Jeneskog, T., & Johansson, H. (1975). Rubrospinal control of static and dynamic fusimotor neurones. Acta Physiologica Scandinavica, 95(4), 431–440.CrossRefPubMed
go back to reference Bashor, D. P. (1998). A large-scale model of some spinal reflex circuits. Biological Cybernetics, 78(2), 147–157.CrossRefPubMed Bashor, D. P. (1998). A large-scale model of some spinal reflex circuits. Biological Cybernetics, 78(2), 147–157.CrossRefPubMed
go back to reference Buchanan, T. S., Lloyd, D. G., Manal, K., & Besier, T. F. (2004). Neuromusculoskeletal modeling: estimation of muscle forces and joint moments and movements from measurements of neural command. Journal of Applied Biomechanics, 20(4), 367–395.CrossRefPubMedPubMedCentral Buchanan, T. S., Lloyd, D. G., Manal, K., & Besier, T. F. (2004). Neuromusculoskeletal modeling: estimation of muscle forces and joint moments and movements from measurements of neural command. Journal of Applied Biomechanics, 20(4), 367–395.CrossRefPubMedPubMedCentral
go back to reference Clough, J. F., Kernell, D., & Phillips, C. G. (1968). The distribution of monosynaptic excitation from the pyramidal tract and from primary spindle afferents to motoneurones of the baboon's hand and forearm. Journal of Physiology, 198(1), 145–166.CrossRefPubMedPubMedCentral Clough, J. F., Kernell, D., & Phillips, C. G. (1968). The distribution of monosynaptic excitation from the pyramidal tract and from primary spindle afferents to motoneurones of the baboon's hand and forearm. Journal of Physiology, 198(1), 145–166.CrossRefPubMedPubMedCentral
go back to reference Clough, J. F., Phillips, C. G., & Sheridan, J. D. (1971). The short-latency projection from the baboon's motor cortex to fusimotor neurones of the forearm and hand. Journal of Physiology, 216(2), 257–279.CrossRefPubMedPubMedCentral Clough, J. F., Phillips, C. G., & Sheridan, J. D. (1971). The short-latency projection from the baboon's motor cortex to fusimotor neurones of the forearm and hand. Journal of Physiology, 216(2), 257–279.CrossRefPubMedPubMedCentral
go back to reference Colebatch, J. G., & Gandevia, S. C. (1989). The distribution of muscular weakness in upper motor neuron lesions affecting the arm. Brain, 112(Pt 3), 749–763.CrossRefPubMed Colebatch, J. G., & Gandevia, S. C. (1989). The distribution of muscular weakness in upper motor neuron lesions affecting the arm. Brain, 112(Pt 3), 749–763.CrossRefPubMed
go back to reference Dimitriou, M., & Edin, B. B. (2008). Discharges in human muscle spindle afferents during a key-pressing task. Journal of Physiology, 586(Pt 22), 5455–5470.CrossRefPubMedPubMedCentral Dimitriou, M., & Edin, B. B. (2008). Discharges in human muscle spindle afferents during a key-pressing task. Journal of Physiology, 586(Pt 22), 5455–5470.CrossRefPubMedPubMedCentral
go back to reference Edin, B. B., & Vallbo, A. B. (1990a). Dynamic response of human muscle spindle afferents to stretch. Journal of Neurophysiology, 63(6), 1297–1206.PubMed Edin, B. B., & Vallbo, A. B. (1990a). Dynamic response of human muscle spindle afferents to stretch. Journal of Neurophysiology, 63(6), 1297–1206.PubMed
go back to reference Edin, B. B., & Vallbo, A. B. (1990b). Muscle afferent responses to isometric contractions and relaxations in humans. Journal of Neurophysiology, 63(6), 1307–1313.PubMed Edin, B. B., & Vallbo, A. B. (1990b). Muscle afferent responses to isometric contractions and relaxations in humans. Journal of Neurophysiology, 63(6), 1307–1313.PubMed
go back to reference Fetz, E. E., Perlmutter, S. I., Maier, M. A., Flament, D., & Fortier, P. A. (1996). Response patterns and post-spike effects of premotor neurons in cervical spinal cord of behaving monkeys. Canadian Journal of Physiology and Pharmacology, 74, 531–546.CrossRefPubMed Fetz, E. E., Perlmutter, S. I., Maier, M. A., Flament, D., & Fortier, P. A. (1996). Response patterns and post-spike effects of premotor neurons in cervical spinal cord of behaving monkeys. Canadian Journal of Physiology and Pharmacology, 74, 531–546.CrossRefPubMed
go back to reference Flament, D., Fortier, P. A., & Fetz, E. E. (1992). Response patterns and postspike effects of peripheral afferents in dorsal root ganglia of behaving monkeys. Journal of Neurophysiology, 67(4), 875–889.PubMed Flament, D., Fortier, P. A., & Fetz, E. E. (1992). Response patterns and postspike effects of peripheral afferents in dorsal root ganglia of behaving monkeys. Journal of Neurophysiology, 67(4), 875–889.PubMed
go back to reference Freund, P., Schmidlin, E., Wannier, T., Bloch, J., Mir, A., Schwab, M. E., & Rouiller, E. M. (2006). Nogo-A-specific antibody treatment enhances sprouting and functional recovery after cervical lesion in adult primates. Nature Medicine, 12(7), 790–792.CrossRefPubMed Freund, P., Schmidlin, E., Wannier, T., Bloch, J., Mir, A., Schwab, M. E., & Rouiller, E. M. (2006). Nogo-A-specific antibody treatment enhances sprouting and functional recovery after cervical lesion in adult primates. Nature Medicine, 12(7), 790–792.CrossRefPubMed
go back to reference Grandjean, B., & Maier, M. A. (2014). Model-based prediction of fusimotor activity and its effect on muscle spindle activity during voluntary wrist movements. Journal of Computational Neuroscience, 37(1), 49–63. doi:10.1007/s10827-013-0491-3.CrossRefPubMed Grandjean, B., & Maier, M. A. (2014). Model-based prediction of fusimotor activity and its effect on muscle spindle activity during voluntary wrist movements. Journal of Computational Neuroscience, 37(1), 49–63. doi:10.​1007/​s10827-013-0491-3.CrossRefPubMed
go back to reference Grigg, P., & Preston, J. B. (1971). Baboon flexor and extensor fusimotor neurons and their modulation by motor cortex. Journal of Neurophysiology, 34(3), 428–436.PubMed Grigg, P., & Preston, J. B. (1971). Baboon flexor and extensor fusimotor neurons and their modulation by motor cortex. Journal of Neurophysiology, 34(3), 428–436.PubMed
go back to reference Houk, J., & Simon, W. (1967). Responses of Golgi tendon organs to forces applied to muscle tendon. Journal of Neurophysiology, 30, 1466–1481.PubMed Houk, J., & Simon, W. (1967). Responses of Golgi tendon organs to forces applied to muscle tendon. Journal of Neurophysiology, 30, 1466–1481.PubMed
go back to reference Hulliger, M. (1984). The mammalian muscle spindle and its central control. Reviews of Physiology, Biochemistry and Pharmacology, 101, 1–110.PubMed Hulliger, M. (1984). The mammalian muscle spindle and its central control. Reviews of Physiology, Biochemistry and Pharmacology, 101, 1–110.PubMed
go back to reference Hultborn, H., Lindström, S., & Wigström, H. (1979). On the function of recurrent inhibition in the spinal cord. Experimental Brain Research, 37(2), 399–403.CrossRefPubMed Hultborn, H., Lindström, S., & Wigström, H. (1979). On the function of recurrent inhibition in the spinal cord. Experimental Brain Research, 37(2), 399–403.CrossRefPubMed
go back to reference Jones, K. E., Wessberg, J., & Vallbo, A. B. (2001). Directional tuning of human forearm muscle afferents during voluntary wrist movements. Journal of Physiology, 536(Pt 2), 635–647.CrossRefPubMedPubMedCentral Jones, K. E., Wessberg, J., & Vallbo, A. B. (2001). Directional tuning of human forearm muscle afferents during voluntary wrist movements. Journal of Physiology, 536(Pt 2), 635–647.CrossRefPubMedPubMedCentral
go back to reference Kakuda, N., & Nagaoka, M. (1998). Dynamic response of human muscle spindle afferents to stretch during voluntary contraction. Journal of Physiology, 513(Pt 2), 621–628.CrossRefPubMedPubMedCentral Kakuda, N., & Nagaoka, M. (1998). Dynamic response of human muscle spindle afferents to stretch during voluntary contraction. Journal of Physiology, 513(Pt 2), 621–628.CrossRefPubMedPubMedCentral
go back to reference Kakuda, N., Vallbo, A. B., & Wessberg, J. (1996). Fusimotor and skeletomotor activities are increased with precision finger movement in man. Journal of Physiology, 492(Pt 3), 921–929.CrossRefPubMedPubMedCentral Kakuda, N., Vallbo, A. B., & Wessberg, J. (1996). Fusimotor and skeletomotor activities are increased with precision finger movement in man. Journal of Physiology, 492(Pt 3), 921–929.CrossRefPubMedPubMedCentral
go back to reference Koeze, T. H., Afshar, F., & Watkins, E. S. (1974). Fusimotor activation - effect of stimulation of the primate red nucleus. Confins de la Neurologie, 36(4–6), 341–346. Koeze, T. H., Afshar, F., & Watkins, E. S. (1974). Fusimotor activation - effect of stimulation of the primate red nucleus. Confins de la Neurologie, 36(4–6), 341–346.
go back to reference Lafargue, G., Paillard, J., Lamarre, Y., & Sirigu, A. (2003). Production and perception of grip force without proprioception: is there a sense of effort in deafferented subjects? European Journal of Neuroscience, 17(12), 2741–2749.CrossRefPubMed Lafargue, G., Paillard, J., Lamarre, Y., & Sirigu, A. (2003). Production and perception of grip force without proprioception: is there a sense of effort in deafferented subjects? European Journal of Neuroscience, 17(12), 2741–2749.CrossRefPubMed
go back to reference Lawrence, D. G., & Kuypers, H. G. (1968a). The functional organization of the motor system in the monkey. I. The effects of bilateral pyramidal lesions. Brain, 91(1), 1–14.CrossRefPubMed Lawrence, D. G., & Kuypers, H. G. (1968a). The functional organization of the motor system in the monkey. I. The effects of bilateral pyramidal lesions. Brain, 91(1), 1–14.CrossRefPubMed
go back to reference Lawrence, D. G., & Kuypers, H. G. (1968b). The functional organization of the motor system in the monkey. II. The effects of lesions of the descending brain-stem pathways. Brain, 91(1), 15–36.CrossRefPubMed Lawrence, D. G., & Kuypers, H. G. (1968b). The functional organization of the motor system in the monkey. II. The effects of lesions of the descending brain-stem pathways. Brain, 91(1), 15–36.CrossRefPubMed
go back to reference Lemon, R. N. (2008). Descending pathways in motor control. Annual Review of Neuroscience, 31, 195–218.CrossRefPubMed Lemon, R. N. (2008). Descending pathways in motor control. Annual Review of Neuroscience, 31, 195–218.CrossRefPubMed
go back to reference Lindberg, P. G., Skejø, P. H., Rounis, E., Nagy, Z., Schmitz, C., Wernegren, H., Bring, A., Engardt, M., Forssberg, H., & Borg, J. (2007). Wallerian degeneration of the corticofugal tracts in chronic stroke: a pilot study relating diffusion tensor imaging, transcranial magnetic stimulation, and hand function. Neurorehabilitation and Neural Repair, 21(6), 551–560.CrossRefPubMed Lindberg, P. G., Skejø, P. H., Rounis, E., Nagy, Z., Schmitz, C., Wernegren, H., Bring, A., Engardt, M., Forssberg, H., & Borg, J. (2007). Wallerian degeneration of the corticofugal tracts in chronic stroke: a pilot study relating diffusion tensor imaging, transcranial magnetic stimulation, and hand function. Neurorehabilitation and Neural Repair, 21(6), 551–560.CrossRefPubMed
go back to reference Loeb, G. E., Levine, W. S., & He, J. (1990). Understanding sensorimotor feedback through optimal control. Cold Spring Harbor Symposia on Quantitative Biology, 55, 791–803.CrossRefPubMed Loeb, G. E., Levine, W. S., & He, J. (1990). Understanding sensorimotor feedback through optimal control. Cold Spring Harbor Symposia on Quantitative Biology, 55, 791–803.CrossRefPubMed
go back to reference Maier, M. A., Illert, M., Kirkwood, P. A., Nielsen, J., & Lemon, R. N. (1998a). Does a C3-C4 propriospinal system transmit corticospinal excitation in the primate? An investigation in the macaque monkey. Journal of Physiology, 511(Pt 1), 191–212.CrossRefPubMedPubMedCentral Maier, M. A., Illert, M., Kirkwood, P. A., Nielsen, J., & Lemon, R. N. (1998a). Does a C3-C4 propriospinal system transmit corticospinal excitation in the primate? An investigation in the macaque monkey. Journal of Physiology, 511(Pt 1), 191–212.CrossRefPubMedPubMedCentral
go back to reference Maier, M. A., Perlmutter, S. I., & Fetz, E. E. (1998b). Response patterns and force relations of monkey spinal interneurons during active wrist movement. Journal of Neurophysiology, 80(5), 2495–2513.PubMed Maier, M. A., Perlmutter, S. I., & Fetz, E. E. (1998b). Response patterns and force relations of monkey spinal interneurons during active wrist movement. Journal of Neurophysiology, 80(5), 2495–2513.PubMed
go back to reference Maier, M. A., Shupe, L. E., & Fetz, E. E. (2005). Dynamic neural network models of the premotoneuronal circuitry controlling wrist movements in primates. Journal of Computational Neuroscience, 19(2), 125–146.CrossRefPubMed Maier, M. A., Shupe, L. E., & Fetz, E. E. (2005). Dynamic neural network models of the premotoneuronal circuitry controlling wrist movements in primates. Journal of Computational Neuroscience, 19(2), 125–146.CrossRefPubMed
go back to reference Manuel, M., & Zytnicki, D. (2011). Alpha, beta and gamma motoneurons: functional diversity in the motor system's final pathway. Journal of Integrative Neuroscience, 10(3), 243–276.CrossRefPubMed Manuel, M., & Zytnicki, D. (2011). Alpha, beta and gamma motoneurons: functional diversity in the motor system's final pathway. Journal of Integrative Neuroscience, 10(3), 243–276.CrossRefPubMed
go back to reference Nafati, G., Rossi-Durand, C., & Schmied, A. (2004). Proprioceptive control of human wrist extensor motor units during an attention-demanding task. Brain Research, 1018(2), 208–220.CrossRefPubMed Nafati, G., Rossi-Durand, C., & Schmied, A. (2004). Proprioceptive control of human wrist extensor motor units during an attention-demanding task. Brain Research, 1018(2), 208–220.CrossRefPubMed
go back to reference Nathan, P. W., & Smith, M. C. (1982). The rubrospinal and central tegmental tracts in man. Brain, 105(Pt 2), 223–269.CrossRefPubMed Nathan, P. W., & Smith, M. C. (1982). The rubrospinal and central tegmental tracts in man. Brain, 105(Pt 2), 223–269.CrossRefPubMed
go back to reference Polit, A., & Bizzi, E. (1979). Characteristics of motor programs underlying arm movements in monkeys. Journal of Neurophysiology, 42, 183–194.PubMed Polit, A., & Bizzi, E. (1979). Characteristics of motor programs underlying arm movements in monkeys. Journal of Neurophysiology, 42, 183–194.PubMed
go back to reference Prochazka, A. (1996). Proprioceptive feedback and movement regulation. In: Handbook of Physiology. Exercise: Regulation and Integration of Multiple Systems, sect. 12, part I, 1996. pp. 89–127, Bethesda, MD: Am Physiol Soc. Prochazka, A. (1996). Proprioceptive feedback and movement regulation. In: Handbook of Physiology. Exercise: Regulation and Integration of Multiple Systems, sect. 12, part I, 1996. pp. 89–127, Bethesda, MD: Am Physiol Soc.
go back to reference Prochazka, A., Hulliger, M., Zangger, P., & Appenteng, K. (1985). Fusimotor set’: new evidence for alpha-independent control of gamma-motoneurones during movement in the awake cat. Brain Research, 339, 136–140.CrossRefPubMed Prochazka, A., Hulliger, M., Zangger, P., & Appenteng, K. (1985). Fusimotor set’: new evidence for alpha-independent control of gamma-motoneurones during movement in the awake cat. Brain Research, 339, 136–140.CrossRefPubMed
go back to reference Rathelot, J. A., & Strick, P. L. (2006). Muscle representation in the macaque motor cortex: an anatomical perspective. Proceedings of the National Academy of Sciences USA, 103(21), 8257–8262. Rathelot, J. A., & Strick, P. L. (2006). Muscle representation in the macaque motor cortex: an anatomical perspective. Proceedings of the National Academy of Sciences USA, 103(21), 8257–8262.
go back to reference Ribot-Ciscar, E., Hospod, V., Roll, J. P., & Aimonetti, J. M. (2009). Fusimotor drive may adjust muscle spindle feedback to task requirements in humans. Journal of Neurophysiology, 101, 633–640.CrossRefPubMed Ribot-Ciscar, E., Hospod, V., Roll, J. P., & Aimonetti, J. M. (2009). Fusimotor drive may adjust muscle spindle feedback to task requirements in humans. Journal of Neurophysiology, 101, 633–640.CrossRefPubMed
go back to reference Riddle, C. N., Edgley, S. A., & Baker, S. N. (2009). Direct and indirect connections with upper limb motoneurons from the primate reticulospinal tract. Journal of Neuroscience, 29(15), 4993–4999.CrossRefPubMedPubMedCentral Riddle, C. N., Edgley, S. A., & Baker, S. N. (2009). Direct and indirect connections with upper limb motoneurons from the primate reticulospinal tract. Journal of Neuroscience, 29(15), 4993–4999.CrossRefPubMedPubMedCentral
go back to reference Rothwell, J. C., Gandevia, S. C., & Burke, D. (1990). Activation of fusimotor neurones by motor cortical stimulation in human subjects. Journal of Physiology (London), 431, 743–756.CrossRef Rothwell, J. C., Gandevia, S. C., & Burke, D. (1990). Activation of fusimotor neurones by motor cortical stimulation in human subjects. Journal of Physiology (London), 431, 743–756.CrossRef
go back to reference Sanes, J. N., Mauritz, K. H., Evarts, E. V., Dalakas, M. C., & Chu, A. (1984). Motor deficits in patients with large-fiber sensory neuropathy. Proceedings of the National Academy of Sciences USA, 81(3), 979–982.CrossRef Sanes, J. N., Mauritz, K. H., Evarts, E. V., Dalakas, M. C., & Chu, A. (1984). Motor deficits in patients with large-fiber sensory neuropathy. Proceedings of the National Academy of Sciences USA, 81(3), 979–982.CrossRef
go back to reference Sasaki, S., Isa, T., Pettersson, L. G., Alstermark, B., Naito, K., Yoshimura, K., Seki, K., & Ohki, Y. (2004). Dexterous finger movements in primate without monosynaptic corticomotoneuronal excitation. Journal of Neurophysiology, 92(5), 3142–3147.CrossRefPubMed Sasaki, S., Isa, T., Pettersson, L. G., Alstermark, B., Naito, K., Yoshimura, K., Seki, K., & Ohki, Y. (2004). Dexterous finger movements in primate without monosynaptic corticomotoneuronal excitation. Journal of Neurophysiology, 92(5), 3142–3147.CrossRefPubMed
go back to reference Schieber, M. H., & Thach, W. T. (1985). Trained slow tracking. II. Bidirectional discharge patterns of cerebellar nuclear, motor cortex, and spindle afferent neurons. Journal of Neurophysiology, 54(5), 1228–1270.PubMed Schieber, M. H., & Thach, W. T. (1985). Trained slow tracking. II. Bidirectional discharge patterns of cerebellar nuclear, motor cortex, and spindle afferent neurons. Journal of Neurophysiology, 54(5), 1228–1270.PubMed
go back to reference Scott, S. H. (2004). Optimal feedback control and the neural basis of volitional motor control. Nature review. Neuroscience, 5(7), 532–546.PubMed Scott, S. H. (2004). Optimal feedback control and the neural basis of volitional motor control. Nature review. Neuroscience, 5(7), 532–546.PubMed
go back to reference Shapovalov, A. I., Karamjan, O. A., Kurchavyi, G. G., & Repina, Z. A. (1971). Synaptic actions evoked from the red nucleus on the spinal alpha-motorneurons in the rhesus monkey. Brain Research, 32(2), 325–348.CrossRefPubMed Shapovalov, A. I., Karamjan, O. A., Kurchavyi, G. G., & Repina, Z. A. (1971). Synaptic actions evoked from the red nucleus on the spinal alpha-motorneurons in the rhesus monkey. Brain Research, 32(2), 325–348.CrossRefPubMed
go back to reference Taylor, A., Durbaba, R., Ellaway, P. H., & Rawlinson, S. (2006). Static and dynamic gamma-motor output to ankle flexor muscles during locomotion in the decerebrate cat. Journal of Physiology, 571(Pt 3), 711–723.CrossRefPubMedPubMedCentral Taylor, A., Durbaba, R., Ellaway, P. H., & Rawlinson, S. (2006). Static and dynamic gamma-motor output to ankle flexor muscles during locomotion in the decerebrate cat. Journal of Physiology, 571(Pt 3), 711–723.CrossRefPubMedPubMedCentral
go back to reference Vallbo, A. B. (1970). Discharge patterns in human muscle spindle afferents during isometric voluntary contractions. Acta Physiologica Scandinavica, 80(4), 552–566.CrossRefPubMed Vallbo, A. B. (1970). Discharge patterns in human muscle spindle afferents during isometric voluntary contractions. Acta Physiologica Scandinavica, 80(4), 552–566.CrossRefPubMed
go back to reference Vallbo, A. B., & Hulliger, M. (1981). Independence of skeletomotor and fusimotor activity in man? Brain Research, 223(1), 176–180.CrossRefPubMed Vallbo, A. B., & Hulliger, M. (1981). Independence of skeletomotor and fusimotor activity in man? Brain Research, 223(1), 176–180.CrossRefPubMed
go back to reference Williams, R. J., & Zipser, D. (1989). A learning algorithm for continually running recurrent neural networks. Neural Computation, 1(2), 270–280.CrossRef Williams, R. J., & Zipser, D. (1989). A learning algorithm for continually running recurrent neural networks. Neural Computation, 1(2), 270–280.CrossRef
go back to reference Zajac, F. E. (1989). Muscle and tendon: properties, models, scaling, and application to biomechanics and motor control. Critical Reviews in Biomedical Engineering, 17(4), 359–411.PubMed Zajac, F. E. (1989). Muscle and tendon: properties, models, scaling, and application to biomechanics and motor control. Critical Reviews in Biomedical Engineering, 17(4), 359–411.PubMed
Metadata
Title
Emergence of gamma motor activity in an artificial neural network model of the corticospinal system
Authors
Bernard Grandjean
Marc A Maier
Publication date
27-09-2016
Publisher
Springer US
Published in
Journal of Computational Neuroscience / Issue 1/2017
Print ISSN: 0929-5313
Electronic ISSN: 1573-6873
DOI
https://doi.org/10.1007/s10827-016-0627-3

Other articles of this Issue 1/2017

Journal of Computational Neuroscience 1/2017 Go to the issue

Premium Partner