Skip to main content
Top
Published in: Journal of Computational Neuroscience 1/2017

05-10-2016

Modeling the differentiation of A- and C-type baroreceptor firing patterns

Authors: Jacob Sturdy, Johnny T. Ottesen, Mette S. Olufsen

Published in: Journal of Computational Neuroscience | Issue 1/2017

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The baroreceptor neurons serve as the primary transducers of blood pressure for the autonomic nervous system and are thus critical in enabling the body to respond effectively to changes in blood pressure. These neurons can be separated into two types (A and C) based on the myelination of their axons and their distinct firing patterns elicited in response to specific pressure stimuli. This study has developed a comprehensive model of the afferent baroreceptor discharge built on physiological knowledge of arterial wall mechanics, firing rate responses to controlled pressure stimuli, and ion channel dynamics within the baroreceptor neurons. With this model, we were able to predict firing rates observed in previously published experiments in both A- and C-type neurons. These results were obtained by adjusting model parameters determining the maximal ion-channel conductances. The observed variation in the model parameters are hypothesized to correspond to physiological differences between A- and C-type neurons. In agreement with published experimental observations, our simulations suggest that a twofold lower potassium conductance in C-type neurons is responsible for the observed sustained basal firing, where as a tenfold higher mechanosensitive conductance is responsible for the greater firing rate observed in A-type neurons. A better understanding of the difference between the two neuron types can potentially be used to gain more insight about pathophysiology and treatment of diseases related to baroreflex function, e.g. in patients with autonomic failure, a syndrome that is difficult to diagnose in terms of its pathophysiology.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Footnotes
1
1 Seagard et al. refer to A-type as Type I, and C-type as Type II.
 
Literature
go back to reference Alfrey, K. D. (1997). A model of the aortic baroreceptor in rat. Houston, TX: PhD thesis, Rice University. Alfrey, K. D. (1997). A model of the aortic baroreceptor in rat. Houston, TX: PhD thesis, Rice University.
go back to reference Andresen, M. C., & Kunze, D. L. (1994). Nucleus Tractus Solitarius a gateway to neural circulatory control. Annual Review of Physiology, 56, 93–116.CrossRefPubMed Andresen, M. C., & Kunze, D. L. (1994). Nucleus Tractus Solitarius a gateway to neural circulatory control. Annual Review of Physiology, 56, 93–116.CrossRefPubMed
go back to reference Benarroch, E. E. (2008). The arterial baroreflex functional organization and involvement in neurologic disease. Neurology, 71, 1733–1738.CrossRefPubMed Benarroch, E. E. (2008). The arterial baroreflex functional organization and involvement in neurologic disease. Neurology, 71, 1733–1738.CrossRefPubMed
go back to reference Bezie, Y., Lamaziere, J. M., Laurent, S., Challande, P., Cunha, R. S., Bonnet, J., & Lacolley, P. (1998). Fibronectin expression and aortic wall elastic modulus in spontaneously hypertensive rats. Arteriosclerosis, Thrombosis, and Vascular Biology, 18, 1027–1034.CrossRefPubMed Bezie, Y., Lamaziere, J. M., Laurent, S., Challande, P., Cunha, R. S., Bonnet, J., & Lacolley, P. (1998). Fibronectin expression and aortic wall elastic modulus in spontaneously hypertensive rats. Arteriosclerosis, Thrombosis, and Vascular Biology, 18, 1027–1034.CrossRefPubMed
go back to reference Bolter, C. P., Turner, M. J., & Barrett, C. J. (2011). The relationship between aortic baroreceptor activity and arterial pressure is not monotonic. Journal Physiology Science, 61, 151–160.CrossRef Bolter, C. P., Turner, M. J., & Barrett, C. J. (2011). The relationship between aortic baroreceptor activity and arterial pressure is not monotonic. Journal Physiology Science, 61, 151–160.CrossRef
go back to reference Brederode, J. F. v., Seagard, J. L., Dean, C., Hopp, F. A., & Kampine, J. P. (1990). Experimental and modeling study of the excitability of carotid sinus baroreceptors. Circular Research, 66, 1510–1525.CrossRef Brederode, J. F. v., Seagard, J. L., Dean, C., Hopp, F. A., & Kampine, J. P. (1990). Experimental and modeling study of the excitability of carotid sinus baroreceptors. Circular Research, 66, 1510–1525.CrossRef
go back to reference Bronk, D. W., & Stella, G. (1932). Afferent impulses in the carotid sinus nerve I. The relation of the discharge from single end organs to arterial blood pressure. J Cell Comp Physiol, 1, 113–130.CrossRef Bronk, D. W., & Stella, G. (1932). Afferent impulses in the carotid sinus nerve I. The relation of the discharge from single end organs to arterial blood pressure. J Cell Comp Physiol, 1, 113–130.CrossRef
go back to reference Brown, A. M. (1980). Receptors under pressure. An update on baroreceptors. Circular Research, 42, 694–702.CrossRef Brown, A. M. (1980). Receptors under pressure. An update on baroreceptors. Circular Research, 42, 694–702.CrossRef
go back to reference Brown, A. M., Saum, W. R., & Tuley, F. H. (1976). A comparison of aortic baroreceptor discharge in normotensive and spontaneously hypertensive rats. Circular Research, 39, 488–496.CrossRef Brown, A. M., Saum, W. R., & Tuley, F. H. (1976). A comparison of aortic baroreceptor discharge in normotensive and spontaneously hypertensive rats. Circular Research, 39, 488–496.CrossRef
go back to reference Brown, A. M., Saum, W. R., & Yasui, S. (1978). Baroreceptor dynamics and their relationship to afferent fiber type and hypertension. Circular Research, 42, 694–702.CrossRef Brown, A. M., Saum, W. R., & Yasui, S. (1978). Baroreceptor dynamics and their relationship to afferent fiber type and hypertension. Circular Research, 42, 694–702.CrossRef
go back to reference Bugenhagen, S. M., Cowley, A. W., & Beard, D. A. (2010). Identifying physiological origins of baroreflex dysfunction in salt-sensitive hypertension in the Dahl SS rat. Physiology Genomics, 42, 23–41.CrossRef Bugenhagen, S. M., Cowley, A. W., & Beard, D. A. (2010). Identifying physiological origins of baroreflex dysfunction in salt-sensitive hypertension in the Dahl SS rat. Physiology Genomics, 42, 23–41.CrossRef
go back to reference Butterworth, E., Jardine, B. E., Raymond, G. M., Neal, M. L., & Bassingthwaighte, J. B. (2014). JSim, an open-source modeling system for data analysis F1000 Res. Butterworth, E., Jardine, B. E., Raymond, G. M., Neal, M. L., & Bassingthwaighte, J. B. (2014). JSim, an open-source modeling system for data analysis F1000 Res.
go back to reference Coleridge, H. M., Coleridge, J. C., & Schultz, H. D. (1987). Characteristics of C fibre baroreceptors in the carotid sinus of dogs. Journal Physiology, 394, 291–313.CrossRef Coleridge, H. M., Coleridge, J. C., & Schultz, H. D. (1987). Characteristics of C fibre baroreceptors in the carotid sinus of dogs. Journal Physiology, 394, 291–313.CrossRef
go back to reference Cunningham, J. T., Wachtel, R. E., & Abboud, F. M. (1997). Mechanical stimulation of neurites generates an inward current in putative aortic baroreceptor neurons in vitro. Brain Research, 757, 149–154.CrossRefPubMed Cunningham, J. T., Wachtel, R. E., & Abboud, F. M. (1997). Mechanical stimulation of neurites generates an inward current in putative aortic baroreceptor neurons in vitro. Brain Research, 757, 149–154.CrossRefPubMed
go back to reference Doan, T. N., Stephans, K., Ramirez, A. N., Glazebrook, P. A., Andresen, M. C., & Kunze, D. L. (2004). Differential distribution and function of hyperpolarization-activated channels in sensory neurons and mechanosensitive fibers. Journal of Neuroscience, 24, 3335– 3343.CrossRefPubMed Doan, T. N., Stephans, K., Ramirez, A. N., Glazebrook, P. A., Andresen, M. C., & Kunze, D. L. (2004). Differential distribution and function of hyperpolarization-activated channels in sensory neurons and mechanosensitive fibers. Journal of Neuroscience, 24, 3335– 3343.CrossRefPubMed
go back to reference Drummond, H. A., Price, M. P., Welsh, M. J., & Abboud, F. M. (1998). A molecular component of the arterial baroreceptor mechanotransducer. Neuron, 21, 1435–1441.CrossRefPubMed Drummond, H. A., Price, M. P., Welsh, M. J., & Abboud, F. M. (1998). A molecular component of the arterial baroreceptor mechanotransducer. Neuron, 21, 1435–1441.CrossRefPubMed
go back to reference Fan, W., Schild, J. H., & Andresen, M. C. (1999). Graded and dynamic reflex summation of myelinated and unmyelinated rat aortic baroreceptors. American Journal of Physiology, 277, 748–756. Fan, W., Schild, J. H., & Andresen, M. C. (1999). Graded and dynamic reflex summation of myelinated and unmyelinated rat aortic baroreceptors. American Journal of Physiology, 277, 748–756.
go back to reference Feng, B., Li, B. Y., Nauman, E. A., & Schild, J. H. (2007). Theoretical and electrophysiological evidence for axial loading about aortic baroreceptor nerve terminals in rats. American Journal of Physiology, 293, 3659–3672. Feng, B., Li, B. Y., Nauman, E. A., & Schild, J. H. (2007). Theoretical and electrophysiological evidence for axial loading about aortic baroreceptor nerve terminals in rats. American Journal of Physiology, 293, 3659–3672.
go back to reference Franz, G. N., Scher, A. M., & Ito, C. S. (1971). Small signal characteristics of carotid sinus baroreceptors of rabbits. American Journal of Physiology, 30, 527–535. Franz, G. N., Scher, A. M., & Ito, C. S. (1971). Small signal characteristics of carotid sinus baroreceptors of rabbits. American Journal of Physiology, 30, 527–535.
go back to reference Fung, Y. C. (1993). Biomechanics mechanical properties of living tissues, 2nd edn. New York, NY: Springer. Fung, Y. C. (1993). Biomechanics mechanical properties of living tissues, 2nd edn. New York, NY: Springer.
go back to reference Fung, Y. C. (1996). Biomechanics circulation,. New York, NY: Springer. Fung, Y. C. (1996). Biomechanics circulation,. New York, NY: Springer.
go back to reference Gallego, R., & Eyzaguirre, C. (1978). Membrane and action potential characteristics of a and c nodose ganglion cells studied in whole ganglia and in tissue slices. Journal of Neurophysiology, 41, 1217–1232.PubMed Gallego, R., & Eyzaguirre, C. (1978). Membrane and action potential characteristics of a and c nodose ganglion cells studied in whole ganglia and in tissue slices. Journal of Neurophysiology, 41, 1217–1232.PubMed
go back to reference Gilmore, J. P., & Tomomatsu, E. (1984). Comparison of carotid sinus baroreceptors in dogs, cats, monkeys, and rabbits. American Journal of Physiology, 247, 52–56. Gilmore, J. P., & Tomomatsu, E. (1984). Comparison of carotid sinus baroreceptors in dogs, cats, monkeys, and rabbits. American Journal of Physiology, 247, 52–56.
go back to reference Izhikevich, E. M. (2007). Dynamical systems in neuroscience. The geometry of excitability and bursting. Canbridge, MA: MIT press. Izhikevich, E. M. (2007). Dynamical systems in neuroscience. The geometry of excitability and bursting. Canbridge, MA: MIT press.
go back to reference Koch, C., & Segev, I. (1998). Methods in neuronal modeling from synapses to networks, 2nd edn. Cambridge, MA: MIT Press. Koch, C., & Segev, I. (1998). Methods in neuronal modeling from synapses to networks, 2nd edn. Cambridge, MA: MIT Press.
go back to reference Korner, P. I. (1971). Integrative neural cardiovascular control. Physiology of Review, 51, 312–367. Korner, P. I. (1971). Integrative neural cardiovascular control. Physiology of Review, 51, 312–367.
go back to reference Kraske, S., Cunningham, J. T., Hajduczok, G., Chapleau, M. W., Abboud, F. M., & Wachtel, R. E. (1998). Mechanosensitive ion channels in putative aortic baroreceptor neurons. American Journal of Physiology, 275, 1497–1501. Kraske, S., Cunningham, J. T., Hajduczok, G., Chapleau, M. W., Abboud, F. M., & Wachtel, R. E. (1998). Mechanosensitive ion channels in putative aortic baroreceptor neurons. American Journal of Physiology, 275, 1497–1501.
go back to reference Krauhs, J. M. (1979). Structure of rat aortic baroreceptors and their relationship to connective tissue. Journal of Neurocytology, 8, 401–414.CrossRefPubMed Krauhs, J. M. (1979). Structure of rat aortic baroreceptors and their relationship to connective tissue. Journal of Neurocytology, 8, 401–414.CrossRefPubMed
go back to reference Kunze, D. L., & Andresen, M. C. (1991). Arterial baroreceptors, excitation and modulation. In Zucker, I.H., & Gilmore, J.P. (Eds.) Reflex control of the circulation (pp. 139–164). Boca Raton, FL: CRC Press. Kunze, D. L., & Andresen, M. C. (1991). Arterial baroreceptors, excitation and modulation. In Zucker, I.H., & Gilmore, J.P. (Eds.) Reflex control of the circulation (pp. 139–164). Boca Raton, FL: CRC Press.
go back to reference Landgren, W. (1952). On the excitation mechanism of the carotid baroreceptors. Acta Physiology of Scandinavian, 26, 1–34.CrossRef Landgren, W. (1952). On the excitation mechanism of the carotid baroreceptors. Acta Physiology of Scandinavian, 26, 1–34.CrossRef
go back to reference Levick, J. R. (2010). An introduction to cardiovascular physiology. Levick, J. R. (2010). An introduction to cardiovascular physiology.
go back to reference Li, B. Y., Qiao, G. F., Feng, B., Zhao, R. B., Lu, Y. J., & Schild, J. H. (2008). Electrophysiological and neuroanatomical evidence of sexual dimorphism in aortic baroreceptor and vagal afferents in rat. American Journal Physiology, 295, 1301–1310. Li, B. Y., Qiao, G. F., Feng, B., Zhao, R. B., Lu, Y. J., & Schild, J. H. (2008). Electrophysiological and neuroanatomical evidence of sexual dimorphism in aortic baroreceptor and vagal afferents in rat. American Journal Physiology, 295, 1301–1310.
go back to reference Li, B. Y., Glazebrook, P., Kunze, D. L., & Schild, J. H. (2011). KCa1.1 channel contributes to cell excitability in unmyelinated but not myelinated rat vagal afferents. American Journal Physiology, 300, 1393–1403.CrossRef Li, B. Y., Glazebrook, P., Kunze, D. L., & Schild, J. H. (2011). KCa1.1 channel contributes to cell excitability in unmyelinated but not myelinated rat vagal afferents. American Journal Physiology, 300, 1393–1403.CrossRef
go back to reference Mahdi, A., Ottesen, J. T., & Olufsen, M. S. (2012). Qualitative features of a novel baroreceptor model. Proceedings International Workshop on Innovative Simulation for Health Care 89– 94. Mahdi, A., Ottesen, J. T., & Olufsen, M. S. (2012). Qualitative features of a novel baroreceptor model. Proceedings International Workshop on Innovative Simulation for Health Care 89– 94.
go back to reference Mahdi, A., Sturdy, J., Ottesen, J. T., & Olufsen, M. S. (2013). Modeling the afferent dynamics of the baroreflex control system. PLoS Computer Biology, 9, 1003384.CrossRef Mahdi, A., Sturdy, J., Ottesen, J. T., & Olufsen, M. S. (2013). Modeling the afferent dynamics of the baroreflex control system. PLoS Computer Biology, 9, 1003384.CrossRef
go back to reference MATLAB. (2015). version 8.5.0 (R2015a). Natick, MA: The MathWorks Inc. MATLAB. (2015). version 8.5.0 (R2015a). Natick, MA: The MathWorks Inc.
go back to reference McDonnell, M. D., & Ward, L. M. (2011). The benefits of noise in neural systems: bridging theory and experiment. Nature Reviews Neuroscience, 12, 415–426.CrossRefPubMed McDonnell, M. D., & Ward, L. M. (2011). The benefits of noise in neural systems: bridging theory and experiment. Nature Reviews Neuroscience, 12, 415–426.CrossRefPubMed
go back to reference Munch, P. A. (1992). Discharge characteristics and rapid resetting of autoactive aortic baroreceptors in rats. Journal Physiology, 458, 501–517.CrossRef Munch, P. A. (1992). Discharge characteristics and rapid resetting of autoactive aortic baroreceptors in rats. Journal Physiology, 458, 501–517.CrossRef
go back to reference Munch, P. A., & Brown, A. M. (1985). Role of vessel wall in acute resetting of aortic baroreceptors. American Journal Physiology, 248, 843–852. Munch, P. A., & Brown, A. M. (1985). Role of vessel wall in acute resetting of aortic baroreceptors. American Journal Physiology, 248, 843–852.
go back to reference Ottesen, J. T. (1997). Nonlinearity of baroreceptor nerves. Surveys on Mathematics for Industry, 7, 187–201. Ottesen, J. T. (1997). Nonlinearity of baroreceptor nerves. Surveys on Mathematics for Industry, 7, 187–201.
go back to reference Ottesen, J. T., Mehlsen, M. S., & Olufsen, J. (2014). Structural correlation method for model reduction and practical estimation of patient specific parameters illustrated on heart rate regulation. Mathematics Bioscience, 50–59. Ottesen, J. T., Mehlsen, M. S., & Olufsen, J. (2014). Structural correlation method for model reduction and practical estimation of patient specific parameters illustrated on heart rate regulation. Mathematics Bioscience, 50–59.
go back to reference Palma-Rigo, K., Bassi, J. K., Nguyen-Huu, T. P., Jackson, K. L., Davern, P. J., Chen, D., Elghozi, J. L., Thomas, W. G., Allen, A. M., Head, G. A., & responses, stress (2012). Angiotensin 1a receptors transfected into caudal ventrolateral medulla inhibit baroreflex gain. Cardiovascular Research, 96, 330–339.CrossRefPubMed Palma-Rigo, K., Bassi, J. K., Nguyen-Huu, T. P., Jackson, K. L., Davern, P. J., Chen, D., Elghozi, J. L., Thomas, W. G., Allen, A. M., Head, G. A., & responses, stress (2012). Angiotensin 1a receptors transfected into caudal ventrolateral medulla inhibit baroreflex gain. Cardiovascular Research, 96, 330–339.CrossRefPubMed
go back to reference Pettersen, K. H., Bugenhagen, S. M., Nauman, J., Beard, D. A., & Omholt, S. A. (2014). Arterial stiffening provides sufficient explanation for primary hypertension. PLoS Computer Biology, 10, 003634. Pettersen, K. H., Bugenhagen, S. M., Nauman, J., Beard, D. A., & Omholt, S. A. (2014). Arterial stiffening provides sufficient explanation for primary hypertension. PLoS Computer Biology, 10, 003634.
go back to reference Pickering, T. G. (2002). Orthostatic intolerance. Journal Clinical Hypertension, 4, 306–308.CrossRef Pickering, T. G. (2002). Orthostatic intolerance. Journal Clinical Hypertension, 4, 306–308.CrossRef
go back to reference Saigusa, T., & Arita, J. (2014). ANG II modulates both slow and rapid baroreflex responses of barosensitive bulbospinal neurons in the rabbit rostral ventrolateral medulla. American Journal Physiology, 306, 538–551. Saigusa, T., & Arita, J. (2014). ANG II modulates both slow and rapid baroreflex responses of barosensitive bulbospinal neurons in the rabbit rostral ventrolateral medulla. American Journal Physiology, 306, 538–551.
go back to reference Santiago, S., Ferrer, T., & Espinosa, M. L. (2000). Neurophysiological studies of thin myelinated (a delta) and unmyelinated (c) fibers: application to peripheral neuropathies. Neurophysiology Clinical, 30, 27–42.CrossRef Santiago, S., Ferrer, T., & Espinosa, M. L. (2000). Neurophysiological studies of thin myelinated (a delta) and unmyelinated (c) fibers: application to peripheral neuropathies. Neurophysiology Clinical, 30, 27–42.CrossRef
go back to reference Sato, T., Kawada, T., Shishido, T., Miyano, H., Inagaki, M., Miyashita, H., Sugimachi, M., Knuepfer, M. M., & Sunagawa, K. (1998). Dynamic transduction properties of in situ baroreceptors of rabbit aortic depressor nerve. American Journal of Physiology, 274, 358–365. Sato, T., Kawada, T., Shishido, T., Miyano, H., Inagaki, M., Miyashita, H., Sugimachi, M., Knuepfer, M. M., & Sunagawa, K. (1998). Dynamic transduction properties of in situ baroreceptors of rabbit aortic depressor nerve. American Journal of Physiology, 274, 358–365.
go back to reference Saum, W. R., Brown, A. M., & Tuley, F. H. (1976). An electrogenic sodium pump and baroreceptor function in normotensive and spontaneously hypertensive rats. Circular Research, 39, 497– 505.CrossRef Saum, W. R., Brown, A. M., & Tuley, F. H. (1976). An electrogenic sodium pump and baroreceptor function in normotensive and spontaneously hypertensive rats. Circular Research, 39, 497– 505.CrossRef
go back to reference Schild, J. H., & Kunze, D. L. (2012). Differential distribution of voltage-gated channels in myelinated and unmyelinated baroreceptor afferents. Autonomous of Neuroscience, 172, 4–12.CrossRef Schild, J. H., & Kunze, D. L. (2012). Differential distribution of voltage-gated channels in myelinated and unmyelinated baroreceptor afferents. Autonomous of Neuroscience, 172, 4–12.CrossRef
go back to reference Schild, J. H., Clark, J. W., Hay, M., Mendelowitz, D., Andresen, M. C., & Kunze, D. L. (1994). A- and C-type rat nodose sensory neurons: model interpretations of dynamic discharge characteristics. Journal of Neurophysiology, 71, 2338–2358.PubMed Schild, J. H., Clark, J. W., Hay, M., Mendelowitz, D., Andresen, M. C., & Kunze, D. L. (1994). A- and C-type rat nodose sensory neurons: model interpretations of dynamic discharge characteristics. Journal of Neurophysiology, 71, 2338–2358.PubMed
go back to reference Seagard, J. L., Brederode, J. F. V., Dean, C., Hopp, F. A., Gallenberg, L. A., & Kampine, J. P. (1990). Firing characteristics of single-fiber carotid sinus baroreceptors. Circular Research, 66, 1499– 1509.CrossRef Seagard, J. L., Brederode, J. F. V., Dean, C., Hopp, F. A., Gallenberg, L. A., & Kampine, J. P. (1990). Firing characteristics of single-fiber carotid sinus baroreceptors. Circular Research, 66, 1499– 1509.CrossRef
go back to reference Sharma, R. V., Chapleau, M. W., Hajduczok, G., Wachtel, R. E., Waite, L. J., Bhalla, R. C., & Abboud, F. M. (1995). Mechanical stimulation increases intracellular calcium concentration in nodose sensory neurons. Neuroscience, 66, 433–441.CrossRefPubMed Sharma, R. V., Chapleau, M. W., Hajduczok, G., Wachtel, R. E., Waite, L. J., Bhalla, R. C., & Abboud, F. M. (1995). Mechanical stimulation increases intracellular calcium concentration in nodose sensory neurons. Neuroscience, 66, 433–441.CrossRefPubMed
go back to reference Snitsarev, V., Whiteis, C. A., Abboud, F. M., & Chapleau, M. W. (2002). Mechanosensory transduction of vagal and baroreceptor afferents revealed by study of isolated nodose neurons in culture. Autonomous of Neuroscience, 98, 59–63.CrossRef Snitsarev, V., Whiteis, C. A., Abboud, F. M., & Chapleau, M. W. (2002). Mechanosensory transduction of vagal and baroreceptor afferents revealed by study of isolated nodose neurons in culture. Autonomous of Neuroscience, 98, 59–63.CrossRef
go back to reference Solanka, L., Van Rossum, M. C., & Nolan, M. F. (2015). Noise promotes independent control of gamma oscillations and grid firing within recurrent attractor networks. Elife, 4, 10–755406444.CrossRef Solanka, L., Van Rossum, M. C., & Nolan, M. F. (2015). Noise promotes independent control of gamma oscillations and grid firing within recurrent attractor networks. Elife, 4, 10–755406444.CrossRef
go back to reference Spickler, J. W. (1968). Transduction properties of the carotid sinus baroreceptors. Chicago, IL: PhD thesis, Northwestern University. Spickler, J. W. (1968). Transduction properties of the carotid sinus baroreceptors. Chicago, IL: PhD thesis, Northwestern University.
go back to reference Spickler, J. W., & Kezdi, P. (1967). Dynamic response characteristics of carotid sinus baroreceptors. American Journal of Physiology, 212, 472–476.PubMed Spickler, J. W., & Kezdi, P. (1967). Dynamic response characteristics of carotid sinus baroreceptors. American Journal of Physiology, 212, 472–476.PubMed
go back to reference Thomas, G. D. (2011). Neural control of the circulation. Advance Physiology of Education, 35, 28–32.CrossRef Thomas, G. D. (2011). Neural control of the circulation. Advance Physiology of Education, 35, 28–32.CrossRef
go back to reference Tomomatsu, E., Huffman, L., & Gilmore, J. P. (1983). Carotid sinus baroreceptor activity in the nonhuman primate. Circular Research, 52, 380–386.CrossRef Tomomatsu, E., Huffman, L., & Gilmore, J. P. (1983). Carotid sinus baroreceptor activity in the nonhuman primate. Circular Research, 52, 380–386.CrossRef
go back to reference Valdez-Jasso, D., Haider, M. A., Banks, H. T., Santana, D. B., German, Y. Z., Armentano, R. L., & Olufsen, M. S. (2009a). Analysis of viscoelastic wall properties in ovine arteries. IEEE Translation Biomedical Engineering, 56, 210–219. Valdez-Jasso, D., Haider, M. A., Banks, H. T., Santana, D. B., German, Y. Z., Armentano, R. L., & Olufsen, M. S. (2009a). Analysis of viscoelastic wall properties in ovine arteries. IEEE Translation Biomedical Engineering, 56, 210–219.
go back to reference Valdez-Jasso, D., Bia, D., Zocalo, Y., Armentano, R. L., Banks, H. T., Haider, M. A., & Olufsen, M. S. (2009b). Viscoelastic models for passive arterial wall dynamics. Advance Application of Mathematics in Mechanics, 1, 151–165. Valdez-Jasso, D., Bia, D., Zocalo, Y., Armentano, R. L., Banks, H. T., Haider, M. A., & Olufsen, M. S. (2009b). Viscoelastic models for passive arterial wall dynamics. Advance Application of Mathematics in Mechanics, 1, 151–165.
go back to reference Valdez-Jasso, D., Bia, D., Zocalo, Y., Armentano, R. L., Haider, M. A., & Olufsen, M. S. (2011). Linear and nonlinear viscoelastic modeling of aorta and carotid pressure area dynamics under in-vivo and ex-vivo conditions. Annals Biomedical of Engineering, 39, 1438–1456.CrossRef Valdez-Jasso, D., Bia, D., Zocalo, Y., Armentano, R. L., Haider, M. A., & Olufsen, M. S. (2011). Linear and nonlinear viscoelastic modeling of aorta and carotid pressure area dynamics under in-vivo and ex-vivo conditions. Annals Biomedical of Engineering, 39, 1438–1456.CrossRef
go back to reference Vliet, B. N. V., & West, N. H. (1987). Response characteristics of pulmocutaneous arterial baroreceptors in the toad, Bufo Marinus. Journal of Physiology, 388, 55–70.CrossRefPubMedPubMedCentral Vliet, B. N. V., & West, N. H. (1987). Response characteristics of pulmocutaneous arterial baroreceptors in the toad, Bufo Marinus. Journal of Physiology, 388, 55–70.CrossRefPubMedPubMedCentral
go back to reference Wang, W., Chen, J. S., & Zucker, I. H. (1991). Postexcitatory depression of baroreceptors in dogs with experimental heart failure. American Journal of Physiology, 260, 1160–1165. Wang, W., Chen, J. S., & Zucker, I. H. (1991). Postexcitatory depression of baroreceptors in dogs with experimental heart failure. American Journal of Physiology, 260, 1160–1165.
Metadata
Title
Modeling the differentiation of A- and C-type baroreceptor firing patterns
Authors
Jacob Sturdy
Johnny T. Ottesen
Mette S. Olufsen
Publication date
05-10-2016
Publisher
Springer US
Published in
Journal of Computational Neuroscience / Issue 1/2017
Print ISSN: 0929-5313
Electronic ISSN: 1573-6873
DOI
https://doi.org/10.1007/s10827-016-0624-6

Other articles of this Issue 1/2017

Journal of Computational Neuroscience 1/2017 Go to the issue

Premium Partner