Skip to main content
Top

2012 | OriginalPaper | Chapter

9. Emerging Trends in Water Photoelectrolysis

Author : Scott C. Warren

Published in: Photoelectrochemical Hydrogen Production

Publisher: Springer US

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The prospect of future progress in water photoelectrolysis critically depends upon the discovery and application of new materials, structures, and device architectures. Developments in closely related areas, such as solar cells, provide ample guidance for the application of new concepts in nanomaterials and nanophotonics to the challenges confronting electrochemical energy conversion devices. This review examines opportunities that have emerged as a consequence of new synthetic routes for nanostructured semiconductors and metals. Design criteria for building efficient devices are considered for semiconductors with low mobility and short carrier lifetimes. It is then shown how these design criteria can be modified by exploiting the plasmon resonance of metallic nanostructures.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Holstein, T.: Studies of polaron motion. Part I. The molecular-crystal model. Ann. Phys. 8, 325–342 (1959)CrossRef Holstein, T.: Studies of polaron motion. Part I. The molecular-crystal model. Ann. Phys. 8, 325–342 (1959)CrossRef
2.
go back to reference Bosman, A.J., van Daal, H.J.: Small-polaron versus band conduction in some transition-metal oxides. Adv. Phys. 19, 1–117 (1970)CrossRef Bosman, A.J., van Daal, H.J.: Small-polaron versus band conduction in some transition-metal oxides. Adv. Phys. 19, 1–117 (1970)CrossRef
3.
go back to reference Marcus, R.A.: Chemical and electrochemical electron-transfer theory. Annu. Rev. Phys. Chem. 15, 155–196 (1964)CrossRef Marcus, R.A.: Chemical and electrochemical electron-transfer theory. Annu. Rev. Phys. Chem. 15, 155–196 (1964)CrossRef
4.
go back to reference Shluger, A.L., Stoneham, A.M.: Small polarons in real crystals: concepts and problems. J. Phys. D Condens. Mat. 5, 3049–3086 (1993)CrossRef Shluger, A.L., Stoneham, A.M.: Small polarons in real crystals: concepts and problems. J. Phys. D Condens. Mat. 5, 3049–3086 (1993)CrossRef
5.
go back to reference Austin, I.G., Mott, N.F.: Polarons in crystalline and non-crystalline materials. Adv. Phys. 18, 41–102 (1969)CrossRef Austin, I.G., Mott, N.F.: Polarons in crystalline and non-crystalline materials. Adv. Phys. 18, 41–102 (1969)CrossRef
6.
go back to reference Gärtner, W.W.: Depletion-layer photoeffects in semiconductors. Phys. Rev. 116, 84–87 (1959)CrossRef Gärtner, W.W.: Depletion-layer photoeffects in semiconductors. Phys. Rev. 116, 84–87 (1959)CrossRef
7.
go back to reference Butler, M.A.: Photoelectrolysis and physical properties of the semiconducting electrode WO3. J. Appl. Phys. 48, 1914–1920 (1977)CrossRef Butler, M.A.: Photoelectrolysis and physical properties of the semiconducting electrode WO3. J. Appl. Phys. 48, 1914–1920 (1977)CrossRef
8.
go back to reference Jarrett, H.S.: Photocurrent conversion efficiency in a schottky barrier. J. Appl. Phys. 52, 4681–4689 (1981)CrossRef Jarrett, H.S.: Photocurrent conversion efficiency in a schottky barrier. J. Appl. Phys. 52, 4681–4689 (1981)CrossRef
9.
go back to reference Sze, S.M., Ng, K.K.: Physics of Semiconductor Devices. Wiley, Hoboken (2007) Sze, S.M., Ng, K.K.: Physics of Semiconductor Devices. Wiley, Hoboken (2007)
10.
go back to reference Miller, R.J.D., Memming, R.: Fundamentals in photoelectrochemistry. In: Archer, M.D., Nozik, A.J. (eds.) Nanostructured and Photoelectrochemical Systems For Solar Photon Conversion, pp. 760. Imperial College Press, London (2008) Miller, R.J.D., Memming, R.: Fundamentals in photoelectrochemistry. In: Archer, M.D., Nozik, A.J. (eds.) Nanostructured and Photoelectrochemical Systems For Solar Photon Conversion, pp. 760. Imperial College Press, London (2008)
11.
go back to reference Shockley, W., Read, W.T.: Statistics of the recombinations of holes and electrons. Phys. Rev. 87, 835 (1952)MATHCrossRef Shockley, W., Read, W.T.: Statistics of the recombinations of holes and electrons. Phys. Rev. 87, 835 (1952)MATHCrossRef
12.
go back to reference Emin, D.: Lattice relaxation and small-polaron hopping motion. Phys. Rev. B 4, 3639–3651 (1971)CrossRef Emin, D.: Lattice relaxation and small-polaron hopping motion. Phys. Rev. B 4, 3639–3651 (1971)CrossRef
13.
go back to reference Emin, D., Holstein, T.: Adiabatic theory of an electron in a deformable continuum. Phys. Rev. Lett. 36, 323 (1976)CrossRef Emin, D., Holstein, T.: Adiabatic theory of an electron in a deformable continuum. Phys. Rev. Lett. 36, 323 (1976)CrossRef
14.
go back to reference Dell'Oca, C.J., Fleming, P.J.: Initial stages of oxide growth and pore initiation in the porous anodization of aluminum. J. Electrochem. Soc. 123, 1487–1493 (1976)CrossRef Dell'Oca, C.J., Fleming, P.J.: Initial stages of oxide growth and pore initiation in the porous anodization of aluminum. J. Electrochem. Soc. 123, 1487–1493 (1976)CrossRef
15.
go back to reference Parkhutik, V.P., Shershulsky, V.I.: Theoretical modeling of porous oxide growth on aluminum. J. Phys. D Appl. Phys. 25, 1258–1263 (1992)CrossRef Parkhutik, V.P., Shershulsky, V.I.: Theoretical modeling of porous oxide growth on aluminum. J. Phys. D Appl. Phys. 25, 1258–1263 (1992)CrossRef
16.
go back to reference Masuda, H., Fukuda, K.: Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina. Science 268, 1466–1468 (1995)CrossRef Masuda, H., Fukuda, K.: Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina. Science 268, 1466–1468 (1995)CrossRef
17.
go back to reference Mor, G.K., Varghese, O.K., Paulose, M., Shankar, K., Grimes, C.A.: A review on highly ordered, vertically oriented TiO2 nanotube arrays: fabrication, materials properties, and solar energy applications. Solar Energ. Mater. Solar Cells 90, 2011–2075 (2006)CrossRef Mor, G.K., Varghese, O.K., Paulose, M., Shankar, K., Grimes, C.A.: A review on highly ordered, vertically oriented TiO2 nanotube arrays: fabrication, materials properties, and solar energy applications. Solar Energ. Mater. Solar Cells 90, 2011–2075 (2006)CrossRef
18.
go back to reference Gong, D., Grimes, C.A., Varghese, O.K., Hu, W., Singh, R.S., Chen, Z., Dickey, E.C.: Titanium oxide nanotube arrays prepared by anodic oxidation. J. Mater. Res. 16, 3331–3334 (2001)CrossRef Gong, D., Grimes, C.A., Varghese, O.K., Hu, W., Singh, R.S., Chen, Z., Dickey, E.C.: Titanium oxide nanotube arrays prepared by anodic oxidation. J. Mater. Res. 16, 3331–3334 (2001)CrossRef
19.
go back to reference Sieber, I., Kannan, B., Schmuki, P.: Self-assembled porous tantalum oxide prepared in H2SO4/HF electrolytes. Electrochem. Solid-State Lett. 8, J10–J12 (2005)CrossRef Sieber, I., Kannan, B., Schmuki, P.: Self-assembled porous tantalum oxide prepared in H2SO4/HF electrolytes. Electrochem. Solid-State Lett. 8, J10–J12 (2005)CrossRef
20.
go back to reference Vijayavalli, R., Vasudeva Rao, P.V., Udupa, H.V.K.: Effect of ac superimposition on dc in the cathodic polarization of anodized cadmium in alkaline solution. Electrochim. Acta 16, 1197–1200 (1971)CrossRef Vijayavalli, R., Vasudeva Rao, P.V., Udupa, H.V.K.: Effect of ac superimposition on dc in the cathodic polarization of anodized cadmium in alkaline solution. Electrochim. Acta 16, 1197–1200 (1971)CrossRef
21.
go back to reference Sieber, I., Hildebrand, H., Friedrich, A., Schmuki, P.: Formation of self-organized niobium porous oxide on niobium. Electrochem. Comm. 7, 97–100 (2005)CrossRef Sieber, I., Hildebrand, H., Friedrich, A., Schmuki, P.: Formation of self-organized niobium porous oxide on niobium. Electrochem. Comm. 7, 97–100 (2005)CrossRef
22.
go back to reference Hsiao, H.-Y., Tsai, W.-T.: Characterization of anodic films formed on AZ91D magnesium alloy. Surf. Coat. Technol. 190, 299–308 (2005)CrossRef Hsiao, H.-Y., Tsai, W.-T.: Characterization of anodic films formed on AZ91D magnesium alloy. Surf. Coat. Technol. 190, 299–308 (2005)CrossRef
23.
go back to reference Tsuchiya, H., Macak, J.M., Sieber, I., Taveira, L., Ghicov, A., Sirotna, K., Schmuki, P.: Self-organized porous WO3 formed in NaF electrolytes. Electrochem. Commun. 7, 295–298 (2005)CrossRef Tsuchiya, H., Macak, J.M., Sieber, I., Taveira, L., Ghicov, A., Sirotna, K., Schmuki, P.: Self-organized porous WO3 formed in NaF electrolytes. Electrochem. Commun. 7, 295–298 (2005)CrossRef
24.
go back to reference Metikos-Hukovic, M., Reseti’c, A., Gvozdic, V.: Behaviour of tin as a valve metal. Electrochim. Acta 40, 1777–1779 (1995)CrossRef Metikos-Hukovic, M., Reseti’c, A., Gvozdic, V.: Behaviour of tin as a valve metal. Electrochim. Acta 40, 1777–1779 (1995)CrossRef
25.
go back to reference Prakasam, H.E., Varghese, O.K., Paulose, M., Mor, G.K., Grimes, C.A.: Synthesis and photoelectrochemical properties of nanoporous iron (III) oxide by potentiostatic anodization. Nanotechnology 17, 4285–4291 (2006)CrossRef Prakasam, H.E., Varghese, O.K., Paulose, M., Mor, G.K., Grimes, C.A.: Synthesis and photoelectrochemical properties of nanoporous iron (III) oxide by potentiostatic anodization. Nanotechnology 17, 4285–4291 (2006)CrossRef
26.
go back to reference Wales, C.P., Burbank, J.: Oxides on the silver electrode. J. Electrochem. Soc. 106, 885–890 (1959)CrossRef Wales, C.P., Burbank, J.: Oxides on the silver electrode. J. Electrochem. Soc. 106, 885–890 (1959)CrossRef
27.
go back to reference Föll, H., Christophersen, M., Carstensen, J., Hasse, G.: Formation and application of porous silicon. Mater. Sci. Eng. R 39, 93–141 (2002)CrossRef Föll, H., Christophersen, M., Carstensen, J., Hasse, G.: Formation and application of porous silicon. Mater. Sci. Eng. R 39, 93–141 (2002)CrossRef
28.
go back to reference Mohapatra, S.K., John, S.E., Banerjee, S., Misra, M.: Water photooxidation by smooth and ultrathin α-Fe2O3 nanotube arrays. Chem. Mater. 21, 3048–3055 (2009)CrossRef Mohapatra, S.K., John, S.E., Banerjee, S., Misra, M.: Water photooxidation by smooth and ultrathin α-Fe2O3 nanotube arrays. Chem. Mater. 21, 3048–3055 (2009)CrossRef
29.
go back to reference Masuda, H., Hasegwa, F., Ono, S.: Self-ordering of cell arrangement of anodic porous alumina formed in sulfuric acid solution. J. Electrochem. Soc. 144, L127–L130 (1997)CrossRef Masuda, H., Hasegwa, F., Ono, S.: Self-ordering of cell arrangement of anodic porous alumina formed in sulfuric acid solution. J. Electrochem. Soc. 144, L127–L130 (1997)CrossRef
30.
go back to reference Varghese, O.K., Paulose, M., Shankar, K., Mor, G.K., Grimes, C.A.: Water-photolysis properties of micron-length highly-ordered titania nanotube-arrays. J. Nanosci. Nanotechnol. 5, 1158–1165 (2005)CrossRef Varghese, O.K., Paulose, M., Shankar, K., Mor, G.K., Grimes, C.A.: Water-photolysis properties of micron-length highly-ordered titania nanotube-arrays. J. Nanosci. Nanotechnol. 5, 1158–1165 (2005)CrossRef
31.
go back to reference Lee, W., Ji, R., Gosele, U., Nielsch, K.: Fast fabrication of long-range ordered porous alumina membranes by hard anodization. Nat. Mater. 5, 741–747 (2006)CrossRef Lee, W., Ji, R., Gosele, U., Nielsch, K.: Fast fabrication of long-range ordered porous alumina membranes by hard anodization. Nat. Mater. 5, 741–747 (2006)CrossRef
32.
go back to reference Odier, P., Baumard, J.F., Panis, D., Anthony, A.M.: Thermal emission, electrical conductivity, and hall effect for defects study at high temperature (T ≥ 1250 K) in refractory oxides (Y2O3, TiO2). J. Solid State Chem. 12, 324–328 (1975)CrossRef Odier, P., Baumard, J.F., Panis, D., Anthony, A.M.: Thermal emission, electrical conductivity, and hall effect for defects study at high temperature (T ≥ 1250 K) in refractory oxides (Y2O3, TiO2). J. Solid State Chem. 12, 324–328 (1975)CrossRef
33.
go back to reference Bak, T., Nowotny, M.K., Sheppard, L.R., Nowotny, J.: Mobility of electronic charge carriers in titanium dioxide. J. Phys. Chem. C 112, 12981–12987 (2008)CrossRef Bak, T., Nowotny, M.K., Sheppard, L.R., Nowotny, J.: Mobility of electronic charge carriers in titanium dioxide. J. Phys. Chem. C 112, 12981–12987 (2008)CrossRef
34.
go back to reference Bak, T., Nowotny, J., Rekas, M., Sorrell, C.C.: Defect chemistry and semiconducting properties of titanium dioxide: III. Mobility of electronic charge carriers. J. Phys. Chem. Solids 64, 1069–1087 (2003)CrossRef Bak, T., Nowotny, J., Rekas, M., Sorrell, C.C.: Defect chemistry and semiconducting properties of titanium dioxide: III. Mobility of electronic charge carriers. J. Phys. Chem. Solids 64, 1069–1087 (2003)CrossRef
35.
go back to reference Kerisit, S., Deskins, N.A., Rosso, K.M., Dupuis, M.: A shell model for atomistic simulation of charge transfer in titania. J. Phys. Chem. C 112, 7678–7688 (2008)CrossRef Kerisit, S., Deskins, N.A., Rosso, K.M., Dupuis, M.: A shell model for atomistic simulation of charge transfer in titania. J. Phys. Chem. C 112, 7678–7688 (2008)CrossRef
36.
go back to reference Deskins, N.A., Dupuis, M.: Intrinsic hole migration rates in TiO2 from density functional theory. J. Phys. Chem. C 113, 346–358 (2008)CrossRef Deskins, N.A., Dupuis, M.: Intrinsic hole migration rates in TiO2 from density functional theory. J. Phys. Chem. C 113, 346–358 (2008)CrossRef
37.
go back to reference Rothenberger, G., Moser, J., Grätzel, M., Serpone, N., Sharma, D.K.: Charge carrier trapping and recombination dynamics in small semiconductor particles. J. Am. Chem. Soc. 107, 8054–8059 (1985)CrossRef Rothenberger, G., Moser, J., Grätzel, M., Serpone, N., Sharma, D.K.: Charge carrier trapping and recombination dynamics in small semiconductor particles. J. Am. Chem. Soc. 107, 8054–8059 (1985)CrossRef
38.
go back to reference Bahnemann, D.W., Hilgendorff, M., Memming, R.: Charge carrier dynamics at TiO2 particles: reactivity of free and trapped holes. J. Phys. Chem. B 101, 4265–4275 (1997)CrossRef Bahnemann, D.W., Hilgendorff, M., Memming, R.: Charge carrier dynamics at TiO2 particles: reactivity of free and trapped holes. J. Phys. Chem. B 101, 4265–4275 (1997)CrossRef
39.
go back to reference Mor, G.K., Shankar, K., Varghese, O.K., Grimes, C.A.: Photoelectrochemical properties of titania nanotubes. J. Mater. Res. 19, 2989–2996 (2004)CrossRef Mor, G.K., Shankar, K., Varghese, O.K., Grimes, C.A.: Photoelectrochemical properties of titania nanotubes. J. Mater. Res. 19, 2989–2996 (2004)CrossRef
40.
go back to reference Mor, G.K., Shankar, K., Paulose, M., Varghese, O.K., Grimes, C.A.: Enhanced photocleavage of water using titania nanotube arrays. Nano Lett. 5, 191–195 (2005)CrossRef Mor, G.K., Shankar, K., Paulose, M., Varghese, O.K., Grimes, C.A.: Enhanced photocleavage of water using titania nanotube arrays. Nano Lett. 5, 191–195 (2005)CrossRef
41.
go back to reference Shankar, K., Mor, G.K., Prakasam, H.E., Yoriya, S., Paulose, M., Varghese, O.K., Grimes, C.A.: Highly-ordered TiO2 nanotube arrays up to 220 μm in length: use in water photoelectrolysis and dye-sensitized solar cells. Nanotechnology 18, 065707 (2007)CrossRef Shankar, K., Mor, G.K., Prakasam, H.E., Yoriya, S., Paulose, M., Varghese, O.K., Grimes, C.A.: Highly-ordered TiO2 nanotube arrays up to 220 μm in length: use in water photoelectrolysis and dye-sensitized solar cells. Nanotechnology 18, 065707 (2007)CrossRef
42.
go back to reference Paulose, M., Mor, G.K., Varghese, O.K., Shankar, K., Grimes, C.A.: Visible light photoelectrochemical and water-photoelectrolysis properties of titania nanotube arrays. J. Photochem. Photobiol. A 178, 8–15 (2006)CrossRef Paulose, M., Mor, G.K., Varghese, O.K., Shankar, K., Grimes, C.A.: Visible light photoelectrochemical and water-photoelectrolysis properties of titania nanotube arrays. J. Photochem. Photobiol. A 178, 8–15 (2006)CrossRef
43.
go back to reference Choi, W., Termin, A., Hoffmann, M.R.: The role of metal ion dopants in quantum-sized TiO2: correlation between photoreactivity and charge carrier recombination dynamics. J. Phys. Chem. 98, 13669–13679 (1994)CrossRef Choi, W., Termin, A., Hoffmann, M.R.: The role of metal ion dopants in quantum-sized TiO2: correlation between photoreactivity and charge carrier recombination dynamics. J. Phys. Chem. 98, 13669–13679 (1994)CrossRef
44.
go back to reference Irie, H., Watanabe, Y., Hashimoto, K.: Nitrogen-concentration dependence on photocatalytic activity of TiO2−x N x powders. J. Phys. Chem. B 107, 5483–5486 (2003)CrossRef Irie, H., Watanabe, Y., Hashimoto, K.: Nitrogen-concentration dependence on photocatalytic activity of TiO2−x N x powders. J. Phys. Chem. B 107, 5483–5486 (2003)CrossRef
45.
go back to reference Asahi, R., Morikawa, T., Ohwaki, T., Aoki, K., Taga, Y.: Visible-light photocatalysis in nitrogen-doped titanium oxides. Science 293, 269–271 (2001)CrossRef Asahi, R., Morikawa, T., Ohwaki, T., Aoki, K., Taga, Y.: Visible-light photocatalysis in nitrogen-doped titanium oxides. Science 293, 269–271 (2001)CrossRef
46.
go back to reference Burda, C., Lou, Y., Chen, X., Samia, A.C.S., Stout, J., Gole, J.L.: Enhanced nitrogen doping in TiO2 nanoparticles. Nano Lett. 3, 1049–1051 (2003)CrossRef Burda, C., Lou, Y., Chen, X., Samia, A.C.S., Stout, J., Gole, J.L.: Enhanced nitrogen doping in TiO2 nanoparticles. Nano Lett. 3, 1049–1051 (2003)CrossRef
47.
go back to reference Mor, G.K., Varghese, O.K., Wilke, R.H.T., Sharma, S., Shankar, K., Latempa, T.J., Choi, K.-S., Grimes, C.A.: P-type Cu–Ti–O nanotube arrays and their use in self-biased heterojunction photoelectrochemical diodes for hydrogen generation. Nano Lett. 8, 1906–1911 (2008)CrossRef Mor, G.K., Varghese, O.K., Wilke, R.H.T., Sharma, S., Shankar, K., Latempa, T.J., Choi, K.-S., Grimes, C.A.: P-type Cu–Ti–O nanotube arrays and their use in self-biased heterojunction photoelectrochemical diodes for hydrogen generation. Nano Lett. 8, 1906–1911 (2008)CrossRef
48.
go back to reference Nakau, T.: Electrical conductivity of α-Fe2O3. J. Phys. Soc. Jpn. 15, 727 (1960)CrossRef Nakau, T.: Electrical conductivity of α-Fe2O3. J. Phys. Soc. Jpn. 15, 727 (1960)CrossRef
49.
go back to reference Iordanova, N., Dupuis, M., Rosso, K.M.: Charge transport in metal oxides: a theoretical study of hematite α-Fe2O3. J. Chem. Phys. 122, 144305–144310 (2005)CrossRef Iordanova, N., Dupuis, M., Rosso, K.M.: Charge transport in metal oxides: a theoretical study of hematite α-Fe2O3. J. Chem. Phys. 122, 144305–144310 (2005)CrossRef
50.
go back to reference Benjelloun, D., Bonnet, J.-P., Dordor, P., Launay, J.-C., Onillon, M., Hagenmuller, P.: Anisotropie des propriétés électriques de monocristaux de Fe2O3-α dopés au nickel. Rev. Chim. Miner. 21, 721–731 (1984) Benjelloun, D., Bonnet, J.-P., Dordor, P., Launay, J.-C., Onillon, M., Hagenmuller, P.: Anisotropie des propriétés électriques de monocristaux de Fe2O3-α dopés au nickel. Rev. Chim. Miner. 21, 721–731 (1984)
51.
go back to reference Rosso, K.M., Dupuis, M.: Reorganization energy associated with small polaron mobility in iron oxide. J. Chem. Phys. 120, 7050–7054 (2004)CrossRef Rosso, K.M., Dupuis, M.: Reorganization energy associated with small polaron mobility in iron oxide. J. Chem. Phys. 120, 7050–7054 (2004)CrossRef
52.
go back to reference Kay, A., Cesar, I., Grätzel, M.: New benchmark for water photooxidation by nanostructured α-Fe2O3 films. J. Am. Chem. Soc. 128, 15714–15721 (2006)CrossRef Kay, A., Cesar, I., Grätzel, M.: New benchmark for water photooxidation by nanostructured α-Fe2O3 films. J. Am. Chem. Soc. 128, 15714–15721 (2006)CrossRef
53.
go back to reference Li, F., Zhang, L., Metzger, R.M.: On the growth of highly ordered pores in anodized aluminum oxide. Chem. Mater. 10, 2470–2480 (1998)CrossRef Li, F., Zhang, L., Metzger, R.M.: On the growth of highly ordered pores in anodized aluminum oxide. Chem. Mater. 10, 2470–2480 (1998)CrossRef
54.
go back to reference Nielsch, K., Choi, J., Schwirn, K., Wehrspohn, R.B., Gosele, U.: Self-ordering regimes of porous alumina: The 10% porosity rule. Nano Lett. 2, 677–680 (2002)CrossRef Nielsch, K., Choi, J., Schwirn, K., Wehrspohn, R.B., Gosele, U.: Self-ordering regimes of porous alumina: The 10% porosity rule. Nano Lett. 2, 677–680 (2002)CrossRef
55.
go back to reference Macák, J.M., Tsuchiya, H., Schmuki, P.: High-aspect-ratio TiO2 nanotubes by anodization of titanium. Angew. Chem. Int. Ed. 44, 2100–2102 (2005)CrossRef Macák, J.M., Tsuchiya, H., Schmuki, P.: High-aspect-ratio TiO2 nanotubes by anodization of titanium. Angew. Chem. Int. Ed. 44, 2100–2102 (2005)CrossRef
56.
go back to reference Jessensky, O., Muller, F., Gosele, U.: Self-organized formation of hexagonal pore arrays in anodic alumina. Appl. Phys. Lett. 72, 1173–1175 (1998)CrossRef Jessensky, O., Muller, F., Gosele, U.: Self-organized formation of hexagonal pore arrays in anodic alumina. Appl. Phys. Lett. 72, 1173–1175 (1998)CrossRef
57.
go back to reference Li, A.P., Muller, F., Birner, A., Nielsch, K., Gosele, U.: Hexagonal pore arrays with a 50–420 nm interpore distance formed by self-organization in anodic alumina. J. Appl. Phys. 84, 6023–6026 (1998)CrossRef Li, A.P., Muller, F., Birner, A., Nielsch, K., Gosele, U.: Hexagonal pore arrays with a 50–420 nm interpore distance formed by self-organization in anodic alumina. J. Appl. Phys. 84, 6023–6026 (1998)CrossRef
58.
go back to reference Allam, N.K., Shankar, K., Grimes, C.A.: A general method for the anodic formation of crystalline metal oxide nanotube arrays without the use of thermal annealing. Adv. Mater. 20, 3942–3946 (2008)CrossRef Allam, N.K., Shankar, K., Grimes, C.A.: A general method for the anodic formation of crystalline metal oxide nanotube arrays without the use of thermal annealing. Adv. Mater. 20, 3942–3946 (2008)CrossRef
59.
go back to reference Barnes, W.L., Dereux, A., Ebbesen, T.W.: Surface plasmon subwavelength optics. Nature 424, 824–830 (2003)CrossRef Barnes, W.L., Dereux, A., Ebbesen, T.W.: Surface plasmon subwavelength optics. Nature 424, 824–830 (2003)CrossRef
60.
go back to reference Fang, N., Lee, H., Sun, C., Zhang, X.: Sub-diffraction-limited optical imaging with a silver superlens. Science 308, 534–537 (2005)CrossRef Fang, N., Lee, H., Sun, C., Zhang, X.: Sub-diffraction-limited optical imaging with a silver superlens. Science 308, 534–537 (2005)CrossRef
61.
go back to reference Lee, H., Xiong, Y., Fang, N., Srituravanich, W., Durant, S., Ambati, M., Sun, C., Zhang, X.: Realization of optical superlens imaging below the diffraction limit. New J. Phys. 7, 255–255 (2005)CrossRef Lee, H., Xiong, Y., Fang, N., Srituravanich, W., Durant, S., Ambati, M., Sun, C., Zhang, X.: Realization of optical superlens imaging below the diffraction limit. New J. Phys. 7, 255–255 (2005)CrossRef
62.
go back to reference Melville, D., Blaikie, R.: Super-resolution imaging through a planar silver layer. Opt. Express 13, 2127–2134 (2005)CrossRef Melville, D., Blaikie, R.: Super-resolution imaging through a planar silver layer. Opt. Express 13, 2127–2134 (2005)CrossRef
63.
go back to reference Kreibig, U., Vollmer, M.: Optical Properties of Metal Clusters. Springer, Berlin (1995) Kreibig, U., Vollmer, M.: Optical Properties of Metal Clusters. Springer, Berlin (1995)
64.
go back to reference Link, S., El-Sayed, M.A.: Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles. J. Phys. Chem. B 103, 4212–4217 (1999)CrossRef Link, S., El-Sayed, M.A.: Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles. J. Phys. Chem. B 103, 4212–4217 (1999)CrossRef
65.
go back to reference Stenzel, O., Stendal, A., Voigtsberger, K., von Borczyskowski, C.: Enhancement of the photovoltaic conversion efficiency of copper phthalocyanine thin film devices by incorporation of metal clusters. Solar Energ. Mater. Solar Cells 37, 337–348 (1995)CrossRef Stenzel, O., Stendal, A., Voigtsberger, K., von Borczyskowski, C.: Enhancement of the photovoltaic conversion efficiency of copper phthalocyanine thin film devices by incorporation of metal clusters. Solar Energ. Mater. Solar Cells 37, 337–348 (1995)CrossRef
66.
go back to reference Rand, B.P., Peumans, P., Forrest, S.R.: Long-range absorption enhancement in organic tandem thin-film solar cells containing silver nanoclusters. J. Appl. Phys. 96, 7519–7526 (2004)CrossRef Rand, B.P., Peumans, P., Forrest, S.R.: Long-range absorption enhancement in organic tandem thin-film solar cells containing silver nanoclusters. J. Appl. Phys. 96, 7519–7526 (2004)CrossRef
67.
go back to reference Pillai, S., Catchpole, K.R., Trupke, T., Green, M.A.: Surface plasmon enhanced silicon solar cells. J. Appl. Phys. 101, 093105–093108 (2007)CrossRef Pillai, S., Catchpole, K.R., Trupke, T., Green, M.A.: Surface plasmon enhanced silicon solar cells. J. Appl. Phys. 101, 093105–093108 (2007)CrossRef
68.
go back to reference Pala, R.A., White, J., Barnard, E., Liu, J., Brongersma, M.L.: Design of plasmonic thin-film solar cells with broadband absorption enhancements. Adv. Mater. 21, 3504–3509 (2009)CrossRef Pala, R.A., White, J., Barnard, E., Liu, J., Brongersma, M.L.: Design of plasmonic thin-film solar cells with broadband absorption enhancements. Adv. Mater. 21, 3504–3509 (2009)CrossRef
69.
go back to reference Ferry, V.E., Sweatlock, L.A., Pacifici, D., Atwater, H.A.: Plasmonic nanostructure design for efficient light coupling into solar cells. Nano Lett. 8, 4391–4397 (2008)CrossRef Ferry, V.E., Sweatlock, L.A., Pacifici, D., Atwater, H.A.: Plasmonic nanostructure design for efficient light coupling into solar cells. Nano Lett. 8, 4391–4397 (2008)CrossRef
Metadata
Title
Emerging Trends in Water Photoelectrolysis
Author
Scott C. Warren
Copyright Year
2012
Publisher
Springer US
DOI
https://doi.org/10.1007/978-1-4614-1380-6_9