Skip to main content

2012 | OriginalPaper | Buchkapitel

9. Emerging Trends in Water Photoelectrolysis

verfasst von : Scott C. Warren

Erschienen in: Photoelectrochemical Hydrogen Production

Verlag: Springer US

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The prospect of future progress in water photoelectrolysis critically depends upon the discovery and application of new materials, structures, and device architectures. Developments in closely related areas, such as solar cells, provide ample guidance for the application of new concepts in nanomaterials and nanophotonics to the challenges confronting electrochemical energy conversion devices. This review examines opportunities that have emerged as a consequence of new synthetic routes for nanostructured semiconductors and metals. Design criteria for building efficient devices are considered for semiconductors with low mobility and short carrier lifetimes. It is then shown how these design criteria can be modified by exploiting the plasmon resonance of metallic nanostructures.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Holstein, T.: Studies of polaron motion. Part I. The molecular-crystal model. Ann. Phys. 8, 325–342 (1959)CrossRef Holstein, T.: Studies of polaron motion. Part I. The molecular-crystal model. Ann. Phys. 8, 325–342 (1959)CrossRef
2.
Zurück zum Zitat Bosman, A.J., van Daal, H.J.: Small-polaron versus band conduction in some transition-metal oxides. Adv. Phys. 19, 1–117 (1970)CrossRef Bosman, A.J., van Daal, H.J.: Small-polaron versus band conduction in some transition-metal oxides. Adv. Phys. 19, 1–117 (1970)CrossRef
3.
Zurück zum Zitat Marcus, R.A.: Chemical and electrochemical electron-transfer theory. Annu. Rev. Phys. Chem. 15, 155–196 (1964)CrossRef Marcus, R.A.: Chemical and electrochemical electron-transfer theory. Annu. Rev. Phys. Chem. 15, 155–196 (1964)CrossRef
4.
Zurück zum Zitat Shluger, A.L., Stoneham, A.M.: Small polarons in real crystals: concepts and problems. J. Phys. D Condens. Mat. 5, 3049–3086 (1993)CrossRef Shluger, A.L., Stoneham, A.M.: Small polarons in real crystals: concepts and problems. J. Phys. D Condens. Mat. 5, 3049–3086 (1993)CrossRef
5.
Zurück zum Zitat Austin, I.G., Mott, N.F.: Polarons in crystalline and non-crystalline materials. Adv. Phys. 18, 41–102 (1969)CrossRef Austin, I.G., Mott, N.F.: Polarons in crystalline and non-crystalline materials. Adv. Phys. 18, 41–102 (1969)CrossRef
6.
Zurück zum Zitat Gärtner, W.W.: Depletion-layer photoeffects in semiconductors. Phys. Rev. 116, 84–87 (1959)CrossRef Gärtner, W.W.: Depletion-layer photoeffects in semiconductors. Phys. Rev. 116, 84–87 (1959)CrossRef
7.
Zurück zum Zitat Butler, M.A.: Photoelectrolysis and physical properties of the semiconducting electrode WO3. J. Appl. Phys. 48, 1914–1920 (1977)CrossRef Butler, M.A.: Photoelectrolysis and physical properties of the semiconducting electrode WO3. J. Appl. Phys. 48, 1914–1920 (1977)CrossRef
8.
Zurück zum Zitat Jarrett, H.S.: Photocurrent conversion efficiency in a schottky barrier. J. Appl. Phys. 52, 4681–4689 (1981)CrossRef Jarrett, H.S.: Photocurrent conversion efficiency in a schottky barrier. J. Appl. Phys. 52, 4681–4689 (1981)CrossRef
9.
Zurück zum Zitat Sze, S.M., Ng, K.K.: Physics of Semiconductor Devices. Wiley, Hoboken (2007) Sze, S.M., Ng, K.K.: Physics of Semiconductor Devices. Wiley, Hoboken (2007)
10.
Zurück zum Zitat Miller, R.J.D., Memming, R.: Fundamentals in photoelectrochemistry. In: Archer, M.D., Nozik, A.J. (eds.) Nanostructured and Photoelectrochemical Systems For Solar Photon Conversion, pp. 760. Imperial College Press, London (2008) Miller, R.J.D., Memming, R.: Fundamentals in photoelectrochemistry. In: Archer, M.D., Nozik, A.J. (eds.) Nanostructured and Photoelectrochemical Systems For Solar Photon Conversion, pp. 760. Imperial College Press, London (2008)
11.
Zurück zum Zitat Shockley, W., Read, W.T.: Statistics of the recombinations of holes and electrons. Phys. Rev. 87, 835 (1952)MATHCrossRef Shockley, W., Read, W.T.: Statistics of the recombinations of holes and electrons. Phys. Rev. 87, 835 (1952)MATHCrossRef
12.
Zurück zum Zitat Emin, D.: Lattice relaxation and small-polaron hopping motion. Phys. Rev. B 4, 3639–3651 (1971)CrossRef Emin, D.: Lattice relaxation and small-polaron hopping motion. Phys. Rev. B 4, 3639–3651 (1971)CrossRef
13.
Zurück zum Zitat Emin, D., Holstein, T.: Adiabatic theory of an electron in a deformable continuum. Phys. Rev. Lett. 36, 323 (1976)CrossRef Emin, D., Holstein, T.: Adiabatic theory of an electron in a deformable continuum. Phys. Rev. Lett. 36, 323 (1976)CrossRef
14.
Zurück zum Zitat Dell'Oca, C.J., Fleming, P.J.: Initial stages of oxide growth and pore initiation in the porous anodization of aluminum. J. Electrochem. Soc. 123, 1487–1493 (1976)CrossRef Dell'Oca, C.J., Fleming, P.J.: Initial stages of oxide growth and pore initiation in the porous anodization of aluminum. J. Electrochem. Soc. 123, 1487–1493 (1976)CrossRef
15.
Zurück zum Zitat Parkhutik, V.P., Shershulsky, V.I.: Theoretical modeling of porous oxide growth on aluminum. J. Phys. D Appl. Phys. 25, 1258–1263 (1992)CrossRef Parkhutik, V.P., Shershulsky, V.I.: Theoretical modeling of porous oxide growth on aluminum. J. Phys. D Appl. Phys. 25, 1258–1263 (1992)CrossRef
16.
Zurück zum Zitat Masuda, H., Fukuda, K.: Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina. Science 268, 1466–1468 (1995)CrossRef Masuda, H., Fukuda, K.: Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina. Science 268, 1466–1468 (1995)CrossRef
17.
Zurück zum Zitat Mor, G.K., Varghese, O.K., Paulose, M., Shankar, K., Grimes, C.A.: A review on highly ordered, vertically oriented TiO2 nanotube arrays: fabrication, materials properties, and solar energy applications. Solar Energ. Mater. Solar Cells 90, 2011–2075 (2006)CrossRef Mor, G.K., Varghese, O.K., Paulose, M., Shankar, K., Grimes, C.A.: A review on highly ordered, vertically oriented TiO2 nanotube arrays: fabrication, materials properties, and solar energy applications. Solar Energ. Mater. Solar Cells 90, 2011–2075 (2006)CrossRef
18.
Zurück zum Zitat Gong, D., Grimes, C.A., Varghese, O.K., Hu, W., Singh, R.S., Chen, Z., Dickey, E.C.: Titanium oxide nanotube arrays prepared by anodic oxidation. J. Mater. Res. 16, 3331–3334 (2001)CrossRef Gong, D., Grimes, C.A., Varghese, O.K., Hu, W., Singh, R.S., Chen, Z., Dickey, E.C.: Titanium oxide nanotube arrays prepared by anodic oxidation. J. Mater. Res. 16, 3331–3334 (2001)CrossRef
19.
Zurück zum Zitat Sieber, I., Kannan, B., Schmuki, P.: Self-assembled porous tantalum oxide prepared in H2SO4/HF electrolytes. Electrochem. Solid-State Lett. 8, J10–J12 (2005)CrossRef Sieber, I., Kannan, B., Schmuki, P.: Self-assembled porous tantalum oxide prepared in H2SO4/HF electrolytes. Electrochem. Solid-State Lett. 8, J10–J12 (2005)CrossRef
20.
Zurück zum Zitat Vijayavalli, R., Vasudeva Rao, P.V., Udupa, H.V.K.: Effect of ac superimposition on dc in the cathodic polarization of anodized cadmium in alkaline solution. Electrochim. Acta 16, 1197–1200 (1971)CrossRef Vijayavalli, R., Vasudeva Rao, P.V., Udupa, H.V.K.: Effect of ac superimposition on dc in the cathodic polarization of anodized cadmium in alkaline solution. Electrochim. Acta 16, 1197–1200 (1971)CrossRef
21.
Zurück zum Zitat Sieber, I., Hildebrand, H., Friedrich, A., Schmuki, P.: Formation of self-organized niobium porous oxide on niobium. Electrochem. Comm. 7, 97–100 (2005)CrossRef Sieber, I., Hildebrand, H., Friedrich, A., Schmuki, P.: Formation of self-organized niobium porous oxide on niobium. Electrochem. Comm. 7, 97–100 (2005)CrossRef
22.
Zurück zum Zitat Hsiao, H.-Y., Tsai, W.-T.: Characterization of anodic films formed on AZ91D magnesium alloy. Surf. Coat. Technol. 190, 299–308 (2005)CrossRef Hsiao, H.-Y., Tsai, W.-T.: Characterization of anodic films formed on AZ91D magnesium alloy. Surf. Coat. Technol. 190, 299–308 (2005)CrossRef
23.
Zurück zum Zitat Tsuchiya, H., Macak, J.M., Sieber, I., Taveira, L., Ghicov, A., Sirotna, K., Schmuki, P.: Self-organized porous WO3 formed in NaF electrolytes. Electrochem. Commun. 7, 295–298 (2005)CrossRef Tsuchiya, H., Macak, J.M., Sieber, I., Taveira, L., Ghicov, A., Sirotna, K., Schmuki, P.: Self-organized porous WO3 formed in NaF electrolytes. Electrochem. Commun. 7, 295–298 (2005)CrossRef
24.
Zurück zum Zitat Metikos-Hukovic, M., Reseti’c, A., Gvozdic, V.: Behaviour of tin as a valve metal. Electrochim. Acta 40, 1777–1779 (1995)CrossRef Metikos-Hukovic, M., Reseti’c, A., Gvozdic, V.: Behaviour of tin as a valve metal. Electrochim. Acta 40, 1777–1779 (1995)CrossRef
25.
Zurück zum Zitat Prakasam, H.E., Varghese, O.K., Paulose, M., Mor, G.K., Grimes, C.A.: Synthesis and photoelectrochemical properties of nanoporous iron (III) oxide by potentiostatic anodization. Nanotechnology 17, 4285–4291 (2006)CrossRef Prakasam, H.E., Varghese, O.K., Paulose, M., Mor, G.K., Grimes, C.A.: Synthesis and photoelectrochemical properties of nanoporous iron (III) oxide by potentiostatic anodization. Nanotechnology 17, 4285–4291 (2006)CrossRef
26.
Zurück zum Zitat Wales, C.P., Burbank, J.: Oxides on the silver electrode. J. Electrochem. Soc. 106, 885–890 (1959)CrossRef Wales, C.P., Burbank, J.: Oxides on the silver electrode. J. Electrochem. Soc. 106, 885–890 (1959)CrossRef
27.
Zurück zum Zitat Föll, H., Christophersen, M., Carstensen, J., Hasse, G.: Formation and application of porous silicon. Mater. Sci. Eng. R 39, 93–141 (2002)CrossRef Föll, H., Christophersen, M., Carstensen, J., Hasse, G.: Formation and application of porous silicon. Mater. Sci. Eng. R 39, 93–141 (2002)CrossRef
28.
Zurück zum Zitat Mohapatra, S.K., John, S.E., Banerjee, S., Misra, M.: Water photooxidation by smooth and ultrathin α-Fe2O3 nanotube arrays. Chem. Mater. 21, 3048–3055 (2009)CrossRef Mohapatra, S.K., John, S.E., Banerjee, S., Misra, M.: Water photooxidation by smooth and ultrathin α-Fe2O3 nanotube arrays. Chem. Mater. 21, 3048–3055 (2009)CrossRef
29.
Zurück zum Zitat Masuda, H., Hasegwa, F., Ono, S.: Self-ordering of cell arrangement of anodic porous alumina formed in sulfuric acid solution. J. Electrochem. Soc. 144, L127–L130 (1997)CrossRef Masuda, H., Hasegwa, F., Ono, S.: Self-ordering of cell arrangement of anodic porous alumina formed in sulfuric acid solution. J. Electrochem. Soc. 144, L127–L130 (1997)CrossRef
30.
Zurück zum Zitat Varghese, O.K., Paulose, M., Shankar, K., Mor, G.K., Grimes, C.A.: Water-photolysis properties of micron-length highly-ordered titania nanotube-arrays. J. Nanosci. Nanotechnol. 5, 1158–1165 (2005)CrossRef Varghese, O.K., Paulose, M., Shankar, K., Mor, G.K., Grimes, C.A.: Water-photolysis properties of micron-length highly-ordered titania nanotube-arrays. J. Nanosci. Nanotechnol. 5, 1158–1165 (2005)CrossRef
31.
Zurück zum Zitat Lee, W., Ji, R., Gosele, U., Nielsch, K.: Fast fabrication of long-range ordered porous alumina membranes by hard anodization. Nat. Mater. 5, 741–747 (2006)CrossRef Lee, W., Ji, R., Gosele, U., Nielsch, K.: Fast fabrication of long-range ordered porous alumina membranes by hard anodization. Nat. Mater. 5, 741–747 (2006)CrossRef
32.
Zurück zum Zitat Odier, P., Baumard, J.F., Panis, D., Anthony, A.M.: Thermal emission, electrical conductivity, and hall effect for defects study at high temperature (T ≥ 1250 K) in refractory oxides (Y2O3, TiO2). J. Solid State Chem. 12, 324–328 (1975)CrossRef Odier, P., Baumard, J.F., Panis, D., Anthony, A.M.: Thermal emission, electrical conductivity, and hall effect for defects study at high temperature (T ≥ 1250 K) in refractory oxides (Y2O3, TiO2). J. Solid State Chem. 12, 324–328 (1975)CrossRef
33.
Zurück zum Zitat Bak, T., Nowotny, M.K., Sheppard, L.R., Nowotny, J.: Mobility of electronic charge carriers in titanium dioxide. J. Phys. Chem. C 112, 12981–12987 (2008)CrossRef Bak, T., Nowotny, M.K., Sheppard, L.R., Nowotny, J.: Mobility of electronic charge carriers in titanium dioxide. J. Phys. Chem. C 112, 12981–12987 (2008)CrossRef
34.
Zurück zum Zitat Bak, T., Nowotny, J., Rekas, M., Sorrell, C.C.: Defect chemistry and semiconducting properties of titanium dioxide: III. Mobility of electronic charge carriers. J. Phys. Chem. Solids 64, 1069–1087 (2003)CrossRef Bak, T., Nowotny, J., Rekas, M., Sorrell, C.C.: Defect chemistry and semiconducting properties of titanium dioxide: III. Mobility of electronic charge carriers. J. Phys. Chem. Solids 64, 1069–1087 (2003)CrossRef
35.
Zurück zum Zitat Kerisit, S., Deskins, N.A., Rosso, K.M., Dupuis, M.: A shell model for atomistic simulation of charge transfer in titania. J. Phys. Chem. C 112, 7678–7688 (2008)CrossRef Kerisit, S., Deskins, N.A., Rosso, K.M., Dupuis, M.: A shell model for atomistic simulation of charge transfer in titania. J. Phys. Chem. C 112, 7678–7688 (2008)CrossRef
36.
Zurück zum Zitat Deskins, N.A., Dupuis, M.: Intrinsic hole migration rates in TiO2 from density functional theory. J. Phys. Chem. C 113, 346–358 (2008)CrossRef Deskins, N.A., Dupuis, M.: Intrinsic hole migration rates in TiO2 from density functional theory. J. Phys. Chem. C 113, 346–358 (2008)CrossRef
37.
Zurück zum Zitat Rothenberger, G., Moser, J., Grätzel, M., Serpone, N., Sharma, D.K.: Charge carrier trapping and recombination dynamics in small semiconductor particles. J. Am. Chem. Soc. 107, 8054–8059 (1985)CrossRef Rothenberger, G., Moser, J., Grätzel, M., Serpone, N., Sharma, D.K.: Charge carrier trapping and recombination dynamics in small semiconductor particles. J. Am. Chem. Soc. 107, 8054–8059 (1985)CrossRef
38.
Zurück zum Zitat Bahnemann, D.W., Hilgendorff, M., Memming, R.: Charge carrier dynamics at TiO2 particles: reactivity of free and trapped holes. J. Phys. Chem. B 101, 4265–4275 (1997)CrossRef Bahnemann, D.W., Hilgendorff, M., Memming, R.: Charge carrier dynamics at TiO2 particles: reactivity of free and trapped holes. J. Phys. Chem. B 101, 4265–4275 (1997)CrossRef
39.
Zurück zum Zitat Mor, G.K., Shankar, K., Varghese, O.K., Grimes, C.A.: Photoelectrochemical properties of titania nanotubes. J. Mater. Res. 19, 2989–2996 (2004)CrossRef Mor, G.K., Shankar, K., Varghese, O.K., Grimes, C.A.: Photoelectrochemical properties of titania nanotubes. J. Mater. Res. 19, 2989–2996 (2004)CrossRef
40.
Zurück zum Zitat Mor, G.K., Shankar, K., Paulose, M., Varghese, O.K., Grimes, C.A.: Enhanced photocleavage of water using titania nanotube arrays. Nano Lett. 5, 191–195 (2005)CrossRef Mor, G.K., Shankar, K., Paulose, M., Varghese, O.K., Grimes, C.A.: Enhanced photocleavage of water using titania nanotube arrays. Nano Lett. 5, 191–195 (2005)CrossRef
41.
Zurück zum Zitat Shankar, K., Mor, G.K., Prakasam, H.E., Yoriya, S., Paulose, M., Varghese, O.K., Grimes, C.A.: Highly-ordered TiO2 nanotube arrays up to 220 μm in length: use in water photoelectrolysis and dye-sensitized solar cells. Nanotechnology 18, 065707 (2007)CrossRef Shankar, K., Mor, G.K., Prakasam, H.E., Yoriya, S., Paulose, M., Varghese, O.K., Grimes, C.A.: Highly-ordered TiO2 nanotube arrays up to 220 μm in length: use in water photoelectrolysis and dye-sensitized solar cells. Nanotechnology 18, 065707 (2007)CrossRef
42.
Zurück zum Zitat Paulose, M., Mor, G.K., Varghese, O.K., Shankar, K., Grimes, C.A.: Visible light photoelectrochemical and water-photoelectrolysis properties of titania nanotube arrays. J. Photochem. Photobiol. A 178, 8–15 (2006)CrossRef Paulose, M., Mor, G.K., Varghese, O.K., Shankar, K., Grimes, C.A.: Visible light photoelectrochemical and water-photoelectrolysis properties of titania nanotube arrays. J. Photochem. Photobiol. A 178, 8–15 (2006)CrossRef
43.
Zurück zum Zitat Choi, W., Termin, A., Hoffmann, M.R.: The role of metal ion dopants in quantum-sized TiO2: correlation between photoreactivity and charge carrier recombination dynamics. J. Phys. Chem. 98, 13669–13679 (1994)CrossRef Choi, W., Termin, A., Hoffmann, M.R.: The role of metal ion dopants in quantum-sized TiO2: correlation between photoreactivity and charge carrier recombination dynamics. J. Phys. Chem. 98, 13669–13679 (1994)CrossRef
44.
Zurück zum Zitat Irie, H., Watanabe, Y., Hashimoto, K.: Nitrogen-concentration dependence on photocatalytic activity of TiO2−x N x powders. J. Phys. Chem. B 107, 5483–5486 (2003)CrossRef Irie, H., Watanabe, Y., Hashimoto, K.: Nitrogen-concentration dependence on photocatalytic activity of TiO2−x N x powders. J. Phys. Chem. B 107, 5483–5486 (2003)CrossRef
45.
Zurück zum Zitat Asahi, R., Morikawa, T., Ohwaki, T., Aoki, K., Taga, Y.: Visible-light photocatalysis in nitrogen-doped titanium oxides. Science 293, 269–271 (2001)CrossRef Asahi, R., Morikawa, T., Ohwaki, T., Aoki, K., Taga, Y.: Visible-light photocatalysis in nitrogen-doped titanium oxides. Science 293, 269–271 (2001)CrossRef
46.
Zurück zum Zitat Burda, C., Lou, Y., Chen, X., Samia, A.C.S., Stout, J., Gole, J.L.: Enhanced nitrogen doping in TiO2 nanoparticles. Nano Lett. 3, 1049–1051 (2003)CrossRef Burda, C., Lou, Y., Chen, X., Samia, A.C.S., Stout, J., Gole, J.L.: Enhanced nitrogen doping in TiO2 nanoparticles. Nano Lett. 3, 1049–1051 (2003)CrossRef
47.
Zurück zum Zitat Mor, G.K., Varghese, O.K., Wilke, R.H.T., Sharma, S., Shankar, K., Latempa, T.J., Choi, K.-S., Grimes, C.A.: P-type Cu–Ti–O nanotube arrays and their use in self-biased heterojunction photoelectrochemical diodes for hydrogen generation. Nano Lett. 8, 1906–1911 (2008)CrossRef Mor, G.K., Varghese, O.K., Wilke, R.H.T., Sharma, S., Shankar, K., Latempa, T.J., Choi, K.-S., Grimes, C.A.: P-type Cu–Ti–O nanotube arrays and their use in self-biased heterojunction photoelectrochemical diodes for hydrogen generation. Nano Lett. 8, 1906–1911 (2008)CrossRef
48.
Zurück zum Zitat Nakau, T.: Electrical conductivity of α-Fe2O3. J. Phys. Soc. Jpn. 15, 727 (1960)CrossRef Nakau, T.: Electrical conductivity of α-Fe2O3. J. Phys. Soc. Jpn. 15, 727 (1960)CrossRef
49.
Zurück zum Zitat Iordanova, N., Dupuis, M., Rosso, K.M.: Charge transport in metal oxides: a theoretical study of hematite α-Fe2O3. J. Chem. Phys. 122, 144305–144310 (2005)CrossRef Iordanova, N., Dupuis, M., Rosso, K.M.: Charge transport in metal oxides: a theoretical study of hematite α-Fe2O3. J. Chem. Phys. 122, 144305–144310 (2005)CrossRef
50.
Zurück zum Zitat Benjelloun, D., Bonnet, J.-P., Dordor, P., Launay, J.-C., Onillon, M., Hagenmuller, P.: Anisotropie des propriétés électriques de monocristaux de Fe2O3-α dopés au nickel. Rev. Chim. Miner. 21, 721–731 (1984) Benjelloun, D., Bonnet, J.-P., Dordor, P., Launay, J.-C., Onillon, M., Hagenmuller, P.: Anisotropie des propriétés électriques de monocristaux de Fe2O3-α dopés au nickel. Rev. Chim. Miner. 21, 721–731 (1984)
51.
Zurück zum Zitat Rosso, K.M., Dupuis, M.: Reorganization energy associated with small polaron mobility in iron oxide. J. Chem. Phys. 120, 7050–7054 (2004)CrossRef Rosso, K.M., Dupuis, M.: Reorganization energy associated with small polaron mobility in iron oxide. J. Chem. Phys. 120, 7050–7054 (2004)CrossRef
52.
Zurück zum Zitat Kay, A., Cesar, I., Grätzel, M.: New benchmark for water photooxidation by nanostructured α-Fe2O3 films. J. Am. Chem. Soc. 128, 15714–15721 (2006)CrossRef Kay, A., Cesar, I., Grätzel, M.: New benchmark for water photooxidation by nanostructured α-Fe2O3 films. J. Am. Chem. Soc. 128, 15714–15721 (2006)CrossRef
53.
Zurück zum Zitat Li, F., Zhang, L., Metzger, R.M.: On the growth of highly ordered pores in anodized aluminum oxide. Chem. Mater. 10, 2470–2480 (1998)CrossRef Li, F., Zhang, L., Metzger, R.M.: On the growth of highly ordered pores in anodized aluminum oxide. Chem. Mater. 10, 2470–2480 (1998)CrossRef
54.
Zurück zum Zitat Nielsch, K., Choi, J., Schwirn, K., Wehrspohn, R.B., Gosele, U.: Self-ordering regimes of porous alumina: The 10% porosity rule. Nano Lett. 2, 677–680 (2002)CrossRef Nielsch, K., Choi, J., Schwirn, K., Wehrspohn, R.B., Gosele, U.: Self-ordering regimes of porous alumina: The 10% porosity rule. Nano Lett. 2, 677–680 (2002)CrossRef
55.
Zurück zum Zitat Macák, J.M., Tsuchiya, H., Schmuki, P.: High-aspect-ratio TiO2 nanotubes by anodization of titanium. Angew. Chem. Int. Ed. 44, 2100–2102 (2005)CrossRef Macák, J.M., Tsuchiya, H., Schmuki, P.: High-aspect-ratio TiO2 nanotubes by anodization of titanium. Angew. Chem. Int. Ed. 44, 2100–2102 (2005)CrossRef
56.
Zurück zum Zitat Jessensky, O., Muller, F., Gosele, U.: Self-organized formation of hexagonal pore arrays in anodic alumina. Appl. Phys. Lett. 72, 1173–1175 (1998)CrossRef Jessensky, O., Muller, F., Gosele, U.: Self-organized formation of hexagonal pore arrays in anodic alumina. Appl. Phys. Lett. 72, 1173–1175 (1998)CrossRef
57.
Zurück zum Zitat Li, A.P., Muller, F., Birner, A., Nielsch, K., Gosele, U.: Hexagonal pore arrays with a 50–420 nm interpore distance formed by self-organization in anodic alumina. J. Appl. Phys. 84, 6023–6026 (1998)CrossRef Li, A.P., Muller, F., Birner, A., Nielsch, K., Gosele, U.: Hexagonal pore arrays with a 50–420 nm interpore distance formed by self-organization in anodic alumina. J. Appl. Phys. 84, 6023–6026 (1998)CrossRef
58.
Zurück zum Zitat Allam, N.K., Shankar, K., Grimes, C.A.: A general method for the anodic formation of crystalline metal oxide nanotube arrays without the use of thermal annealing. Adv. Mater. 20, 3942–3946 (2008)CrossRef Allam, N.K., Shankar, K., Grimes, C.A.: A general method for the anodic formation of crystalline metal oxide nanotube arrays without the use of thermal annealing. Adv. Mater. 20, 3942–3946 (2008)CrossRef
59.
Zurück zum Zitat Barnes, W.L., Dereux, A., Ebbesen, T.W.: Surface plasmon subwavelength optics. Nature 424, 824–830 (2003)CrossRef Barnes, W.L., Dereux, A., Ebbesen, T.W.: Surface plasmon subwavelength optics. Nature 424, 824–830 (2003)CrossRef
60.
Zurück zum Zitat Fang, N., Lee, H., Sun, C., Zhang, X.: Sub-diffraction-limited optical imaging with a silver superlens. Science 308, 534–537 (2005)CrossRef Fang, N., Lee, H., Sun, C., Zhang, X.: Sub-diffraction-limited optical imaging with a silver superlens. Science 308, 534–537 (2005)CrossRef
61.
Zurück zum Zitat Lee, H., Xiong, Y., Fang, N., Srituravanich, W., Durant, S., Ambati, M., Sun, C., Zhang, X.: Realization of optical superlens imaging below the diffraction limit. New J. Phys. 7, 255–255 (2005)CrossRef Lee, H., Xiong, Y., Fang, N., Srituravanich, W., Durant, S., Ambati, M., Sun, C., Zhang, X.: Realization of optical superlens imaging below the diffraction limit. New J. Phys. 7, 255–255 (2005)CrossRef
62.
Zurück zum Zitat Melville, D., Blaikie, R.: Super-resolution imaging through a planar silver layer. Opt. Express 13, 2127–2134 (2005)CrossRef Melville, D., Blaikie, R.: Super-resolution imaging through a planar silver layer. Opt. Express 13, 2127–2134 (2005)CrossRef
63.
Zurück zum Zitat Kreibig, U., Vollmer, M.: Optical Properties of Metal Clusters. Springer, Berlin (1995) Kreibig, U., Vollmer, M.: Optical Properties of Metal Clusters. Springer, Berlin (1995)
64.
Zurück zum Zitat Link, S., El-Sayed, M.A.: Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles. J. Phys. Chem. B 103, 4212–4217 (1999)CrossRef Link, S., El-Sayed, M.A.: Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles. J. Phys. Chem. B 103, 4212–4217 (1999)CrossRef
65.
Zurück zum Zitat Stenzel, O., Stendal, A., Voigtsberger, K., von Borczyskowski, C.: Enhancement of the photovoltaic conversion efficiency of copper phthalocyanine thin film devices by incorporation of metal clusters. Solar Energ. Mater. Solar Cells 37, 337–348 (1995)CrossRef Stenzel, O., Stendal, A., Voigtsberger, K., von Borczyskowski, C.: Enhancement of the photovoltaic conversion efficiency of copper phthalocyanine thin film devices by incorporation of metal clusters. Solar Energ. Mater. Solar Cells 37, 337–348 (1995)CrossRef
66.
Zurück zum Zitat Rand, B.P., Peumans, P., Forrest, S.R.: Long-range absorption enhancement in organic tandem thin-film solar cells containing silver nanoclusters. J. Appl. Phys. 96, 7519–7526 (2004)CrossRef Rand, B.P., Peumans, P., Forrest, S.R.: Long-range absorption enhancement in organic tandem thin-film solar cells containing silver nanoclusters. J. Appl. Phys. 96, 7519–7526 (2004)CrossRef
67.
Zurück zum Zitat Pillai, S., Catchpole, K.R., Trupke, T., Green, M.A.: Surface plasmon enhanced silicon solar cells. J. Appl. Phys. 101, 093105–093108 (2007)CrossRef Pillai, S., Catchpole, K.R., Trupke, T., Green, M.A.: Surface plasmon enhanced silicon solar cells. J. Appl. Phys. 101, 093105–093108 (2007)CrossRef
68.
Zurück zum Zitat Pala, R.A., White, J., Barnard, E., Liu, J., Brongersma, M.L.: Design of plasmonic thin-film solar cells with broadband absorption enhancements. Adv. Mater. 21, 3504–3509 (2009)CrossRef Pala, R.A., White, J., Barnard, E., Liu, J., Brongersma, M.L.: Design of plasmonic thin-film solar cells with broadband absorption enhancements. Adv. Mater. 21, 3504–3509 (2009)CrossRef
69.
Zurück zum Zitat Ferry, V.E., Sweatlock, L.A., Pacifici, D., Atwater, H.A.: Plasmonic nanostructure design for efficient light coupling into solar cells. Nano Lett. 8, 4391–4397 (2008)CrossRef Ferry, V.E., Sweatlock, L.A., Pacifici, D., Atwater, H.A.: Plasmonic nanostructure design for efficient light coupling into solar cells. Nano Lett. 8, 4391–4397 (2008)CrossRef
Metadaten
Titel
Emerging Trends in Water Photoelectrolysis
verfasst von
Scott C. Warren
Copyright-Jahr
2012
Verlag
Springer US
DOI
https://doi.org/10.1007/978-1-4614-1380-6_9