Skip to main content
Top
Published in: Arabian Journal for Science and Engineering 2/2022

15-07-2021 | Research Article-Computer Engineering and Computer Science

Empirical Analysis of Machine Learning Algorithms on Imbalance Electrocardiogram Based Arrhythmia Dataset for Heart Disease Detection

Authors: Shwet Ketu, Pramod Kumar Mishra

Published in: Arabian Journal for Science and Engineering | Issue 2/2022

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Living beings are subjected to many hazards during their course of life. Owing to high mortality rate, heart disease (HD) is among leading hazards for living being. It is world’s one of the critical disease due to its complex diagnosis and expansive treatment. It has predominantly affected the health care sector of developing as well as developed countries. Inadequate preventive measures, diagnosis shortcomings, inefficient medical support, lack of medical staff and advancements have led to severe impacts on developing countries. The paper exhibits state-of-the-art of various intelligent solutions for HD detection with an empirical analysis of machine learning algorithms on electrocardiogram-based arrhythmia dataset for disease detection. A critical investigation is being performed using eight machine learning algorithms, Support Vector Machine, K-Nearest Neighbors, Random Forest, Extra Tree, Bagging, Decision Tree, Linear Regression, and Adaptive Boosting, under imbalanced and balanced class paradigms. The performance of these algorithms is tested with four metrics namely, precision, recall, accuracy, and f1-score. The empirical analysis presents an interesting insight on the structure of dataset. Initially for binary class balancing problem majority class have more accuracy than the minority class because model’s training dataset is crowded with majority class tuples than minority class. The paper uses Synthetic Minority Over-sampling Technique for data balancing. It has not only increased the overall accuracy of the algorithm but also the individual accuracy of the classes. Hence, the accuracy of the minority class will not be sacrificed.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Nashif, S.; Raihan, M.R.; Islam, M.R.; Imam, M.H.: Heart disease detection by using machine learning algorithms and a real-time cardiovascular health monitoring system. World J. Eng. Technol. 6(4), 854–873 (2018)CrossRef Nashif, S.; Raihan, M.R.; Islam, M.R.; Imam, M.H.: Heart disease detection by using machine learning algorithms and a real-time cardiovascular health monitoring system. World J. Eng. Technol. 6(4), 854–873 (2018)CrossRef
2.
go back to reference Stefanovska, A.: Physics of the human cardiovascular system. Contemp. Phys. 40(1), 31–55 (1999)CrossRef Stefanovska, A.: Physics of the human cardiovascular system. Contemp. Phys. 40(1), 31–55 (1999)CrossRef
3.
go back to reference Mendis, S.; Puska, P.; Norrving, B.; World Health Organization: Global atlas on cardiovascular disease prevention and control. World Health Organization, Geneva (2011) Mendis, S.; Puska, P.; Norrving, B.; World Health Organization: Global atlas on cardiovascular disease prevention and control. World Health Organization, Geneva (2011)
4.
go back to reference Najafi, F.; Jamrozik, K.; Dobson, A.J.: Understanding the ‘epidemic of heart failure’: a systematic review of trends in determinants of heart failure. Eur. J. Heart Fail. 11(5), 472–479 (2009)CrossRef Najafi, F.; Jamrozik, K.; Dobson, A.J.: Understanding the ‘epidemic of heart failure’: a systematic review of trends in determinants of heart failure. Eur. J. Heart Fail. 11(5), 472–479 (2009)CrossRef
5.
go back to reference World Health Organization. (2020). Hearts: technical package for cardiovascular disease management in primary health care. World Health Organization. (2020). Hearts: technical package for cardiovascular disease management in primary health care.
6.
go back to reference World Health Organization. (2013). Global action plan for the prevention and control of noncommunicable diseases 2013–2020. World Health Organization. (2013). Global action plan for the prevention and control of noncommunicable diseases 2013–2020.
7.
go back to reference Nikhar, S.; Karandikar, A.M.: Prediction of heart disease using machine learning algorithms. Int. J. Adv. Eng. Manag. Sci. 2(6), 239484 (2016) Nikhar, S.; Karandikar, A.M.: Prediction of heart disease using machine learning algorithms. Int. J. Adv. Eng. Manag. Sci. 2(6), 239484 (2016)
9.
go back to reference Ketu, S.; Mishra, P.K.: Performance analysis of machine learning algorithms for IoT-based human activity recognition. In: Advances in Electrical and Computer Technologies (pp. 579–591). Springer, Singapore (2020) Ketu, S.; Mishra, P.K.: Performance analysis of machine learning algorithms for IoT-based human activity recognition. In: Advances in Electrical and Computer Technologies (pp. 579–591). Springer, Singapore (2020)
10.
go back to reference Ketu, S.; Mishra, P.K.: Enhanced Gaussian process regression-based forecasting model for COVID-19 outbreak and significance of IoT for its detection. Appl. Intell. 51(3), 1492–1512 (2021)CrossRef Ketu, S.; Mishra, P.K.: Enhanced Gaussian process regression-based forecasting model for COVID-19 outbreak and significance of IoT for its detection. Appl. Intell. 51(3), 1492–1512 (2021)CrossRef
12.
go back to reference Yu, S.N.; Lee, M.Y.: Bispectral analysis and genetic algorithm for congestive heart failure recognition based on heart rate variability. Comput. Biol. Med. 42(8), 816–825 (2012)CrossRef Yu, S.N.; Lee, M.Y.: Bispectral analysis and genetic algorithm for congestive heart failure recognition based on heart rate variability. Comput. Biol. Med. 42(8), 816–825 (2012)CrossRef
13.
go back to reference Martis, R.J.; Acharya, U.R.; Mandana, K.M.; Ray, A.K.; Chakraborty, C.: Application of principal component analysis to ECG signals for automated diagnosis of cardiac health. Expert Syst. Appl. 39(14), 11792–11800 (2012)CrossRef Martis, R.J.; Acharya, U.R.; Mandana, K.M.; Ray, A.K.; Chakraborty, C.: Application of principal component analysis to ECG signals for automated diagnosis of cardiac health. Expert Syst. Appl. 39(14), 11792–11800 (2012)CrossRef
14.
go back to reference Pal, D.; Mandana, K.M.; Pal, S.; Sarkar, D.; Chakraborty, C.: Fuzzy expert system approach for coronary artery disease screening using clinical parameters. Knowl.-Based Syst. 36, 162–174 (2012)CrossRef Pal, D.; Mandana, K.M.; Pal, S.; Sarkar, D.; Chakraborty, C.: Fuzzy expert system approach for coronary artery disease screening using clinical parameters. Knowl.-Based Syst. 36, 162–174 (2012)CrossRef
15.
go back to reference Yu, S.N.; Lee, M.Y.: Conditional mutual information-based feature selection for congestive heart failure recognition using heart rate variability. Comput. Methods Programs Biomed. 108(1), 299–309 (2012)CrossRef Yu, S.N.; Lee, M.Y.: Conditional mutual information-based feature selection for congestive heart failure recognition using heart rate variability. Comput. Methods Programs Biomed. 108(1), 299–309 (2012)CrossRef
16.
go back to reference Kim, J.K.; Lee, J.S.; Park, D.K.; Lim, Y.S.; Lee, Y.H.; Jung, E.Y.: Adaptive mining prediction model for content recommendation to coronary heart disease patients. Clust. Comput. 17(3), 881–891 (2014)CrossRef Kim, J.K.; Lee, J.S.; Park, D.K.; Lim, Y.S.; Lee, Y.H.; Jung, E.Y.: Adaptive mining prediction model for content recommendation to coronary heart disease patients. Clust. Comput. 17(3), 881–891 (2014)CrossRef
17.
go back to reference Melillo, P.; De Luca, N.; Bracale, M.; Pecchia, L.: Classification tree for risk assessment in patients suffering from congestive heart failure via long-term heart rate variability. IEEE J. Biomed. Health Inform. 17(3), 727–733 (2013)CrossRef Melillo, P.; De Luca, N.; Bracale, M.; Pecchia, L.: Classification tree for risk assessment in patients suffering from congestive heart failure via long-term heart rate variability. IEEE J. Biomed. Health Inform. 17(3), 727–733 (2013)CrossRef
18.
go back to reference Lainscsek, C.; Sejnowski, T.J.: Electrocardiogram classification using delay differential equations. Chaos Interdiscip J. Nonlinear Sci. 23(2), 023132 (2013)MathSciNetMATHCrossRef Lainscsek, C.; Sejnowski, T.J.: Electrocardiogram classification using delay differential equations. Chaos Interdiscip J. Nonlinear Sci. 23(2), 023132 (2013)MathSciNetMATHCrossRef
19.
go back to reference Mašetic, Z.; Subasi, A.: Detection of congestive heart failures using c4.5 decision tree. Southeast Eur. J. Soft Comput. 2(2), 74 (2013) Mašetic, Z.; Subasi, A.: Detection of congestive heart failures using c4.5 decision tree. Southeast Eur. J. Soft Comput. 2(2), 74 (2013)
20.
go back to reference Guidi, G.; Pettenati, M.C.; Melillo, P.; Iadanza, E.: A machine learning system to improve heart failure patient assistance. IEEE J. Biomed. Health Inform. 18(6), 1750–1756 (2014)CrossRef Guidi, G.; Pettenati, M.C.; Melillo, P.; Iadanza, E.: A machine learning system to improve heart failure patient assistance. IEEE J. Biomed. Health Inform. 18(6), 1750–1756 (2014)CrossRef
21.
go back to reference Liu, G.; Wang, L.; Wang, Q.; Zhou, G.; Wang, Y.; Jiang, Q.: A new approach to detect congestive heart failure using short-term heart rate variability measures. PLoS ONE 9(4), e93399 (2014)CrossRef Liu, G.; Wang, L.; Wang, Q.; Zhou, G.; Wang, Y.; Jiang, Q.: A new approach to detect congestive heart failure using short-term heart rate variability measures. PLoS ONE 9(4), e93399 (2014)CrossRef
22.
go back to reference Vafaie, M.H.; Ataei, M.; Koofigar, H.R.: Heart diseases prediction based on ECG signals’ classification using a genetic-fuzzy system and dynamical model of ECG signals. Biomed. Signal Process. Control 14, 291–296 (2014)CrossRef Vafaie, M.H.; Ataei, M.; Koofigar, H.R.: Heart diseases prediction based on ECG signals’ classification using a genetic-fuzzy system and dynamical model of ECG signals. Biomed. Signal Process. Control 14, 291–296 (2014)CrossRef
23.
go back to reference Long, N.C.; Meesad, P.; Unger, H.: A highly accurate firefly based algorithm for heart disease prediction. Expert Syst. Appl. 42(21), 8221–8231 (2015)CrossRef Long, N.C.; Meesad, P.; Unger, H.: A highly accurate firefly based algorithm for heart disease prediction. Expert Syst. Appl. 42(21), 8221–8231 (2015)CrossRef
24.
go back to reference Tay, D.; Poh, C.L.; Kitney, R.I.: A novel neural-inspired learning algorithm with application to clinical risk prediction. J. Biomed. Inform. 54, 305–314 (2015)CrossRef Tay, D.; Poh, C.L.; Kitney, R.I.: A novel neural-inspired learning algorithm with application to clinical risk prediction. J. Biomed. Inform. 54, 305–314 (2015)CrossRef
25.
go back to reference Acharya, U.R.; Fujita, H.; Sudarshan, V.K.; Sree, V.S.; Eugene, L.W.J.; Ghista, D.N.; San Tan, R.: An integrated index for detection of sudden cardiac death using discrete wavelet transform and nonlinear features. Knowl.-Based Syst. 83, 149–158 (2015)CrossRef Acharya, U.R.; Fujita, H.; Sudarshan, V.K.; Sree, V.S.; Eugene, L.W.J.; Ghista, D.N.; San Tan, R.: An integrated index for detection of sudden cardiac death using discrete wavelet transform and nonlinear features. Knowl.-Based Syst. 83, 149–158 (2015)CrossRef
26.
go back to reference Abdar, M.; Kalhori, S.R.N.; Sutikno, T.; Subroto, I.M.I.; Arji, G.: Comparing performance of data mining algorithms in prediction heart diseases. Int. J. Electr. Comput. Eng. 5(6), 1569–1576 (2015) Abdar, M.; Kalhori, S.R.N.; Sutikno, T.; Subroto, I.M.I.; Arji, G.: Comparing performance of data mining algorithms in prediction heart diseases. Int. J. Electr. Comput. Eng. 5(6), 1569–1576 (2015)
27.
go back to reference Saxena, K.; Sharma, R.: Efficient heart disease prediction system. Procedia Comput. Sci. 85, 962–969 (2016)CrossRef Saxena, K.; Sharma, R.: Efficient heart disease prediction system. Procedia Comput. Sci. 85, 962–969 (2016)CrossRef
28.
go back to reference Samuel, O.W.; Asogbon, G.M.; Sangaiah, A.K.; Fang, P.; Li, G.: An integrated decision support system based on ANN and Fuzzy_AHP for heart failure risk prediction. Expert Syst. Appl. 68, 163–172 (2017)CrossRef Samuel, O.W.; Asogbon, G.M.; Sangaiah, A.K.; Fang, P.; Li, G.: An integrated decision support system based on ANN and Fuzzy_AHP for heart failure risk prediction. Expert Syst. Appl. 68, 163–172 (2017)CrossRef
29.
go back to reference Bashir, S.; Qamar, U.; Khan, F.H.: IntelliHealth: a medical decision support application using a novel weighted multi-layer classifier ensemble framework. J. Biomed. Inform. 59, 185–200 (2016)CrossRef Bashir, S.; Qamar, U.; Khan, F.H.: IntelliHealth: a medical decision support application using a novel weighted multi-layer classifier ensemble framework. J. Biomed. Inform. 59, 185–200 (2016)CrossRef
30.
go back to reference Fujita, H.; Acharya, U.R.; Sudarshan, V.K.; Ghista, D.N.; Sree, S.V.; Eugene, L.W.J.; Koh, J.E.: Sudden cardiac death (SCD) prediction based on nonlinear heart rate variability features and SCD index. Appl. Soft Comput. 43, 510–519 (2016)CrossRef Fujita, H.; Acharya, U.R.; Sudarshan, V.K.; Ghista, D.N.; Sree, S.V.; Eugene, L.W.J.; Koh, J.E.: Sudden cardiac death (SCD) prediction based on nonlinear heart rate variability features and SCD index. Appl. Soft Comput. 43, 510–519 (2016)CrossRef
31.
go back to reference Taslimitehrani, V.; Dong, G.; Pereira, N.L.; Panahiazar, M.; Pathak, J.: Developing EHR-driven heart failure risk prediction models using CPXR (Log) with the probabilistic loss function. J. Biomed. Inform. 60, 260–269 (2016)CrossRef Taslimitehrani, V.; Dong, G.; Pereira, N.L.; Panahiazar, M.; Pathak, J.: Developing EHR-driven heart failure risk prediction models using CPXR (Log) with the probabilistic loss function. J. Biomed. Inform. 60, 260–269 (2016)CrossRef
32.
go back to reference Weng, C.H.; Huang, T.C.K.; Han, R.P.: Disease prediction with different types of neural network classifiers. Telematics Inform. 33(2), 277–292 (2016)CrossRef Weng, C.H.; Huang, T.C.K.; Han, R.P.: Disease prediction with different types of neural network classifiers. Telematics Inform. 33(2), 277–292 (2016)CrossRef
33.
go back to reference Altan, G.; Kutlu, Y.; Allahverdi, N.: A new approach to early diagnosis of congestive heart failure disease by using Hilbert-Huang transform. Comput. Methods Programs Biomed. 137, 23–34 (2016)CrossRef Altan, G.; Kutlu, Y.; Allahverdi, N.: A new approach to early diagnosis of congestive heart failure disease by using Hilbert-Huang transform. Comput. Methods Programs Biomed. 137, 23–34 (2016)CrossRef
34.
go back to reference Masetic, Z.; Subasi, A.: Congestive heart failure detection using random forest classifier. Comput. Methods Programs Biomed. 130, 54–64 (2016)CrossRef Masetic, Z.; Subasi, A.: Congestive heart failure detection using random forest classifier. Comput. Methods Programs Biomed. 130, 54–64 (2016)CrossRef
35.
go back to reference Leema, N.; Nehemiah, H.K.; Kannan, A.: Neural network classifier optimization using differential evolution with global information and back propagation algorithm for clinical datasets. Appl. Soft Comput. 49, 834–844 (2016)CrossRef Leema, N.; Nehemiah, H.K.; Kannan, A.: Neural network classifier optimization using differential evolution with global information and back propagation algorithm for clinical datasets. Appl. Soft Comput. 49, 834–844 (2016)CrossRef
36.
go back to reference Arabasadi, Z.; Alizadehsani, R.; Roshanzamir, M.; Moosaei, H.; Yarifard, A.A.: Computer aided decision making for heart disease detection using hybrid neural network-Genetic algorithm. Comput. Methods Programs Biomed. 141, 19–26 (2017)CrossRef Arabasadi, Z.; Alizadehsani, R.; Roshanzamir, M.; Moosaei, H.; Yarifard, A.A.: Computer aided decision making for heart disease detection using hybrid neural network-Genetic algorithm. Comput. Methods Programs Biomed. 141, 19–26 (2017)CrossRef
37.
go back to reference Dolatabadi, A.D.; Khadem, S.E.Z.; Asl, B.M.: Automated diagnosis of coronary artery disease (CAD) patients using optimized SVM. Comput. Methods Programs Biomed. 138, 117–126 (2017)CrossRef Dolatabadi, A.D.; Khadem, S.E.Z.; Asl, B.M.: Automated diagnosis of coronary artery disease (CAD) patients using optimized SVM. Comput. Methods Programs Biomed. 138, 117–126 (2017)CrossRef
38.
go back to reference Tayefi, M.; Tajfard, M.; Saffar, S.; Hanachi, P.; Amirabadizadeh, A.R.; Esmaeily, H.; Taghipour, A.; Ferns, G.A.; Moohebati, M.; Ghayour-Mobarhan, M.: hs-CRP is strongly associated with coronary heart disease (CHD): A data mining approach using decision tree algorithm. Comput. Methods Programs Biomed. 141, 105–109 (2017)CrossRef Tayefi, M.; Tajfard, M.; Saffar, S.; Hanachi, P.; Amirabadizadeh, A.R.; Esmaeily, H.; Taghipour, A.; Ferns, G.A.; Moohebati, M.; Ghayour-Mobarhan, M.: hs-CRP is strongly associated with coronary heart disease (CHD): A data mining approach using decision tree algorithm. Comput. Methods Programs Biomed. 141, 105–109 (2017)CrossRef
39.
go back to reference Mustaqeem, A.; Anwar, S.M.; Khan, A.R.; Majid, M.: A statistical analysis based recommender model for heart disease patients. Int. J. Med. Inform. 108, 134–145 (2017)CrossRef Mustaqeem, A.; Anwar, S.M.; Khan, A.R.; Majid, M.: A statistical analysis based recommender model for heart disease patients. Int. J. Med. Inform. 108, 134–145 (2017)CrossRef
40.
go back to reference Mahajan, R.; Viangteeravat, T.; Akbilgic, O.: Improved detection of congestive heart failure via probabilistic symbolic pattern recognition and heart rate variability metrics. Int. J. Med. Inform. 108, 55–63 (2017)CrossRef Mahajan, R.; Viangteeravat, T.; Akbilgic, O.: Improved detection of congestive heart failure via probabilistic symbolic pattern recognition and heart rate variability metrics. Int. J. Med. Inform. 108, 55–63 (2017)CrossRef
41.
go back to reference Sudarshan, V.K.; Acharya, U.R.; Oh, S.L.; Adam, M.; Tan, J.H.; Chua, C.K.; Chua, K.P.; San Tan, R.: Automated diagnosis of congestive heart failure using dual tree complex wavelet transform and statistical features extracted from 2 s of ECG signals. Comput. Biol. Med. 83, 48–58 (2017)CrossRef Sudarshan, V.K.; Acharya, U.R.; Oh, S.L.; Adam, M.; Tan, J.H.; Chua, C.K.; Chua, K.P.; San Tan, R.: Automated diagnosis of congestive heart failure using dual tree complex wavelet transform and statistical features extracted from 2 s of ECG signals. Comput. Biol. Med. 83, 48–58 (2017)CrossRef
42.
go back to reference Zhang, J.; Lafta, R.L.; Tao, X.; Li, Y.; Chen, F.; Luo, Y.; Zhu, X.: Coupling a fast fourier transformation with a machine learning ensemble model to support recommendations for heart disease patients in a telehealth environment. IEEE Access 5, 10674–10685 (2017)CrossRef Zhang, J.; Lafta, R.L.; Tao, X.; Li, Y.; Chen, F.; Luo, Y.; Zhu, X.: Coupling a fast fourier transformation with a machine learning ensemble model to support recommendations for heart disease patients in a telehealth environment. IEEE Access 5, 10674–10685 (2017)CrossRef
43.
go back to reference Mokeddem, S.A.: A fuzzy classification model for myocardial infarction risk assessment. Appl. Intell. 48(5), 1233–1250 (2018) Mokeddem, S.A.: A fuzzy classification model for myocardial infarction risk assessment. Appl. Intell. 48(5), 1233–1250 (2018)
44.
go back to reference Boon, K.H.; Khalil-Hani, M.; Malarvili, M.B.: Paroxysmal atrial fibrillation prediction based on HRV analysis and non-dominated sorting genetic algorithm III. Comput. Methods Programs Biomed. 153, 171–184 (2018)CrossRef Boon, K.H.; Khalil-Hani, M.; Malarvili, M.B.: Paroxysmal atrial fibrillation prediction based on HRV analysis and non-dominated sorting genetic algorithm III. Comput. Methods Programs Biomed. 153, 171–184 (2018)CrossRef
45.
go back to reference Zheng, Y.; Guo, X.; Qin, J.; Xiao, S.: Computer-assisted diagnosis for chronic heart failure by the analysis of their cardiac reserve and heart sound characteristics. Comput. Methods Programs Biomed. 122(3), 372–383 (2015)CrossRef Zheng, Y.; Guo, X.; Qin, J.; Xiao, S.: Computer-assisted diagnosis for chronic heart failure by the analysis of their cardiac reserve and heart sound characteristics. Comput. Methods Programs Biomed. 122(3), 372–383 (2015)CrossRef
46.
go back to reference Rasmy, L.; Wu, Y.; Wang, N.; Geng, X.; Zheng, W.J.; Wang, F.; Wu, H.; Xu, H.; Zhi, D.: A study of generalizability of recurrent neural network-based predictive models for heart failure onset risk using a large and heterogeneous EHR data set. J. Biomed. Inform. 84, 11–16 (2018)CrossRef Rasmy, L.; Wu, Y.; Wang, N.; Geng, X.; Zheng, W.J.; Wang, F.; Wu, H.; Xu, H.; Zhi, D.: A study of generalizability of recurrent neural network-based predictive models for heart failure onset risk using a large and heterogeneous EHR data set. J. Biomed. Inform. 84, 11–16 (2018)CrossRef
47.
go back to reference Aborokbah, M.M.; Al-Mutairi, S.; Sangaiah, A.K.; Samuel, O.W.: Adaptive context aware decision computing paradigm for intensive health care delivery in smart cities—a case analysis. Sustain. Cities Soc. 41, 919–924 (2018)CrossRef Aborokbah, M.M.; Al-Mutairi, S.; Sangaiah, A.K.; Samuel, O.W.: Adaptive context aware decision computing paradigm for intensive health care delivery in smart cities—a case analysis. Sustain. Cities Soc. 41, 919–924 (2018)CrossRef
48.
go back to reference Pławiak, P.: Novel methodology of cardiac health recognition based on ECG signals and evolutionary-neural system. Expert Syst. Appl. 92, 334–349 (2018)CrossRef Pławiak, P.: Novel methodology of cardiac health recognition based on ECG signals and evolutionary-neural system. Expert Syst. Appl. 92, 334–349 (2018)CrossRef
49.
go back to reference Tan, J.H.; Hagiwara, Y.; Pang, W.; Lim, I.; Oh, S.L.; Adam, M.; Tan, R.S.; Chen, M.; Acharya, U.R.: Application of stacked convolutional and long short-term memory network for accurate identification of CAD ECG signals. Comput. Biol. Med. 94, 19–26 (2018)CrossRef Tan, J.H.; Hagiwara, Y.; Pang, W.; Lim, I.; Oh, S.L.; Adam, M.; Tan, R.S.; Chen, M.; Acharya, U.R.: Application of stacked convolutional and long short-term memory network for accurate identification of CAD ECG signals. Comput. Biol. Med. 94, 19–26 (2018)CrossRef
50.
go back to reference Bozkurt, B.; Germanakis, I.; Stylianou, Y.: A study of time-frequency features for CNN-based automatic heart sound classification for pathology detection. Comput. Biol. Med. 100, 132–143 (2018)CrossRef Bozkurt, B.; Germanakis, I.; Stylianou, Y.: A study of time-frequency features for CNN-based automatic heart sound classification for pathology detection. Comput. Biol. Med. 100, 132–143 (2018)CrossRef
51.
go back to reference Miao, F.; Cai, Y.P.; Zhang, Y.X.; Fan, X.M.; Li, Y.: Predictive modeling of hospital mortality for patients with heart failure by using an improved random survival forest. IEEE Access 6, 7244–7253 (2018)CrossRef Miao, F.; Cai, Y.P.; Zhang, Y.X.; Fan, X.M.; Li, Y.: Predictive modeling of hospital mortality for patients with heart failure by using an improved random survival forest. IEEE Access 6, 7244–7253 (2018)CrossRef
52.
go back to reference Dominguez-Morales, J.P.; Jimenez-Fernandez, A.F.; Dominguez-Morales, M.J.; Jimenez-Moreno, G.: Deep neural networks for the recognition and classification of heart murmurs using neuromorphic auditory sensors. IEEE Trans. Biomed. Circuits Syst. 12(1), 24–34 (2017)CrossRef Dominguez-Morales, J.P.; Jimenez-Fernandez, A.F.; Dominguez-Morales, M.J.; Jimenez-Moreno, G.: Deep neural networks for the recognition and classification of heart murmurs using neuromorphic auditory sensors. IEEE Trans. Biomed. Circuits Syst. 12(1), 24–34 (2017)CrossRef
53.
go back to reference Jin, B.; Che, C.; Liu, Z.; Zhang, S.; Yin, X.; Wei, X.: Predicting the risk of heart failure with EHR sequential data modeling. Ieee Access 6, 9256–9261 (2018)CrossRef Jin, B.; Che, C.; Liu, Z.; Zhang, S.; Yin, X.; Wei, X.: Predicting the risk of heart failure with EHR sequential data modeling. Ieee Access 6, 9256–9261 (2018)CrossRef
54.
go back to reference Yahaya, L.; Oye, N.D.; Garba, E.J.: A Comprehensive review on heart disease prediction using data mining and machine learning techniques. Am. J. Artif. Intell. 4(1), 20–29 (2020)CrossRef Yahaya, L.; Oye, N.D.; Garba, E.J.: A Comprehensive review on heart disease prediction using data mining and machine learning techniques. Am. J. Artif. Intell. 4(1), 20–29 (2020)CrossRef
55.
go back to reference Subhadra, K.; Vikas, B.: Neural network based intelligent system for predicting heart disease. Int. J. Innov. Technol. Exploring Eng. (IJITEE) 8(5), 484–487 (2019) Subhadra, K.; Vikas, B.: Neural network based intelligent system for predicting heart disease. Int. J. Innov. Technol. Exploring Eng. (IJITEE) 8(5), 484–487 (2019)
56.
go back to reference Ayatollahi, H.; Gholamhosseini, L.; Salehi, M.: Predicting coronary artery disease: a comparison between two data mining algorithms. BMC Public Health 19(1), 1–9 (2019)CrossRef Ayatollahi, H.; Gholamhosseini, L.; Salehi, M.: Predicting coronary artery disease: a comparison between two data mining algorithms. BMC Public Health 19(1), 1–9 (2019)CrossRef
57.
go back to reference Padmanabhan, M.; Yuan, P.; Chada, G.; Nguyen, H.V.: Physician-friendly machine learning: A case study with cardiovascular disease risk prediction. J. Clin. Med. 8(7), 1050 (2019)CrossRef Padmanabhan, M.; Yuan, P.; Chada, G.; Nguyen, H.V.: Physician-friendly machine learning: A case study with cardiovascular disease risk prediction. J. Clin. Med. 8(7), 1050 (2019)CrossRef
58.
go back to reference Lakshmanarao, A.; Swathi, Y.; Sri, P.; Sundareswar, S.: Machine learning techniques for heart disease prediction. Int. J. Sci. Technol. Res. 8(11), 374–377 (2019) Lakshmanarao, A.; Swathi, Y.; Sri, P.; Sundareswar, S.: Machine learning techniques for heart disease prediction. Int. J. Sci. Technol. Res. 8(11), 374–377 (2019)
59.
go back to reference Reddy, P.K.; Reddy, T.S.; Balakrishnan, S.; Basha, S.M.; Poluru, R.K.: Heart disease prediction using machine learning algorithm. Int. J. Innov. Technol. Explor. Eng. 8(10), 2603–2606 (2019)CrossRef Reddy, P.K.; Reddy, T.S.; Balakrishnan, S.; Basha, S.M.; Poluru, R.K.: Heart disease prediction using machine learning algorithm. Int. J. Innov. Technol. Explor. Eng. 8(10), 2603–2606 (2019)CrossRef
60.
go back to reference Annepu, D.; Gowtham, G.: Cardiovascular disease prediction using machine learning techniques. Int. Res. J. Eng. Technol. 6(4), 3963–3971 (2019) Annepu, D.; Gowtham, G.: Cardiovascular disease prediction using machine learning techniques. Int. Res. J. Eng. Technol. 6(4), 3963–3971 (2019)
63.
go back to reference Chawla, N.V.; Bowyer, K.W.; Hall, L.O.; Kegelmeyer, W.P.: SMOTE: synthetic minority over-sampling technique. J. Artif. Intell. Res. 16, 321–357 (2002)MATHCrossRef Chawla, N.V.; Bowyer, K.W.; Hall, L.O.; Kegelmeyer, W.P.: SMOTE: synthetic minority over-sampling technique. J. Artif. Intell. Res. 16, 321–357 (2002)MATHCrossRef
64.
go back to reference Fernández, A.; Garcia, S.; Herrera, F.; Chawla, N.V.: SMOTE for learning from imbalanced data: progress and challenges, marking the 15-year anniversary. J. Artif. Intell. Res. 61, 863–905 (2018)MathSciNetMATHCrossRef Fernández, A.; Garcia, S.; Herrera, F.; Chawla, N.V.: SMOTE for learning from imbalanced data: progress and challenges, marking the 15-year anniversary. J. Artif. Intell. Res. 61, 863–905 (2018)MathSciNetMATHCrossRef
65.
go back to reference Bardenet, R.; Brendel, M.; Kégl, B.; Sebag, M. (2013) Collaborative hyperparameter tuning. In: International Conference on Machine Learning, pp. 199–207 Bardenet, R.; Brendel, M.; Kégl, B.; Sebag, M. (2013) Collaborative hyperparameter tuning. In: International Conference on Machine Learning, pp. 199–207
66.
go back to reference Yogatama, D.; Mann, G. (2014). Efficient transfer learning method for automatic hyperparameter tuning. In: Artificial Intelligence and Statistics, pp. 1077–1085 Yogatama, D.; Mann, G. (2014). Efficient transfer learning method for automatic hyperparameter tuning. In: Artificial Intelligence and Statistics, pp. 1077–1085
67.
go back to reference Goutte, C.; Gaussier, E. (2005) A probabilistic interpretation of precision, recall and F-score, with implication for evaluation. In: European Conference on Information Retrieval, pp. 345–359. Springer, Berlin Goutte, C.; Gaussier, E. (2005) A probabilistic interpretation of precision, recall and F-score, with implication for evaluation. In: European Conference on Information Retrieval, pp. 345–359. Springer, Berlin
Metadata
Title
Empirical Analysis of Machine Learning Algorithms on Imbalance Electrocardiogram Based Arrhythmia Dataset for Heart Disease Detection
Authors
Shwet Ketu
Pramod Kumar Mishra
Publication date
15-07-2021
Publisher
Springer Berlin Heidelberg
Published in
Arabian Journal for Science and Engineering / Issue 2/2022
Print ISSN: 2193-567X
Electronic ISSN: 2191-4281
DOI
https://doi.org/10.1007/s13369-021-05972-2

Other articles of this Issue 2/2022

Arabian Journal for Science and Engineering 2/2022 Go to the issue

Research Article-Computer Engineering and Computer Science

An Effective Hash-Based Assessment and Recovery Algorithm for Healthcare Systems

Research Article-Computer Engineering and Computer Science

Adiabatic Configurable Reversible Synthesizer for 5G Applications

Premium Partners