Skip to main content
Top
Published in: Wireless Networks 2/2018

31-08-2016

Energy-efficient data sensing and routing in unreliable energy-harvesting wireless sensor network

Authors: Ting Lu, Guohua Liu, Shan Chang

Published in: Wireless Networks | Issue 2/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Energy-harvesting wireless sensor network (WSN) is composed of unreliable wireless channels and resource-constrained nodes which are powered by solar panels and solar cells. Energy-harvesting WSNs can provide perpetual data service by harvesting energy from surrounding environments. Due to the random characteristics of harvested energy and unreliability of wireless channel, energy efficiency is one of the main challenging issues. In this paper, we are concerned with how to decide the energy used for data sensing and transmission adaptively to maximize network utility, and how to route all the collected data to the sink along energy-efficient paths to maximize the residual battery energy of nodes. To solve this problem, we first formulate a heuristic energy-efficient data sensing and routing problem. Then, unlike the most existing work that focuses on energy-efficient data sensing and energy-efficient routing respectively, energy-efficient data sensing and routing scheme (EEDSRS) in unreliable energy-harvesting wireless sensor network is developed. EEDSRS takes account of not only the energy-efficient data sensing but also the energy-efficient routing. EEDSRS is divided into three steps: (1) an adaptive exponentially weighted moving average algorithm to estimate link quality. (2) an distributed energetic-sustainable data sensing rate allocation algorithm to allocate the energy for data sensing and routing. According to the allocated energy, the optimal data sensing rate to maximize the network utility is obtained. (3) a geographic routing with unreliable link protocol to route all the collected data to the sink along energy-efficient paths. Finally, extensive simulations to evaluate the performance of the proposed EEDSRS are performed. The experimental results demonstrate that the proposed EEDSRS is very promising and efficient.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Footnotes
1
Energy scavengers provide unlimited energy to sensor node
 
Literature
1.
go back to reference Yao, Y., Cao, Q., & Vasilakos, A. V. (2015). EDAL: An energy-efficient, delay-aware, and lifetime-balancing data collection protocol for heterogeneous wireless sensor networks. IEEE/ACM Transactions on Networking, 23(3), 810–823.CrossRef Yao, Y., Cao, Q., & Vasilakos, A. V. (2015). EDAL: An energy-efficient, delay-aware, and lifetime-balancing data collection protocol for heterogeneous wireless sensor networks. IEEE/ACM Transactions on Networking, 23(3), 810–823.CrossRef
2.
go back to reference He, S., Chen, J., Jiang, F., Yau, D. K. Y., Xing, G., & Sun, Y. (2013). Energy provisioning in wireless rechargeable sensor networks. IEEE Transactions on Mobile Computing, 12(10), 1931–1942.CrossRef He, S., Chen, J., Jiang, F., Yau, D. K. Y., Xing, G., & Sun, Y. (2013). Energy provisioning in wireless rechargeable sensor networks. IEEE Transactions on Mobile Computing, 12(10), 1931–1942.CrossRef
3.
go back to reference Guo, S., Wang, C., & Yang, Y. (2014). Joint mobile data gathering and energy provisioning in wireless rechargeable sensor networks. IEEE Transactions on Moble Computing, 13(12), 2836–2852.CrossRef Guo, S., Wang, C., & Yang, Y. (2014). Joint mobile data gathering and energy provisioning in wireless rechargeable sensor networks. IEEE Transactions on Moble Computing, 13(12), 2836–2852.CrossRef
4.
go back to reference Zhao, M., Li, J., & Yang, Y. (2014). A framework of joint mobile energy replenishment and data gathering in wireless rechargeable sensor networks. IEEE Transactions on Mobile Computing, 13(12), 2689–2705.CrossRef Zhao, M., Li, J., & Yang, Y. (2014). A framework of joint mobile energy replenishment and data gathering in wireless rechargeable sensor networks. IEEE Transactions on Mobile Computing, 13(12), 2689–2705.CrossRef
5.
go back to reference Akyildiz, I. F., Su, W., Sankarasubramaniam, Y., & Cayirci, E. (2002). A survey on sensor networks. IEEE Communications Magazine, 40(8), 102–114.CrossRef Akyildiz, I. F., Su, W., Sankarasubramaniam, Y., & Cayirci, E. (2002). A survey on sensor networks. IEEE Communications Magazine, 40(8), 102–114.CrossRef
6.
go back to reference Pantazis, N. A., Nikolidakis, S. A., & Vergados, D. D. (2012). Energy-efficient routing protocols in wireless sensor networks: A survey. IEEE Communications Surveys, 15(2), 551–591.CrossRef Pantazis, N. A., Nikolidakis, S. A., & Vergados, D. D. (2012). Energy-efficient routing protocols in wireless sensor networks: A survey. IEEE Communications Surveys, 15(2), 551–591.CrossRef
7.
go back to reference Li, F., & Wang, Y. (2008). Routing in vehicular ad hoc networks: A survey. IEEE Vehicuar Technology Magazine, 2(2), 12–22.CrossRef Li, F., & Wang, Y. (2008). Routing in vehicular ad hoc networks: A survey. IEEE Vehicuar Technology Magazine, 2(2), 12–22.CrossRef
8.
go back to reference Prathap, U., Shenoy, P. D., Venugopal, K. R., & Patnaik, L. M. (2012). Wireless sensor networks applications and routing protocols: Survey and research challenges. In Proceedings of international symposium on ISCOS. Prathap, U., Shenoy, P. D., Venugopal, K. R., & Patnaik, L. M. (2012). Wireless sensor networks applications and routing protocols: Survey and research challenges. In Proceedings of international symposium on ISCOS.
9.
go back to reference Muruganathan, S. D., Ma, D. C. F., Bhasin, R. I., & Fapojuwo, A. O. (2005). A centralized energy-efficient routing protocol for wireless sensor networks. IEEE Communications Magazine, 43(3), 8–13.CrossRef Muruganathan, S. D., Ma, D. C. F., Bhasin, R. I., & Fapojuwo, A. O. (2005). A centralized energy-efficient routing protocol for wireless sensor networks. IEEE Communications Magazine, 43(3), 8–13.CrossRef
10.
go back to reference Ergen, S. C., & Varaiya, P. (2007). Energy efficient routing with delay guarantee for sensor notworks. Wireless Networks, 13(5), 679–690.CrossRef Ergen, S. C., & Varaiya, P. (2007). Energy efficient routing with delay guarantee for sensor notworks. Wireless Networks, 13(5), 679–690.CrossRef
11.
go back to reference Zhu, J., & Wang, X. (2011). Model and protocol for energy-efficient routing over mobile ad hoc networks. IEEE Transactions on Mobile Computing, 10(11), 1546–1557.CrossRef Zhu, J., & Wang, X. (2011). Model and protocol for energy-efficient routing over mobile ad hoc networks. IEEE Transactions on Mobile Computing, 10(11), 1546–1557.CrossRef
12.
go back to reference Voigt, T., Ritter, H., & Schiller, J. (2003). Utilizing solar power in wireless sensor networks. In 28th Annual IEEE international conference on LCN’03. Voigt, T., Ritter, H., & Schiller, J. (2003). Utilizing solar power in wireless sensor networks. In 28th Annual IEEE international conference on LCN’03.
13.
go back to reference Eu, Z. A., Tan, H. P., & Seah, W. K. G. (2009). Routing and relay node placement in wireless sensor networks powered by ambient energy harvesting. In Proceedings of IEEE wireless communications and networking conference. Eu, Z. A., Tan, H. P., & Seah, W. K. G. (2009). Routing and relay node placement in wireless sensor networks powered by ambient energy harvesting. In Proceedings of IEEE wireless communications and networking conference.
14.
go back to reference Lin, L., Shroff, N. B., & Srikant, R. (2007). Asymptotically optimal power aware routing for multihop wireless networks with renewable energy sources. IEEE/ACM Transactions on Networking, 15(5), 1021–1034.CrossRef Lin, L., Shroff, N. B., & Srikant, R. (2007). Asymptotically optimal power aware routing for multihop wireless networks with renewable energy sources. IEEE/ACM Transactions on Networking, 15(5), 1021–1034.CrossRef
15.
go back to reference Ou, C. H., & Ssu, K. F. (2008). Flying anchors in three-dimensional wireless sensor networks. IEEE Transactions on Mobile Computing, 7(9), 1084–1097.CrossRef Ou, C. H., & Ssu, K. F. (2008). Flying anchors in three-dimensional wireless sensor networks. IEEE Transactions on Mobile Computing, 7(9), 1084–1097.CrossRef
16.
go back to reference Wang, J., Ghost, R. K., & Das, S. K. (2010). A survey on sensor localization. Journal of Control Theory and Applications, 8(1), 2–11.CrossRefMATH Wang, J., Ghost, R. K., & Das, S. K. (2010). A survey on sensor localization. Journal of Control Theory and Applications, 8(1), 2–11.CrossRefMATH
17.
go back to reference Frey, H. (2004). Scalable geographic routing algorithms for wireless ad hoc networks. IEEE Network, 18(4), 18–22.CrossRef Frey, H. (2004). Scalable geographic routing algorithms for wireless ad hoc networks. IEEE Network, 18(4), 18–22.CrossRef
18.
go back to reference Xing, G., Lu, C., Pless, R., & Huang, Q. (2004). On greedy geographic routing algorithms in sensing-covered networks. In Proceedings of MobiHoc’04. Xing, G., Lu, C., Pless, R., & Huang, Q. (2004). On greedy geographic routing algorithms in sensing-covered networks. In Proceedings of MobiHoc’04.
19.
go back to reference Zhang, H., & Shen, H. (2010). Energy-efficient beaconless geographic routing in wireless sensor networks. IEEE Transactions on Parallel and Distributed Systems, 21(6), 881–896.CrossRef Zhang, H., & Shen, H. (2010). Energy-efficient beaconless geographic routing in wireless sensor networks. IEEE Transactions on Parallel and Distributed Systems, 21(6), 881–896.CrossRef
20.
go back to reference Lim, T. L., & Mohan, G. (2005). Energy aware geographical routing and topology control to improve network lifetime in wireless sensor networks. In Proceedings of 2nd international conference on broadband networks. Lim, T. L., & Mohan, G. (2005). Energy aware geographical routing and topology control to improve network lifetime in wireless sensor networks. In Proceedings of 2nd international conference on broadband networks.
21.
go back to reference Haider, R., Javed, M. Y., & Khattak, N. S. (2007). EAGR: Energy aware greedy routing in sensor networks. In: Proceedings of FGCN. Haider, R., Javed, M. Y., & Khattak, N. S. (2007). EAGR: Energy aware greedy routing in sensor networks. In: Proceedings of FGCN.
22.
go back to reference Huang, H., Hu, G., & Yu, F. (2013). Energy-aware geographic routing in wireless sensor networks with anchor nodes. International Journal of Communication Systems, 26(1), 100–113.CrossRef Huang, H., Hu, G., & Yu, F. (2013). Energy-aware geographic routing in wireless sensor networks with anchor nodes. International Journal of Communication Systems, 26(1), 100–113.CrossRef
23.
go back to reference Seada, K., Zuniga, M., Helmy, A., & Krishnamachari, B. (2004). Energy-efficient forwarding strategies for geographic routing in lossy wireless sensor networks. In Proceedings of ACM SenSys’04. Seada, K., Zuniga, M., Helmy, A., & Krishnamachari, B. (2004). Energy-efficient forwarding strategies for geographic routing in lossy wireless sensor networks. In Proceedings of ACM SenSys’04.
24.
go back to reference Zeng, K., Ren, K., Lou, W., & Moran, P. J. (2009). Energy aware efficient geographic routing in lossy wireless sensor networks with environment energy supply. Wireless Networks, 15(1), 39–51.CrossRef Zeng, K., Ren, K., Lou, W., & Moran, P. J. (2009). Energy aware efficient geographic routing in lossy wireless sensor networks with environment energy supply. Wireless Networks, 15(1), 39–51.CrossRef
25.
go back to reference Hou, Y. T., Shi, Y., & Sherali, H. D. (2004). Rate allocation in wireless sensor networks with network lifetime requirement. In Proceedings of MobiHoc’04. Hou, Y. T., Shi, Y., & Sherali, H. D. (2004). Rate allocation in wireless sensor networks with network lifetime requirement. In Proceedings of MobiHoc’04.
26.
go back to reference Fan, K. W., Zheng, Z., & Sinha, P. (2008). Steady and fair rate allocation for rechareable sensors in perpetual sensor networks. In Proceedings of SenSys’08. Fan, K. W., Zheng, Z., & Sinha, P. (2008). Steady and fair rate allocation for rechareable sensors in perpetual sensor networks. In Proceedings of SenSys’08.
27.
go back to reference Toh, C. (2002). Maximum battery life routing to support ubiquitous mobile compting in wireless ad hoc networks. IEEE Communications Magazine, 39(6), 138–147.CrossRef Toh, C. (2002). Maximum battery life routing to support ubiquitous mobile compting in wireless ad hoc networks. IEEE Communications Magazine, 39(6), 138–147.CrossRef
28.
go back to reference Madan, R., & Lall, S. (2006). Distributed algorithms for maximum lifetime routing in wireless sensor networks. IEEE Transactions on Wireless Communications, 5(8), 2185–2193.CrossRef Madan, R., & Lall, S. (2006). Distributed algorithms for maximum lifetime routing in wireless sensor networks. IEEE Transactions on Wireless Communications, 5(8), 2185–2193.CrossRef
29.
go back to reference Gatzianas, M., & Georgiadis, L. (2008). A distributed algorithm for maximum lifetime routing in sensor networks with mobile sink. IEEE Transactions on Wireless Communications, 7(3), 984–994.CrossRef Gatzianas, M., & Georgiadis, L. (2008). A distributed algorithm for maximum lifetime routing in sensor networks with mobile sink. IEEE Transactions on Wireless Communications, 7(3), 984–994.CrossRef
30.
go back to reference Karkvandi, H. R., Pecht, E., & Yadid-Pecht, O. (2011). Effective lifetime-aware routing in wireless sensor networks. IEEE Sensors Journal, 11(12), 3359–3367.CrossRef Karkvandi, H. R., Pecht, E., & Yadid-Pecht, O. (2011). Effective lifetime-aware routing in wireless sensor networks. IEEE Sensors Journal, 11(12), 3359–3367.CrossRef
31.
go back to reference Liu, A., Ren, J., Li, X., Chen, Z., & Shen, X. (2012). Design principles and improvement of cost function based energy aware routing algorithms for wireless sensor networks. Computer Networks, 56(7), 1951–1967.CrossRef Liu, A., Ren, J., Li, X., Chen, Z., & Shen, X. (2012). Design principles and improvement of cost function based energy aware routing algorithms for wireless sensor networks. Computer Networks, 56(7), 1951–1967.CrossRef
32.
go back to reference Liu, R. S., Sinha, P., & Koksal, C. E. (2010). Joint energy management and resource allocation in rechargeable sensor networks. In Proceedings of IEEE INFOCOM. Liu, R. S., Sinha, P., & Koksal, C. E. (2010). Joint energy management and resource allocation in rechargeable sensor networks. In Proceedings of IEEE INFOCOM.
33.
go back to reference Chen, S., Sinha, P., Shroff, N. B., & Joo, C. (2011). Finite-horizon energy allocation and routing scheme in rechargeable sensor network. In Proceedings of IEEE INFOCOM. Chen, S., Sinha, P., Shroff, N. B., & Joo, C. (2011). Finite-horizon energy allocation and routing scheme in rechargeable sensor network. In Proceedings of IEEE INFOCOM.
34.
go back to reference Chen, S., Sinha, P., Shroff, N. B., & Joo, C. (2012). A simple asymptotically optimal energy allocation and routing scheme in rechargeable sensor networks. In Proceedings of IEEE INFOCOM. Chen, S., Sinha, P., Shroff, N. B., & Joo, C. (2012). A simple asymptotically optimal energy allocation and routing scheme in rechargeable sensor networks. In Proceedings of IEEE INFOCOM.
35.
go back to reference Zhang, Y., He, S., & Chen, J. (2013). Data gathering optimization by dynamic sensing and routing in rechargeable sensor networks. In Proceedings of IEEE international conference on SECON. Zhang, Y., He, S., & Chen, J. (2013). Data gathering optimization by dynamic sensing and routing in rechargeable sensor networks. In Proceedings of IEEE international conference on SECON.
36.
go back to reference Cerpa, A., Wong, J. L., Kuang, L., Potkonjak, M., & Estrin, D. (2005). Statistical model of lossy links in wireless sensor networks. In Proceedings of IPSN. Cerpa, A., Wong, J. L., Kuang, L., Potkonjak, M., & Estrin, D. (2005). Statistical model of lossy links in wireless sensor networks. In Proceedings of IPSN.
37.
go back to reference Guo, S., He, L., Gu, Y., Jiang, B., & He, T. (2014). Opportunistic flooding in low-duty-cycle wireless sensor networks with unreliable links. IEEE Transactions on Computers, 63(11), 2787–2802.MathSciNetCrossRefMATH Guo, S., He, L., Gu, Y., Jiang, B., & He, T. (2014). Opportunistic flooding in low-duty-cycle wireless sensor networks with unreliable links. IEEE Transactions on Computers, 63(11), 2787–2802.MathSciNetCrossRefMATH
38.
go back to reference Na, J., Soroker, D., & Kim, C. K. (2007). Greedy geographic routing using dynamic potential field for wireless ad hoc networks. IEEE Communications Letters, 11(3), 243–245.CrossRef Na, J., Soroker, D., & Kim, C. K. (2007). Greedy geographic routing using dynamic potential field for wireless ad hoc networks. IEEE Communications Letters, 11(3), 243–245.CrossRef
39.
go back to reference Lee, S., Bhattacharjee, B., & Banerjee, S. (2005). Efficient geographic routing in multihop wireless networks. In Proceedings of the 6th ACM international symposium on MobiHoc’05. Lee, S., Bhattacharjee, B., & Banerjee, S. (2005). Efficient geographic routing in multihop wireless networks. In Proceedings of the 6th ACM international symposium on MobiHoc’05.
40.
go back to reference Zamalloa, M. Z., Seada, K., Krishnamachari, B., & Helmy, A. (2008). Efficient geographic routing over lossy links in wireless sensor networks. ACM Transactions on Sensor Networks 4(3). Zamalloa, M. Z., Seada, K., Krishnamachari, B., & Helmy, A. (2008). Efficient geographic routing over lossy links in wireless sensor networks. ACM Transactions on Sensor Networks 4(3).
42.
go back to reference Sudevalayam, S., & Kulkarni, P. (2011). Energy harvesting sensor nodes: Survey and implications. IEEE Communications Surveys and Turorials, 13(3), 443–461.CrossRef Sudevalayam, S., & Kulkarni, P. (2011). Energy harvesting sensor nodes: Survey and implications. IEEE Communications Surveys and Turorials, 13(3), 443–461.CrossRef
45.
go back to reference Low, S. H., & Lapsley, D. E. (1999). Optimization flow control-I: Basic algorithm and convergence. IEEE/ACM Transactions on Networking, 7(6), 861–874.CrossRef Low, S. H., & Lapsley, D. E. (1999). Optimization flow control-I: Basic algorithm and convergence. IEEE/ACM Transactions on Networking, 7(6), 861–874.CrossRef
46.
go back to reference Xiao, L., Johansson, M., & Boyd, S. P. (2004). Simultaneous routing and resource allocation via dual decomposition. IEEE Transactions on Communications, 52(7), 1136–1144.CrossRef Xiao, L., Johansson, M., & Boyd, S. P. (2004). Simultaneous routing and resource allocation via dual decomposition. IEEE Transactions on Communications, 52(7), 1136–1144.CrossRef
47.
go back to reference Shi, C., Lu, J., & Zhang, G. (2005). An extended Kuhn–Tucker approach for linear bilevel programming. Applied Mathematics and Computation, 162(4), 51–63.MathSciNetCrossRefMATH Shi, C., Lu, J., & Zhang, G. (2005). An extended Kuhn–Tucker approach for linear bilevel programming. Applied Mathematics and Computation, 162(4), 51–63.MathSciNetCrossRefMATH
48.
go back to reference Zeng, K., Lou, W., Ren, K., & Moran, P. J. (2006). Energy-efficient geographic routing in environmentally powered wireless sensor networks. In Proceedings of IEEE MILCOM. Zeng, K., Lou, W., Ren, K., & Moran, P. J. (2006). Energy-efficient geographic routing in environmentally powered wireless sensor networks. In Proceedings of IEEE MILCOM.
49.
go back to reference Couto, D., Aguayo, D., Bicket, J., & Morris, R. (2003). A high-throughput path metric for multi-hop wireless routing. In Proceedings of ACM MobiCom’03. Couto, D., Aguayo, D., Bicket, J., & Morris, R. (2003). A high-throughput path metric for multi-hop wireless routing. In Proceedings of ACM MobiCom’03.
50.
go back to reference Zeng, X., Bagrodia, R., & Gerla, M. (1998). GloMoSim: A library for parallel simulation of large-scale wireless networks. In Proceedings of PADS’98. Zeng, X., Bagrodia, R., & Gerla, M. (1998). GloMoSim: A library for parallel simulation of large-scale wireless networks. In Proceedings of PADS’98.
51.
go back to reference Punnoose, R. J., Nikitin, P. V., & Stancil, D. D. (2000). Efficient simulation of Ricean fading within a packet simulator. In Proceedings of IEEE-VTS Fall VTC. Punnoose, R. J., Nikitin, P. V., & Stancil, D. D. (2000). Efficient simulation of Ricean fading within a packet simulator. In Proceedings of IEEE-VTS Fall VTC.
Metadata
Title
Energy-efficient data sensing and routing in unreliable energy-harvesting wireless sensor network
Authors
Ting Lu
Guohua Liu
Shan Chang
Publication date
31-08-2016
Publisher
Springer US
Published in
Wireless Networks / Issue 2/2018
Print ISSN: 1022-0038
Electronic ISSN: 1572-8196
DOI
https://doi.org/10.1007/s11276-016-1360-6

Other articles of this Issue 2/2018

Wireless Networks 2/2018 Go to the issue