Skip to main content
Top
Published in: Polymer Bulletin 9/2011

01-12-2011 | Original Paper

Enhanced interfacial interaction for effective reinforcement of poly(vinyl alcohol) nanocomposites at low loading of graphene

Author: Xiaoya Yuan

Published in: Polymer Bulletin | Issue 9/2011

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The graphene/poly(vinyl alcohol) (PVA) nancomposites with homogeneous dispersion of the nanosheet and enhanced nanofiller–matrix interfacial interaction were fabricated via water blending partially reduced graphene oxide and PVA. The nanocomposites were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, and thermogravimetry. The graphene nanosheets were fully exfoliated in the PVA matrix and a new covalent linkage was formed between graphene and PVA matrix. Uncommon to conventional method, the enhanced interfacial adhesion resulted from covalent interaction and hydrogen bondings between graphene and PVA backbone. The mechanical and thermal properties of the nanocomposites were significantly improved at low graphene loadings. An 116% increase in tensile strength and a 19 °C improvement of onset thermal degradation temperature were achieved by the addition of only 0.8 wt% graphene.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306:666–669CrossRef Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306:666–669CrossRef
2.
3.
4.
go back to reference Allen MJ, Tung VC, Kaner RB (2010) Honeycomb carbon: a review of graphene. Chem Rev 110:132–145CrossRef Allen MJ, Tung VC, Kaner RB (2010) Honeycomb carbon: a review of graphene. Chem Rev 110:132–145CrossRef
5.
go back to reference Rao CNR, Sood AK, Voggu R et al (2010) Some novel attributes of graphene. J Phys Chem Lett 1:572–580CrossRef Rao CNR, Sood AK, Voggu R et al (2010) Some novel attributes of graphene. J Phys Chem Lett 1:572–580CrossRef
6.
go back to reference Kim J, Kim F, Huang J (2010) Seeing graphene-based sheets. Mater Today 13:28–38CrossRef Kim J, Kim F, Huang J (2010) Seeing graphene-based sheets. Mater Today 13:28–38CrossRef
7.
go back to reference Lee CG, Wei XD, Kysar JW, Hone J (2008) Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321:385–388CrossRef Lee CG, Wei XD, Kysar JW, Hone J (2008) Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321:385–388CrossRef
8.
go back to reference Chae HK, Siberio-Perez DY, Kim J (2004) A route to high surface area, porosity and inclusion of large molecules in crystals. Nature 427:523–527CrossRef Chae HK, Siberio-Perez DY, Kim J (2004) A route to high surface area, porosity and inclusion of large molecules in crystals. Nature 427:523–527CrossRef
9.
go back to reference Bolotin KI, Sikes KJ, Jiang Z, Klima M, Fudenberg G, Hone J, Kim P (2008) Ultrahigh electron mobility in suspended graphene. Solid State Commun 146:351–355CrossRef Bolotin KI, Sikes KJ, Jiang Z, Klima M, Fudenberg G, Hone J, Kim P (2008) Ultrahigh electron mobility in suspended graphene. Solid State Commun 146:351–355CrossRef
10.
go back to reference Balandin AA, Ghosh S, Bao WZ, Caliza I, Teweldebrhan D, Miao F, Lau CN (2008) Superior thermal conductivity of single-layer graphene. Nano Lett 8:902–907CrossRef Balandin AA, Ghosh S, Bao WZ, Caliza I, Teweldebrhan D, Miao F, Lau CN (2008) Superior thermal conductivity of single-layer graphene. Nano Lett 8:902–907CrossRef
11.
go back to reference Wu JS, Pisula W, Mullen K (2007) Graphenes as potential material for electronics. Chem Rev 107:718–747CrossRef Wu JS, Pisula W, Mullen K (2007) Graphenes as potential material for electronics. Chem Rev 107:718–747CrossRef
12.
go back to reference Stankovich S, Dikin DA, Dommett GHB, Kohlhaas KM, Zimney EJ, Stach EA, Piner RD, Nguyen ST, Ruoff RS (2006) Graphene-based composite materials. Nature 442:282–286CrossRef Stankovich S, Dikin DA, Dommett GHB, Kohlhaas KM, Zimney EJ, Stach EA, Piner RD, Nguyen ST, Ruoff RS (2006) Graphene-based composite materials. Nature 442:282–286CrossRef
13.
go back to reference Arora A, Padua GW (2010) Nanocomposites in food packing. J Food Sci 75:R43–R49CrossRef Arora A, Padua GW (2010) Nanocomposites in food packing. J Food Sci 75:R43–R49CrossRef
14.
go back to reference Kim H, Abdala AA, Macosko CW (2010) Graphene/polymer nanocomposites. Macromolecules 43:6515–6530CrossRef Kim H, Abdala AA, Macosko CW (2010) Graphene/polymer nanocomposites. Macromolecules 43:6515–6530CrossRef
15.
go back to reference Kuila T, Bhadra S, Yao D, Kim NH, Bose S, Lee JH (2010) Recent advances in graphene based polymer composites. Prog Polym Sci 35:1350–1375CrossRef Kuila T, Bhadra S, Yao D, Kim NH, Bose S, Lee JH (2010) Recent advances in graphene based polymer composites. Prog Polym Sci 35:1350–1375CrossRef
16.
go back to reference Park R, Ruoff RS (2009) Chemical methods for the production of graphenes. Nat Nanotechnol 4:217–224CrossRef Park R, Ruoff RS (2009) Chemical methods for the production of graphenes. Nat Nanotechnol 4:217–224CrossRef
17.
go back to reference Loh KP, Bao Q, Ang PK et al (2010) The chemistry of graphene. J Mater Chem 20:2277–2289CrossRef Loh KP, Bao Q, Ang PK et al (2010) The chemistry of graphene. J Mater Chem 20:2277–2289CrossRef
18.
go back to reference Kim H, Macosko CW (2009) Processing–property relationships of polycarbonate/graphene composites. Polymer 50:3797–3809CrossRef Kim H, Macosko CW (2009) Processing–property relationships of polycarbonate/graphene composites. Polymer 50:3797–3809CrossRef
19.
go back to reference Zhang HB, Zheng WG, Yan Q, Yang Y, Wang J, Lu Z, Ji GY, Yu Z (2010) Electrically conductive polyethylene terephthalate/graphene nanocomposites prepared by melt compounding. Polymer 51:1191–1196CrossRef Zhang HB, Zheng WG, Yan Q, Yang Y, Wang J, Lu Z, Ji GY, Yu Z (2010) Electrically conductive polyethylene terephthalate/graphene nanocomposites prepared by melt compounding. Polymer 51:1191–1196CrossRef
20.
go back to reference Rafiee MA, Rafiee J, Wang Z, Song H, Yu Z, Koratkar N (2009) Enhanced mechanical properties of nanocomposites at low graphene content. ACS Nano 3:3884–3890CrossRef Rafiee MA, Rafiee J, Wang Z, Song H, Yu Z, Koratkar N (2009) Enhanced mechanical properties of nanocomposites at low graphene content. ACS Nano 3:3884–3890CrossRef
21.
go back to reference Yang Z, Shi X, Yuan J, Pu H, Liu Y (2010) Preparation of poly(3-hexylthiophene)/graphene nanocomposite via in situ reduction of modified graphite oxide sheets. Appl Surf Sci 257:138–142CrossRef Yang Z, Shi X, Yuan J, Pu H, Liu Y (2010) Preparation of poly(3-hexylthiophene)/graphene nanocomposite via in situ reduction of modified graphite oxide sheets. Appl Surf Sci 257:138–142CrossRef
22.
go back to reference Ansari S, Giannells EP (2009) Functionalized graphene sheet-poly(vinylidene fluoride) conductive nanocomposites. J Polym Sci B 47:888–897CrossRef Ansari S, Giannells EP (2009) Functionalized graphene sheet-poly(vinylidene fluoride) conductive nanocomposites. J Polym Sci B 47:888–897CrossRef
23.
go back to reference Park S, Mohanty N, Suk JW, Nagaraja A, An J, Piner RD, Cai W, Dreyer DR, Berry V, Ruoff RS (2010) Biocompatible, robust free-standing paper composed of a TWEEN/graphene composite. Adv Mater 22:1–5CrossRef Park S, Mohanty N, Suk JW, Nagaraja A, An J, Piner RD, Cai W, Dreyer DR, Berry V, Ruoff RS (2010) Biocompatible, robust free-standing paper composed of a TWEEN/graphene composite. Adv Mater 22:1–5CrossRef
24.
go back to reference Liu J, Yang W, Tao L, Li D, Boyer C, Davis TP (2010) Thermosensitive graphene nanocomposites formed using pyrene-terminal polymers made by RAFT polymerization. J Polym Sci A 48:425–433CrossRef Liu J, Yang W, Tao L, Li D, Boyer C, Davis TP (2010) Thermosensitive graphene nanocomposites formed using pyrene-terminal polymers made by RAFT polymerization. J Polym Sci A 48:425–433CrossRef
25.
go back to reference Cuong TV, Pham VH, Tran QT, Hahn SH, Chung JS, Shin EW, Kim EJ (2010) Photoluminescence and Raman studies of graphene thin films prepared by reduction of graphene oxide. Mater Lett 64:399–401CrossRef Cuong TV, Pham VH, Tran QT, Hahn SH, Chung JS, Shin EW, Kim EJ (2010) Photoluminescence and Raman studies of graphene thin films prepared by reduction of graphene oxide. Mater Lett 64:399–401CrossRef
26.
go back to reference Xu Y, Long G, Huang L, Huang Y, Wan X, Ma Y, Chen Y (2010) Polymer photovoltaic devices with transparent graphene electrodes produced by spin-casting. Carbon 48:3293–3311CrossRef Xu Y, Long G, Huang L, Huang Y, Wan X, Ma Y, Chen Y (2010) Polymer photovoltaic devices with transparent graphene electrodes produced by spin-casting. Carbon 48:3293–3311CrossRef
27.
go back to reference Bao Q, Zhang H, Yang JX, Wang S, Tang DY, Jose R, Ramakrishna S, Lim CT, Loh KP (2010) Graphene-polymer nanofiber membrane for ultrafast photonics. Adv Funct Mater 20:782–791CrossRef Bao Q, Zhang H, Yang JX, Wang S, Tang DY, Jose R, Ramakrishna S, Lim CT, Loh KP (2010) Graphene-polymer nanofiber membrane for ultrafast photonics. Adv Funct Mater 20:782–791CrossRef
28.
go back to reference Liu J, Tao L, Yang W, Li D, Boyer C, Wuhrer R, Braet F, Davis TP (2010) Synthesis, characterization, and multilayer assembly of pH sensitive graphene–polymer nanocomposites. Langmuir 26:10068–10075CrossRef Liu J, Tao L, Yang W, Li D, Boyer C, Wuhrer R, Braet F, Davis TP (2010) Synthesis, characterization, and multilayer assembly of pH sensitive graphene–polymer nanocomposites. Langmuir 26:10068–10075CrossRef
29.
go back to reference Zhu Y, Murali S, Cai W, Li X, Suk JW, Potts JR, Ruoff RS (2010) Graphene and graphene oxide: synthesis, properties, and applications. Adv Mater 22:3906–3924CrossRef Zhu Y, Murali S, Cai W, Li X, Suk JW, Potts JR, Ruoff RS (2010) Graphene and graphene oxide: synthesis, properties, and applications. Adv Mater 22:3906–3924CrossRef
30.
go back to reference Liang J, Huang Y, Zhang L, Wang Y, Ma Y, Guo T, Chen Y (2009) Molecular-level dispersion of graphene into poly(vinyl alcohol) and effective reinforcement of their nanocomposites. Adv Funct Mater 19:1–6CrossRef Liang J, Huang Y, Zhang L, Wang Y, Ma Y, Guo T, Chen Y (2009) Molecular-level dispersion of graphene into poly(vinyl alcohol) and effective reinforcement of their nanocomposites. Adv Funct Mater 19:1–6CrossRef
31.
go back to reference Cao Y, Feng J, Wu P (2010) Alkyl-functionalized graphene nanosheets with improved Lipophilicity. Carbon 48:1670–1692CrossRef Cao Y, Feng J, Wu P (2010) Alkyl-functionalized graphene nanosheets with improved Lipophilicity. Carbon 48:1670–1692CrossRef
32.
go back to reference Zhao X, Zhang Q, Chen D, Lu P (2010) Enhanced mechanical properties of graphene-based poly(vinyl alcohol) composites. Macromolecules 43:2357–2363CrossRef Zhao X, Zhang Q, Chen D, Lu P (2010) Enhanced mechanical properties of graphene-based poly(vinyl alcohol) composites. Macromolecules 43:2357–2363CrossRef
33.
go back to reference Wang S, Tambraparni M, Qiu J, Tipton J, Dean D (2009) Thermal expansion of graphene composites. Macromolecules 42:5251–5255CrossRef Wang S, Tambraparni M, Qiu J, Tipton J, Dean D (2009) Thermal expansion of graphene composites. Macromolecules 42:5251–5255CrossRef
34.
go back to reference Gong L, Kinloch IA, Young RJ, Riaz I, Jalil R, Novoselov KS (2010) Interfacial stress transfer in a graphene monolayer nanocomposite. Adv Mater 22:2694–2697CrossRef Gong L, Kinloch IA, Young RJ, Riaz I, Jalil R, Novoselov KS (2010) Interfacial stress transfer in a graphene monolayer nanocomposite. Adv Mater 22:2694–2697CrossRef
35.
go back to reference Dreyer DR, Park S, Bielawski CW, Ruoff RS (2010) The chemistry of graphene oxide. Chem Soc Rev 39:228–240CrossRef Dreyer DR, Park S, Bielawski CW, Ruoff RS (2010) The chemistry of graphene oxide. Chem Soc Rev 39:228–240CrossRef
36.
go back to reference Park S, An J, Piner RD, Jung I, Yang D, Velamakanni A, Nguyen ST, Ruoff RS (2008) Aqueous suspension and characterization of chemically modified graphene sheets. Chem Mater 20:6592–6594CrossRef Park S, An J, Piner RD, Jung I, Yang D, Velamakanni A, Nguyen ST, Ruoff RS (2008) Aqueous suspension and characterization of chemically modified graphene sheets. Chem Mater 20:6592–6594CrossRef
37.
go back to reference Hummers WS, Offeman RE (1958) Preparation of graphite oxide. J Am Chem Soc 80:1339CrossRef Hummers WS, Offeman RE (1958) Preparation of graphite oxide. J Am Chem Soc 80:1339CrossRef
38.
go back to reference Gao J, Liu F, Liu Y, Ma N, Wang Z, Zhang X (2010) Environment-friendly method to produce graphene that employs vitamin C and amino acid. Chem Mater 22:2213–2218CrossRef Gao J, Liu F, Liu Y, Ma N, Wang Z, Zhang X (2010) Environment-friendly method to produce graphene that employs vitamin C and amino acid. Chem Mater 22:2213–2218CrossRef
39.
go back to reference Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammes A, Jia Y, Wu Y, Nguyen ST, Ruoff RS (2007) Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45:1558–1565CrossRef Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammes A, Jia Y, Wu Y, Nguyen ST, Ruoff RS (2007) Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45:1558–1565CrossRef
40.
go back to reference Li D, Muller MB, Gilje S, Kaner RB, Wallace GG (2008) Processable aqueous dispersions of graphene nanosheets. Nat Nanotechnol 3:101–105CrossRef Li D, Muller MB, Gilje S, Kaner RB, Wallace GG (2008) Processable aqueous dispersions of graphene nanosheets. Nat Nanotechnol 3:101–105CrossRef
41.
go back to reference Steurer P, Wissert R, Thomann R, Mülhaupt R (2009) Functionalized graphenes and thermoplastic nanocomposites based upon expanded graphite oxide. Macromol Rapid Commun 30:316–327CrossRef Steurer P, Wissert R, Thomann R, Mülhaupt R (2009) Functionalized graphenes and thermoplastic nanocomposites based upon expanded graphite oxide. Macromol Rapid Commun 30:316–327CrossRef
42.
go back to reference Sridhar V, Oh I (2010) A coagulation technique for purification of graphene sheets with graphene-reinforced PVA hydrogel as byproduct. J Colloid Interface Sci 348:384–387CrossRef Sridhar V, Oh I (2010) A coagulation technique for purification of graphene sheets with graphene-reinforced PVA hydrogel as byproduct. J Colloid Interface Sci 348:384–387CrossRef
43.
go back to reference Salavagione HJ, Gómez MA, Martínez G (2009) Polymeric modification of graphene through esterification of graphite oxide and poly(vinyl alcohol). Macromolecules 42:6331–6334CrossRef Salavagione HJ, Gómez MA, Martínez G (2009) Polymeric modification of graphene through esterification of graphite oxide and poly(vinyl alcohol). Macromolecules 42:6331–6334CrossRef
44.
go back to reference Jiang L, Shen XP, Wu JL, Shen KC (2010) Preparation and characterization of graphene/poly(vinyl alcohol) nanocomposites. J Appl Polym Sci 118:275–279 Jiang L, Shen XP, Wu JL, Shen KC (2010) Preparation and characterization of graphene/poly(vinyl alcohol) nanocomposites. J Appl Polym Sci 118:275–279
45.
go back to reference Xu Y, Hong W, Bai H, Li C, Shi G (2009) Strong and ductile poly(vinyl alcohol)/graphene oxide composite films with a layered structure. Carbon 47:3538–3543CrossRef Xu Y, Hong W, Bai H, Li C, Shi G (2009) Strong and ductile poly(vinyl alcohol)/graphene oxide composite films with a layered structure. Carbon 47:3538–3543CrossRef
Metadata
Title
Enhanced interfacial interaction for effective reinforcement of poly(vinyl alcohol) nanocomposites at low loading of graphene
Author
Xiaoya Yuan
Publication date
01-12-2011
Publisher
Springer-Verlag
Published in
Polymer Bulletin / Issue 9/2011
Print ISSN: 0170-0839
Electronic ISSN: 1436-2449
DOI
https://doi.org/10.1007/s00289-011-0506-z

Other articles of this Issue 9/2011

Polymer Bulletin 9/2011 Go to the issue

Premium Partners