Skip to main content
Top
Published in: Journal of Materials Science: Materials in Electronics 4/2018

17-11-2017

Enhanced magnetic and dielectric properties in bismuth ferrite (Bi2−xSrxFe4O9) derived by the reverse chemical co-precipitation method

Authors: N. Daneshmand, H. Shokrollahi, S. A. N. H. Lavasani

Published in: Journal of Materials Science: Materials in Electronics | Issue 4/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Bi2−xSrxFe4O9, 0 ≤ x ≤ 0.25 (BSFO) powders have been successfully synthesized by the reverse chemical co-precipitation method with a pH value of 9 at room temperature. In this study, the effect of Sr2+ doping on the structural, morphological, magnetic and electrical properties of BSFO was investigated and then the as-prepared powders were fabricated by microwave sintering at 800 °C. The X-ray diffraction (XRD) reveals the formation of the pure phase orthorhombic structure with Bi2O3 impurity for samples with x = 0.15, 0.20 and 0.25. Also, XRD patterns showed that by increasing the Sr2+ concentration, the amount of Bi2O3 impurity increases. In addition, the field emission scanning electron microscopy (FESEM) indicates by increasing the Sr content, the particle size decreases from 215 for a pure sample to 40 nm for BSFO with x = 0.25, approximately. The thermogravimetric–differential scanning calorimeter (TG–DSC) and Fourier transform infrared spectroscopy (FT-IR) were carried out for the estimation and conformation of the as-selected calcination temperature, weight loss and vibrational bounding mode, respectively. The magnetic properties of the nanoparticles and dielectric properties of the bulk samples were measured using the vibrating sample magnetometer (VSM) and inductance–capacitance–resistance (LCR-meter), respectively. The magnetization (M) was elevated from 0.190 to 0.358 emu/g by adding the 0.10 and then falls down to 0.217 emu/g for x = 0.20 strontium molar ratio as a result of the spiral spin structure collapse and formation of diamagnetic Bi2O3 phase, respectively. Besides, a decrease in the particles size by increasing the Sr amount resulted in more uncompensated spins, thereby improving the saturation magnetization. Furthermore, The coercivity of as-synthesized powder samples greatly increase with increasing the dopant concentration from 125 Oe for pure BFO to 3289 Oe for samples with x = 0.10 and then decreases to 940 Oe for x = 0.25 due to increasing the non-uniformity in the grain size distribution by addition the more dopant ions. In addition, the dielectric constant and dielectric loss were improved up to x = 0.25.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference H. Wu, M. Siegel, Odor-Based Incontinence Sensor, Instrumentation and Measurement Technology Conference, 2000. IEEE, 2000, pp. 63–68 H. Wu, M. Siegel, Odor-Based Incontinence Sensor, Instrumentation and Measurement Technology Conference, 2000. IEEE, 2000, pp. 63–68
2.
go back to reference L. Dori, S. Nicoletti, I. Elimi, A.R. Mastrogiacomo, L. Sampaolo, E. Pierini, A gas chromatographic-like system for the separation and monitoring of benzene, toluene and xylene compounds at the ppb level using solid state metal oxide gas sensors. J. Sens. Mater. 12, 163–174 (2000) L. Dori, S. Nicoletti, I. Elimi, A.R. Mastrogiacomo, L. Sampaolo, E. Pierini, A gas chromatographic-like system for the separation and monitoring of benzene, toluene and xylene compounds at the ppb level using solid state metal oxide gas sensors. J. Sens. Mater. 12, 163–174 (2000)
3.
go back to reference A. Poghossian, H. Abovian, P. Avakian, S. Mkrtchian, V. Haroutunian, Bismuth ferrites: new materials for semiconductor gas sensors. J. Sens. Actuators B 4, 545–549 (1991)CrossRef A. Poghossian, H. Abovian, P. Avakian, S. Mkrtchian, V. Haroutunian, Bismuth ferrites: new materials for semiconductor gas sensors. J. Sens. Actuators B 4, 545–549 (1991)CrossRef
4.
go back to reference W. Göpel, New materials and transducers for chemical sensors. J. Sens. Actuators B 18, 1–21 (1994)CrossRef W. Göpel, New materials and transducers for chemical sensors. J. Sens. Actuators B 18, 1–21 (1994)CrossRef
5.
go back to reference H. Xie, K. Wang, Y. Jiang, Y. Zhao, X. Wang, An improved co-precipitation method to synthesize three bismuth ferrites. J. Synth. React. Inorg. Met.-Org. Nano-Met. Chem. 44, 1363–1367 (2014)CrossRef H. Xie, K. Wang, Y. Jiang, Y. Zhao, X. Wang, An improved co-precipitation method to synthesize three bismuth ferrites. J. Synth. React. Inorg. Met.-Org. Nano-Met. Chem. 44, 1363–1367 (2014)CrossRef
6.
go back to reference P. Hajra, R. Maiti, D. Chakravorty, Room temperature magnetoelectric coupling in single crystal Bi2Fe4O9 nanotubes grown within an anodic aluminum oxide template. Mater. Lett. 81, 138–141 (2012)CrossRef P. Hajra, R. Maiti, D. Chakravorty, Room temperature magnetoelectric coupling in single crystal Bi2Fe4O9 nanotubes grown within an anodic aluminum oxide template. Mater. Lett. 81, 138–141 (2012)CrossRef
7.
go back to reference A. Tutov, V. Markin, The X-ray structural analysis of the antiferromagnetic Bi2Fe4O9 and the isotypical combinations Bi2Ga4O9 and Bi2Al4O9. Izv. Akad. Nauk SSSR Neorg. Mater. 6 (1970) A. Tutov, V. Markin, The X-ray structural analysis of the antiferromagnetic Bi2Fe4O9 and the isotypical combinations Bi2Ga4O9 and Bi2Al4O9. Izv. Akad. Nauk SSSR Neorg. Mater. 6 (1970)
8.
go back to reference E. Zahedi, B. Xiao, M. Shayestefar, First-principles investigations of the structure, electronic, and optical properties of mullite-type orthorhombic Bi2M4O9 (M = Al3+, Ga3+). J. Inorg. Chem. 55, 4824–4835 (2016)CrossRef E. Zahedi, B. Xiao, M. Shayestefar, First-principles investigations of the structure, electronic, and optical properties of mullite-type orthorhombic Bi2M4O9 (M = Al3+, Ga3+). J. Inorg. Chem. 55, 4824–4835 (2016)CrossRef
9.
go back to reference Y. Xiong, M. Wu, Z. Peng, N. Jiang, Q. Chen, Hydrothermal synthesis and characterization of Bi2Fe4O9 nanoparticles. J. Chem. Lett. 33, 502–503 (2004)CrossRef Y. Xiong, M. Wu, Z. Peng, N. Jiang, Q. Chen, Hydrothermal synthesis and characterization of Bi2Fe4O9 nanoparticles. J. Chem. Lett. 33, 502–503 (2004)CrossRef
10.
go back to reference D. Astrov, Magnetoelectric effect in chromium oxide. J. Sov. Phys. 13, 729–733 (1961) D. Astrov, Magnetoelectric effect in chromium oxide. J. Sov. Phys. 13, 729–733 (1961)
11.
go back to reference I. Dzyaloshinskii, On the magneto-electrical effect in antiferromagnets. J. Sov. Phys. 10, 628–629 (1960) I. Dzyaloshinskii, On the magneto-electrical effect in antiferromagnets. J. Sov. Phys. 10, 628–629 (1960)
12.
go back to reference Z. Yang, Y. Huang, B. Dong, H.-L. Li, S.-Q. Shi, Densely packed single-crystal Bi2Fe4O9 nanowires fabricated from a template-induced sol–gel route. J. Solid State Chem. 179, 3324–3329 (2006)CrossRef Z. Yang, Y. Huang, B. Dong, H.-L. Li, S.-Q. Shi, Densely packed single-crystal Bi2Fe4O9 nanowires fabricated from a template-induced sol–gel route. J. Solid State Chem. 179, 3324–3329 (2006)CrossRef
13.
go back to reference N. Niizeki, M. Wachi, The crystal structures of Bi2Mn4O10, Bi2Al4O9 and Bi2Fe4O9. J. Cryst. Mater. 127, 173–187 (1968) N. Niizeki, M. Wachi, The crystal structures of Bi2Mn4O10, Bi2Al4O9 and Bi2Fe4O9. J. Cryst. Mater. 127, 173–187 (1968)
14.
go back to reference H. Schmid, Multi-ferroic magnetoelectrics. Ferroelectrics 162, 317–338 (1994)CrossRef H. Schmid, Multi-ferroic magnetoelectrics. Ferroelectrics 162, 317–338 (1994)CrossRef
15.
go back to reference M. Fiebig, Revival of the magnetoelectric effect. J. Phys. D 38, R123 (2005)CrossRef M. Fiebig, Revival of the magnetoelectric effect. J. Phys. D 38, R123 (2005)CrossRef
16.
go back to reference W. Eerenstein, N. Mathur, J.F. Scott, Multiferroic and magnetoelectric materials. Nature 442, 759 (2006)CrossRef W. Eerenstein, N. Mathur, J.F. Scott, Multiferroic and magnetoelectric materials. Nature 442, 759 (2006)CrossRef
17.
go back to reference A. Singh, S. Kaushik, B. Kumar, P. Mishra, A. Venimadhav, V. Siruguri, S. Patnaik, Substantial magnetoelectric coupling near room temperature in Bi2Fe4O9. J. Appl. Phys. Lett. 92, 132910 (2008)CrossRef A. Singh, S. Kaushik, B. Kumar, P. Mishra, A. Venimadhav, V. Siruguri, S. Patnaik, Substantial magnetoelectric coupling near room temperature in Bi2Fe4O9. J. Appl. Phys. Lett. 92, 132910 (2008)CrossRef
18.
go back to reference P.K. Rao, S. Krishnan, M. Pattabi, G. Sanjeev, Magnetic and photoluminescence studies of electron irradiated Bi2Fe4O9 nanoparticles. J. Magn. Magn. Mater. 401, 77–80 (2016)CrossRef P.K. Rao, S. Krishnan, M. Pattabi, G. Sanjeev, Magnetic and photoluminescence studies of electron irradiated Bi2Fe4O9 nanoparticles. J. Magn. Magn. Mater. 401, 77–80 (2016)CrossRef
19.
go back to reference H. Ke, W. Wang, Y. Wang, J. Xu, D. Jia, Z. Lu, Y. Zhou, Factors controlling pure-phase multiferroic BiFeO3 powders synthesized by chemical co-precipitation. J. Alloy. Compd. 509, 2192–2197 (2011)CrossRef H. Ke, W. Wang, Y. Wang, J. Xu, D. Jia, Z. Lu, Y. Zhou, Factors controlling pure-phase multiferroic BiFeO3 powders synthesized by chemical co-precipitation. J. Alloy. Compd. 509, 2192–2197 (2011)CrossRef
20.
go back to reference L. Wang, J. Li, J.-B. Xu, A.-M. Chang, L. Bian, B. Gao, K.-T. Liu, Bi2Fe4O9 submicron-rods synthesized by a low-heating temperature solid state precursor method. J. Alloy. Compd. 562, 64–68 (2013)CrossRef L. Wang, J. Li, J.-B. Xu, A.-M. Chang, L. Bian, B. Gao, K.-T. Liu, Bi2Fe4O9 submicron-rods synthesized by a low-heating temperature solid state precursor method. J. Alloy. Compd. 562, 64–68 (2013)CrossRef
21.
go back to reference A. Maitre, M. Francois, J. Gachon, Experimental study of the Bi2O3-Fe2O3 pseudo-binary system. J. Phase Equilib. Diffus. 25, 59–67 (2004)CrossRef A. Maitre, M. Francois, J. Gachon, Experimental study of the Bi2O3-Fe2O3 pseudo-binary system. J. Phase Equilib. Diffus. 25, 59–67 (2004)CrossRef
22.
go back to reference M. Basiri, H. Shokrollahi, G. Isapour, Effects of La content on the magnetic, electric and structural properties of BiFeO3. J. Magn. Magn. Mater. 354, 184–189 (2014)CrossRef M. Basiri, H. Shokrollahi, G. Isapour, Effects of La content on the magnetic, electric and structural properties of BiFeO3. J. Magn. Magn. Mater. 354, 184–189 (2014)CrossRef
23.
go back to reference H. Shokrollahi, Magnetic, electrical and structural characterization of BiFeO3nanoparticles synthesized by co-precipitation. J. Powder Technol. 235, 953–958 (2013)CrossRef H. Shokrollahi, Magnetic, electrical and structural characterization of BiFeO3nanoparticles synthesized by co-precipitation. J. Powder Technol. 235, 953–958 (2013)CrossRef
24.
go back to reference I.A. Kornev, S. Lisenkov, R. Haumont, B. Dkhil, L. Bellaiche, Finite-temperature properties of multiferroic BiFeO3. J. Phys. Rev. Lett. 99, 227602 (2007)CrossRef I.A. Kornev, S. Lisenkov, R. Haumont, B. Dkhil, L. Bellaiche, Finite-temperature properties of multiferroic BiFeO3. J. Phys. Rev. Lett. 99, 227602 (2007)CrossRef
25.
go back to reference Y. Liu, R. Zuo, Morphology and optical absorption of Bi2Fe4O9 crystals via mineralizer-assisted hydrothermal synthesis. J. Particuology 11, 581–587 (2013)CrossRef Y. Liu, R. Zuo, Morphology and optical absorption of Bi2Fe4O9 crystals via mineralizer-assisted hydrothermal synthesis. J. Particuology 11, 581–587 (2013)CrossRef
26.
go back to reference T. Liu, Y. Xu, C. Zeng, Synthesis of Bi2Fe4O9 via PVA sol–gel route. Mater. Sci. Eng. B 176, 535–539 (2011)CrossRef T. Liu, Y. Xu, C. Zeng, Synthesis of Bi2Fe4O9 via PVA sol–gel route. Mater. Sci. Eng. B 176, 535–539 (2011)CrossRef
27.
go back to reference B. Kaur, L. Singh, V.A. Reddy, D.-Y. Jeong, N. Dabra, J.S. Hundal, Study of A-site divalent doping on multiferroic properties of BFO nanoparticles processed via combustion method. J. Struct. 25, 28 (2016) B. Kaur, L. Singh, V.A. Reddy, D.-Y. Jeong, N. Dabra, J.S. Hundal, Study of A-site divalent doping on multiferroic properties of BFO nanoparticles processed via combustion method. J. Struct. 25, 28 (2016)
28.
go back to reference Y. Qiu, Z. Zou, R. Sang, H. Wang, D. Xue, Z. Tian, G. Gong, S. Yuan, Enhanced magnetic and ferroelectric properties in Cr doped Bi2Fe4O9 ceramics. J. Mater. Sci.: Mater. Electron. 26, 1732–1736 (2015) Y. Qiu, Z. Zou, R. Sang, H. Wang, D. Xue, Z. Tian, G. Gong, S. Yuan, Enhanced magnetic and ferroelectric properties in Cr doped Bi2Fe4O9 ceramics. J. Mater. Sci.: Mater. Electron. 26, 1732–1736 (2015)
29.
go back to reference T. Hussain, S.A. Siddiqi, S. Atiq, M. Awan, Induced modifications in the properties of Sr doped BiFeO3 multiferroics. Prog. Nat. Sci.: Mater. Int. 23, 487–492 (2013)CrossRef T. Hussain, S.A. Siddiqi, S. Atiq, M. Awan, Induced modifications in the properties of Sr doped BiFeO3 multiferroics. Prog. Nat. Sci.: Mater. Int. 23, 487–492 (2013)CrossRef
30.
go back to reference Q.-J. Ruan, W.-D. Zhang, Tunable morphology of Bi2Fe4O9 crystals for photocatalytic oxidation. J. Phys. Chem. C 113, 4168–4173 (2009)CrossRef Q.-J. Ruan, W.-D. Zhang, Tunable morphology of Bi2Fe4O9 crystals for photocatalytic oxidation. J. Phys. Chem. C 113, 4168–4173 (2009)CrossRef
31.
go back to reference J.T. Han, Y.H. Huang, X.J. Wu, C.L. Wu, W. Wei, B. Peng, W. Huang, J.B. Goodenough, Tunable synthesis of bismuth ferrites with various morphologies. Adv. Mater. 18, 2145–2148 (2006)CrossRef J.T. Han, Y.H. Huang, X.J. Wu, C.L. Wu, W. Wei, B. Peng, W. Huang, J.B. Goodenough, Tunable synthesis of bismuth ferrites with various morphologies. Adv. Mater. 18, 2145–2148 (2006)CrossRef
32.
go back to reference J. Wang, Y. Wei, J. Zhang, L. Ji, Y. Huang, Z. Chen, Synthesis of pure-phase BiFeO3 nanopowder by nitric acid-assisted gel. J. Mater. Lett. 124, 242–244 (2014)CrossRef J. Wang, Y. Wei, J. Zhang, L. Ji, Y. Huang, Z. Chen, Synthesis of pure-phase BiFeO3 nanopowder by nitric acid-assisted gel. J. Mater. Lett. 124, 242–244 (2014)CrossRef
33.
go back to reference G. Biasotto, A.Z. Simões, C.R. Foschini, S.G. Antônio, M.A. Zaghete, J.A. Varela, A novel synthesis of perovskite bismuth ferrite nanoparticles. J. Process. Appl. Ceram. 5, 171–179 (2011)CrossRef G. Biasotto, A.Z. Simões, C.R. Foschini, S.G. Antônio, M.A. Zaghete, J.A. Varela, A novel synthesis of perovskite bismuth ferrite nanoparticles. J. Process. Appl. Ceram. 5, 171–179 (2011)CrossRef
34.
go back to reference J. Zhao, T. Liu, Y. Xu, Y. He, W. Chen, Synthesis and characterization of Bi2Fe4O9 powders. Mater. Chem. Phys. 128, 388–391 (2011)CrossRef J. Zhao, T. Liu, Y. Xu, Y. He, W. Chen, Synthesis and characterization of Bi2Fe4O9 powders. Mater. Chem. Phys. 128, 388–391 (2011)CrossRef
35.
go back to reference A. Beran, D. Voll, H. Schneider, Dehydration and structural development of mullite precursors: an FTIR spectroscopic study. J. Eur. Ceram. Soc. 21, 2479–2485 (2001)CrossRef A. Beran, D. Voll, H. Schneider, Dehydration and structural development of mullite precursors: an FTIR spectroscopic study. J. Eur. Ceram. Soc. 21, 2479–2485 (2001)CrossRef
36.
go back to reference Z. Tian, Y. Qiu, S. Yuan, M. Wu, S. Huo, H. Duan, Enhanced multiferroic properties in Ti-doped Bi2Fe4O9 ceramics. J. Appl. Phys. 108, 064110 (2010)CrossRef Z. Tian, Y. Qiu, S. Yuan, M. Wu, S. Huo, H. Duan, Enhanced multiferroic properties in Ti-doped Bi2Fe4O9 ceramics. J. Appl. Phys. 108, 064110 (2010)CrossRef
37.
go back to reference R. Maiti, S. Basu, D. Chakravorty, Synthesis of nanocrystalline YFeO3 and its magnetic properties. J. Magn. Magn. Mater. 321, 3274–3277 (2009)CrossRef R. Maiti, S. Basu, D. Chakravorty, Synthesis of nanocrystalline YFeO3 and its magnetic properties. J. Magn. Magn. Mater. 321, 3274–3277 (2009)CrossRef
38.
go back to reference T. Kimura, S. Kawamoto, I. Yamada, M. Azuma, M. Takano, Y. Tokura, Magnetocapacitance effect in multiferroic BiMnO3. J. Phys. Rev. B 67, 180401 (2003)CrossRef T. Kimura, S. Kawamoto, I. Yamada, M. Azuma, M. Takano, Y. Tokura, Magnetocapacitance effect in multiferroic BiMnO3. J. Phys. Rev. B 67, 180401 (2003)CrossRef
39.
go back to reference J.-T. Han, Y.-H. Huang, R.-J. Jia, G.-C. Shan, R.-Q. Guo, W. Huang, Synthesis and magnetic property of submicron Bi2Fe4O9. J. Cryst. Growth 294, 469–473 (2006)CrossRef J.-T. Han, Y.-H. Huang, R.-J. Jia, G.-C. Shan, R.-Q. Guo, W. Huang, Synthesis and magnetic property of submicron Bi2Fe4O9. J. Cryst. Growth 294, 469–473 (2006)CrossRef
40.
go back to reference T. Hussain, S.A. Siddiqi, S. Atiq, S. Riaz, S. Naseem, Induced Modifications in the Structural, Electrical and Magnetic Properties of Sr-Doped BiFeO 3 Multiferroics. Advances in civil, environmental, and materials research, 2012 T. Hussain, S.A. Siddiqi, S. Atiq, S. Riaz, S. Naseem, Induced Modifications in the Structural, Electrical and Magnetic Properties of Sr-Doped BiFeO 3 Multiferroics. Advances in civil, environmental, and materials research, 2012
41.
go back to reference G. Wang, S. Nie, J. Sun, S. Wang, Q. Deng, Effects of Zr4+ doping on structure, magnetic and optical properties of Bi2Fe4O9 powders. J. Mater. Sci.: Mater. Electron. 27, 9417–9422 (2016) G. Wang, S. Nie, J. Sun, S. Wang, Q. Deng, Effects of Zr4+ doping on structure, magnetic and optical properties of Bi2Fe4O9 powders. J. Mater. Sci.: Mater. Electron. 27, 9417–9422 (2016)
42.
go back to reference F.J.G. Landgraf, J.R.F. Da Silveira, D. Rodrigues-Jr, Determining the effect of grain size and maximum induction upon coercive field of electrical steels. J. Magn. Magn. Mater. 323, 2335–2339 (2011)CrossRef F.J.G. Landgraf, J.R.F. Da Silveira, D. Rodrigues-Jr, Determining the effect of grain size and maximum induction upon coercive field of electrical steels. J. Magn. Magn. Mater. 323, 2335–2339 (2011)CrossRef
43.
go back to reference M. Ahmed, E. Dhahri, S. El-Dek, M. Ayoub, Size confinement and magnetization improvement by La3+ doping in BiFeO3 quantum dots. Solid State Sci. 20, 23–28 (2013)CrossRef M. Ahmed, E. Dhahri, S. El-Dek, M. Ayoub, Size confinement and magnetization improvement by La3+ doping in BiFeO3 quantum dots. Solid State Sci. 20, 23–28 (2013)CrossRef
44.
go back to reference B. Bhushan, A. Basumallick, N. Vasanthacharya, S. Kumar, D. Das, Sr induced modification of structural, optical and magnetic properties in Bi1– xSrxFeO3 (x = 0, 0.01, 0.03, 0.05 and 0.07) multiferroic nanoparticles. J. Solid State Sci. 12, 1063–1069 (2010)CrossRef B. Bhushan, A. Basumallick, N. Vasanthacharya, S. Kumar, D. Das, Sr induced modification of structural, optical and magnetic properties in Bi1– xSrxFeO3 (x = 0, 0.01, 0.03, 0.05 and 0.07) multiferroic nanoparticles. J. Solid State Sci. 12, 1063–1069 (2010)CrossRef
45.
go back to reference G. Song, H. Zhang, T. Wang, H. Yang, F. Chang, Effect of Sm, Co codoping on the dielectric and magnetoelectric properties of BiFeO3 polycrystalline ceramics. J. Magn. Magn. Mater. 324, 2121–2126 (2012)CrossRef G. Song, H. Zhang, T. Wang, H. Yang, F. Chang, Effect of Sm, Co codoping on the dielectric and magnetoelectric properties of BiFeO3 polycrystalline ceramics. J. Magn. Magn. Mater. 324, 2121–2126 (2012)CrossRef
Metadata
Title
Enhanced magnetic and dielectric properties in bismuth ferrite (Bi2−xSrxFe4O9) derived by the reverse chemical co-precipitation method
Authors
N. Daneshmand
H. Shokrollahi
S. A. N. H. Lavasani
Publication date
17-11-2017
Publisher
Springer US
Published in
Journal of Materials Science: Materials in Electronics / Issue 4/2018
Print ISSN: 0957-4522
Electronic ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-017-8255-x

Other articles of this Issue 4/2018

Journal of Materials Science: Materials in Electronics 4/2018 Go to the issue