Skip to main content
Top
Published in: Journal of Electronic Materials 11/2023

29-08-2023 | Original Research Article

Enhancement of Hole Extraction in Carbon-Based Organic–Inorganic Hybrid Perovskite Solar Cells Using MAPbI3:NiO-NPs Composite

Authors: R. Isaac Daniel, R. Govindaraj, P. Ramasamy, A. K. Chauhan

Published in: Journal of Electronic Materials | Issue 11/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this article, a combination of spherical and oval NiO nanoparticles were synthesized through the co-precipitation method and incorporated into a MAPbI3-based perovskite layer (MAPbI3:NiO) to enhance hole extraction in carbon-based perovskite solar cells (CPSCs). Field-emission scanning electron microscopy (FESEM) images of the MAPbI3 and MAPbI3:NiO NPs composite layers confirmed the formation of needle-like grains. The incorporation of NiO NPs in the perovskite layer enhanced both the crystallinity and the grain size of the film. Moreover, the NiO composited films showed maximum absorbance in the visible region and significantly quenched emission peak in the photoluminescence (PL) emission spectrum. Because of the materials’ outstanding characteristics, the NiO composite perovskite device achieved power conversion efficiency (PCE) of 9.75%. In addition, the effect of adding a spacer layer in the same device architecture was also studied. The results showed an enhancement of the open-circuit voltage (Voc) from 862 mV to 988 mV, making the device a champion with PCE of ~11%.

Graphical Abstract

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference K. Zheng, Q. Zhu, M. Abdellah, M.E. Messing, W. Zhang, A. Generalov, Y. Niu, L. Ribaud, S.E. Canton, and T. Pullerits, Exciton binding energy and the nature of emissive states in organometal halide perovskites. J. Phys. Chem. Lett. 6, 2969 (2015).CrossRef K. Zheng, Q. Zhu, M. Abdellah, M.E. Messing, W. Zhang, A. Generalov, Y. Niu, L. Ribaud, S.E. Canton, and T. Pullerits, Exciton binding energy and the nature of emissive states in organometal halide perovskites. J. Phys. Chem. Lett. 6, 2969 (2015).CrossRef
2.
go back to reference Z. Xiao, Y. Yuan, Q. Wang, Y. Shao, Y. Bai, Y. Deng, Q. Dong, M. Hu, C. Bi, and J. Huang, Thin-film semiconductor perspective of organometal trihalide perovskite materials for high-efficiency solar cells. Mater. Sci. Eng. R Rep. 101, 1 (2016).CrossRef Z. Xiao, Y. Yuan, Q. Wang, Y. Shao, Y. Bai, Y. Deng, Q. Dong, M. Hu, C. Bi, and J. Huang, Thin-film semiconductor perspective of organometal trihalide perovskite materials for high-efficiency solar cells. Mater. Sci. Eng. R Rep. 101, 1 (2016).CrossRef
3.
go back to reference H. Wei, Y. Fang, P. Mulligan, W. Chuirazzi, H.-H. Fang, C. Wang, B.R. Ecker, Y. Gao, M.A. Loi, and L. Cao, Sensitive x-ray detectors made of methylammonium lead tribromide perovskite single crystals. Nat. Photonics 10, 333 (2016).CrossRef H. Wei, Y. Fang, P. Mulligan, W. Chuirazzi, H.-H. Fang, C. Wang, B.R. Ecker, Y. Gao, M.A. Loi, and L. Cao, Sensitive x-ray detectors made of methylammonium lead tribromide perovskite single crystals. Nat. Photonics 10, 333 (2016).CrossRef
4.
go back to reference M. Li, Z.-K. Wang, T. Kang, Y. Yang, X. Gao, C.-S. Hsu, Y. Li, and L.-S. Liao, Graphdiyne-modified cross-linkable fullerene as an efficient electron-transporting layer in organometal halide perovskite solar cells. Nano Energy 43, 47 (2018).CrossRef M. Li, Z.-K. Wang, T. Kang, Y. Yang, X. Gao, C.-S. Hsu, Y. Li, and L.-S. Liao, Graphdiyne-modified cross-linkable fullerene as an efficient electron-transporting layer in organometal halide perovskite solar cells. Nano Energy 43, 47 (2018).CrossRef
5.
go back to reference G. Sadoughi, D.E. Starr, E. Handick, S.D. Stranks, M. Gorgoi, R.G. Wilks, M. Bär, and H.J. Snaith, Observation and mediation of the presence of metallic lead in organic–inorganic perovskite films. ACS Appl. Mater. Interfaces 7, 13440 (2015).CrossRef G. Sadoughi, D.E. Starr, E. Handick, S.D. Stranks, M. Gorgoi, R.G. Wilks, M. Bär, and H.J. Snaith, Observation and mediation of the presence of metallic lead in organic–inorganic perovskite films. ACS Appl. Mater. Interfaces 7, 13440 (2015).CrossRef
6.
go back to reference W. Ke, G. Fang, Q. Liu, L. Xiong, P. Qin, H. Tao, J. Wang, H. Lei, B. Li, J. Wan, G. Yang, and Y. Yan, Low-temperature solution-processed tin oxide as an alternative electron transporting layer for efficient perovskite solar cells. J. Am. Chem. Soc. 137, 6730 (2015).CrossRef W. Ke, G. Fang, Q. Liu, L. Xiong, P. Qin, H. Tao, J. Wang, H. Lei, B. Li, J. Wan, G. Yang, and Y. Yan, Low-temperature solution-processed tin oxide as an alternative electron transporting layer for efficient perovskite solar cells. J. Am. Chem. Soc. 137, 6730 (2015).CrossRef
7.
go back to reference J. Cao, B. Wu, R. Chen, Y. Wu, Y. Hui, B.-W. Mao, and N. Zheng, Efficient, hysteresis-free, and stable perovskite solar cells with zno as electron-transport layer: effect of surface passivation, advanced materials. Adv. Mater. 30, 1705596 (2018).CrossRef J. Cao, B. Wu, R. Chen, Y. Wu, Y. Hui, B.-W. Mao, and N. Zheng, Efficient, hysteresis-free, and stable perovskite solar cells with zno as electron-transport layer: effect of surface passivation, advanced materials. Adv. Mater. 30, 1705596 (2018).CrossRef
8.
go back to reference J.H. Heo, H.J. Han, D. Kim, T.K. Ahn, and S.H. Im, Hysteresis-less inverted CH3NH3PbI3 planar perovskite hybrid solar cells with 18.1% power conversion efficiency. Energy Environ. Sci. 8, 1602 (2015).CrossRef J.H. Heo, H.J. Han, D. Kim, T.K. Ahn, and S.H. Im, Hysteresis-less inverted CH3NH3PbI3 planar perovskite hybrid solar cells with 18.1% power conversion efficiency. Energy Environ. Sci. 8, 1602 (2015).CrossRef
9.
go back to reference H. Chen, Y. Chen, T. Zhang, X. Liu, X. Wang, and Y. Zhao, Advances to high-performance black-phase FAPbI3 perovskite for efficient and stable photovoltaics. Small Struct. 2, 2000130 (2021).CrossRef H. Chen, Y. Chen, T. Zhang, X. Liu, X. Wang, and Y. Zhao, Advances to high-performance black-phase FAPbI3 perovskite for efficient and stable photovoltaics. Small Struct. 2, 2000130 (2021).CrossRef
10.
go back to reference J. Kim, N. Park, J.S. Yun, S. Huang, M.A. Green, and A.W.Y. Ho-Baillie, An effective method of predicting perovskite solar cell lifetime—case study on planar CH3NH3PbI3 and HC(NH2)2PbI3 perovskite solar cells and hole transfer materials of spiro-OMeTAD and PTAA. Sol. Energy. Mater. Sol. Cells 162, 41 (2017).CrossRef J. Kim, N. Park, J.S. Yun, S. Huang, M.A. Green, and A.W.Y. Ho-Baillie, An effective method of predicting perovskite solar cell lifetime—case study on planar CH3NH3PbI3 and HC(NH2)2PbI3 perovskite solar cells and hole transfer materials of spiro-OMeTAD and PTAA. Sol. Energy. Mater. Sol. Cells 162, 41 (2017).CrossRef
11.
go back to reference Y. Zhang, M. Elawad, Z. Yu, X. Jiang, J. Lai, and L. Sun, Enhanced performance of perovskite solar cells with P3HT hole-transporting materials via molecular p-type doping. RSC Adv. 6, 108888 (2016).CrossRef Y. Zhang, M. Elawad, Z. Yu, X. Jiang, J. Lai, and L. Sun, Enhanced performance of perovskite solar cells with P3HT hole-transporting materials via molecular p-type doping. RSC Adv. 6, 108888 (2016).CrossRef
12.
go back to reference Z. Ku, Y. Rong, M. Xu, T. Liu, and H. Han, Full printable processed mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells with carbon counter electrode. Sci. Rep. 3, 3132 (2013).CrossRef Z. Ku, Y. Rong, M. Xu, T. Liu, and H. Han, Full printable processed mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells with carbon counter electrode. Sci. Rep. 3, 3132 (2013).CrossRef
13.
go back to reference S. Maniarasu, T.B. Korukonda, V. Manjunath, E. Ramasamy, M. Ramesh, and G. Veerappan, Recent advancement in metal cathode and hole-conductor-free perovskite solar cells for low-cost and high stability: a route towards commercialization. Renew. Sustain. Energy Rev. 82, 845 (2018).CrossRef S. Maniarasu, T.B. Korukonda, V. Manjunath, E. Ramasamy, M. Ramesh, and G. Veerappan, Recent advancement in metal cathode and hole-conductor-free perovskite solar cells for low-cost and high stability: a route towards commercialization. Renew. Sustain. Energy Rev. 82, 845 (2018).CrossRef
14.
go back to reference P. Qin, S. Tanaka, S. Ito, N. Tetreault, K. Manabe, H. Nishino, M.K. Nazeeruddin, and M. Grätzel, Inorganic hole conductor-based lead halide perovskite solar cells with 12.4% conversion efficiency. Nat. Commun. 5, 3834 (2014).CrossRef P. Qin, S. Tanaka, S. Ito, N. Tetreault, K. Manabe, H. Nishino, M.K. Nazeeruddin, and M. Grätzel, Inorganic hole conductor-based lead halide perovskite solar cells with 12.4% conversion efficiency. Nat. Commun. 5, 3834 (2014).CrossRef
15.
go back to reference A.S. Subbiah, A. Halder, S. Ghosh, N. Mahuli, G. Hodes, and S.K. Sarkar, Inorganic hole conducting layers for perovskite-based solar cells. J. Phys. Chem. Lett. 5, 1748 (2014).CrossRef A.S. Subbiah, A. Halder, S. Ghosh, N. Mahuli, G. Hodes, and S.K. Sarkar, Inorganic hole conducting layers for perovskite-based solar cells. J. Phys. Chem. Lett. 5, 1748 (2014).CrossRef
16.
go back to reference J.A. Christians, R.C.M. Fung, and P.V. Kamat, An inorganic hole conductor for organo-lead halide perovskite solar cells. Improved hole conductivity with copper iodide. J. Am. Chem. Soc. 136, 758 (2014).CrossRef J.A. Christians, R.C.M. Fung, and P.V. Kamat, An inorganic hole conductor for organo-lead halide perovskite solar cells. Improved hole conductivity with copper iodide. J. Am. Chem. Soc. 136, 758 (2014).CrossRef
17.
go back to reference X. Xu, Z. Liu, Z. Zuo, M. Zhang, Z. Zhao, Y. Shen, H. Zhou, Q. Chen, Y. Yang, and M. Wang, Hole selective NiO contact for efficient perovskite solar cells with carbon electrode. Nano Lett. 15, 2402 (2015).CrossRef X. Xu, Z. Liu, Z. Zuo, M. Zhang, Z. Zhao, Y. Shen, H. Zhou, Q. Chen, Y. Yang, and M. Wang, Hole selective NiO contact for efficient perovskite solar cells with carbon electrode. Nano Lett. 15, 2402 (2015).CrossRef
18.
go back to reference Z. Liu, M. Zhang, X. Xu, L. Bu, W. Zhang, W. Li, Z. Zhao, M. Wang, Y.-B. Cheng, and H. He, p-Type mesoscopic NiO as an active interfacial layer for carbon counter electrode based perovskite solar cells. Dalton Trans. 44, 3967 (2015).CrossRef Z. Liu, M. Zhang, X. Xu, L. Bu, W. Zhang, W. Li, Z. Zhao, M. Wang, Y.-B. Cheng, and H. He, p-Type mesoscopic NiO as an active interfacial layer for carbon counter electrode based perovskite solar cells. Dalton Trans. 44, 3967 (2015).CrossRef
19.
go back to reference J.-Y. Jeng, K.-C. Chen, T.-Y. Chiang, P.-Y. Lin, T.-D. Tsai, Y.-C. Chang, T.-F. Guo, P. Chen, T.-C. Wen, and Y.-J. Hsu, Nickel oxide electrode interlayer in CH3NH3PbI3 perovskite/PCBM planar-heterojunction hybrid solar cells. Adv. Mater. 26, 4107 (2014).CrossRef J.-Y. Jeng, K.-C. Chen, T.-Y. Chiang, P.-Y. Lin, T.-D. Tsai, Y.-C. Chang, T.-F. Guo, P. Chen, T.-C. Wen, and Y.-J. Hsu, Nickel oxide electrode interlayer in CH3NH3PbI3 perovskite/PCBM planar-heterojunction hybrid solar cells. Adv. Mater. 26, 4107 (2014).CrossRef
20.
go back to reference L. Hu, J. Peng, W. Wang, Z. Xia, J. Yuan, J. Lu, X. Huang, W. Ma, H. Song, W. Chen, Y.-B. Cheng, and J. Tang, Sequential deposition of CH3NH3PbI3 on planar NiO film for efficient planar perovskite solar cells. ACS Photonics 1, 547 (2014).CrossRef L. Hu, J. Peng, W. Wang, Z. Xia, J. Yuan, J. Lu, X. Huang, W. Ma, H. Song, W. Chen, Y.-B. Cheng, and J. Tang, Sequential deposition of CH3NH3PbI3 on planar NiO film for efficient planar perovskite solar cells. ACS Photonics 1, 547 (2014).CrossRef
21.
go back to reference A.A. Jabbar, A.J. Haider, M.J. Haider, and K.F. Al-azawi, Preparation and characterization of NiO/PSi as self-cleaning surface. J. Mater. Res. Technol. 9, 15123–15131 (2020).CrossRef A.A. Jabbar, A.J. Haider, M.J. Haider, and K.F. Al-azawi, Preparation and characterization of NiO/PSi as self-cleaning surface. J. Mater. Res. Technol. 9, 15123–15131 (2020).CrossRef
22.
go back to reference B. Mustafa, J. Griffin, A.S. Alsulami, D.G. Lidzey, and A.R. Buckley, Solution processed nickel oxide anodes for organic photovoltaic devices. Appl. Phys. Lett. 104, 063302 (2014).CrossRef B. Mustafa, J. Griffin, A.S. Alsulami, D.G. Lidzey, and A.R. Buckley, Solution processed nickel oxide anodes for organic photovoltaic devices. Appl. Phys. Lett. 104, 063302 (2014).CrossRef
23.
go back to reference F. Jiang, W.C.H. Choy, X. Li, D. Zhang, and J. Cheng, Post-treatment-free solution-processed non-stoichiometric NiOx nanoparticles for efficient hole-transport layers of organic optoelectronic devices. Adv. Mater. 27, 2930 (2015).CrossRef F. Jiang, W.C.H. Choy, X. Li, D. Zhang, and J. Cheng, Post-treatment-free solution-processed non-stoichiometric NiOx nanoparticles for efficient hole-transport layers of organic optoelectronic devices. Adv. Mater. 27, 2930 (2015).CrossRef
24.
go back to reference M.-H. Li, P.-S. Shen, K.-C. Wang, T.-F. Guo, and P. Chen, Inorganic p-type contact materials for perovskite-based solar cells. J. Mater. Chem. A 3, 9011 (2015).CrossRef M.-H. Li, P.-S. Shen, K.-C. Wang, T.-F. Guo, and P. Chen, Inorganic p-type contact materials for perovskite-based solar cells. J. Mater. Chem. A 3, 9011 (2015).CrossRef
25.
go back to reference J.H. Park, J. Seo, S. Park, S.S. Shin, Y.C. Kim, N.J. Jeon, H.-W. Shin, T.K. Ahn, J.H. Noh, S.C. Yoon, C.S. Hwang, and S.I. Seok, Efficient CH3NH3PbI3 perovskite solar cells employing nanostructured p-type NiO electrode formed by a pulsed laser deposition. Adv. Mater. 27, 4013 (2015).CrossRef J.H. Park, J. Seo, S. Park, S.S. Shin, Y.C. Kim, N.J. Jeon, H.-W. Shin, T.K. Ahn, J.H. Noh, S.C. Yoon, C.S. Hwang, and S.I. Seok, Efficient CH3NH3PbI3 perovskite solar cells employing nanostructured p-type NiO electrode formed by a pulsed laser deposition. Adv. Mater. 27, 4013 (2015).CrossRef
26.
go back to reference X. Zheng, Z. Song, Z. Chen, S.S. Bista, P. Gui, N. Shrestha, C. Chen, C. Li, X. Yin, R.A. Awni, H. Lei, C. Tao, R.J. Ellingson, Y. Yan, and G. Fang, Interface modification of sputtered NiOx as the hole-transporting layer for efficient inverted planar perovskite solar cells. J. Mater. Chem. C 8, 1972 (2020).CrossRef X. Zheng, Z. Song, Z. Chen, S.S. Bista, P. Gui, N. Shrestha, C. Chen, C. Li, X. Yin, R.A. Awni, H. Lei, C. Tao, R.J. Ellingson, Y. Yan, and G. Fang, Interface modification of sputtered NiOx as the hole-transporting layer for efficient inverted planar perovskite solar cells. J. Mater. Chem. C 8, 1972 (2020).CrossRef
27.
go back to reference H.T. Rahal, R. Awad, A.M. Abdel-Gaber, and D. El-Said Bakeer, Synthesis, characterization, and magnetic properties of pure and EDTA-capped NiO nanosized particles. J. Nanomater. 2017, 9 (2017).CrossRef H.T. Rahal, R. Awad, A.M. Abdel-Gaber, and D. El-Said Bakeer, Synthesis, characterization, and magnetic properties of pure and EDTA-capped NiO nanosized particles. J. Nanomater. 2017, 9 (2017).CrossRef
28.
go back to reference S. Khalid, M.A. Malik, D.J. Lewis, P. Kevin, E. Ahmed, Y. Khan, and P. O’Brien, Transition metal doped pyrite (FeS2) thin films: structural properties and evaluation of optical band gap energies. J. Mater. Chem. C 3, 12068 (2015).CrossRef S. Khalid, M.A. Malik, D.J. Lewis, P. Kevin, E. Ahmed, Y. Khan, and P. O’Brien, Transition metal doped pyrite (FeS2) thin films: structural properties and evaluation of optical band gap energies. J. Mater. Chem. C 3, 12068 (2015).CrossRef
29.
go back to reference C.C. Stoumpos, C.D. Malliakas, and M.G. Kanatzidis, Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties. Inorg. Chem. 52, 9019 (2013).CrossRef C.C. Stoumpos, C.D. Malliakas, and M.G. Kanatzidis, Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties. Inorg. Chem. 52, 9019 (2013).CrossRef
30.
go back to reference I. Robinson and R. Harder, Coherent X-ray diffraction imaging of strain at the nanoscale. Nat. Mater. 8, 291 (2009).CrossRef I. Robinson and R. Harder, Coherent X-ray diffraction imaging of strain at the nanoscale. Nat. Mater. 8, 291 (2009).CrossRef
31.
go back to reference A.K. Zak, W.H.A. Majid, M.E. Abrishami, and R. Yousefi, X-ray analysis of ZnO nanoparticles by Williamson–Hall and size–strain plot methods. Solid State Sci. 13, 251 (2011).CrossRef A.K. Zak, W.H.A. Majid, M.E. Abrishami, and R. Yousefi, X-ray analysis of ZnO nanoparticles by Williamson–Hall and size–strain plot methods. Solid State Sci. 13, 251 (2011).CrossRef
32.
go back to reference J. Bahadur, A.H. Ghahremani, S. Gupta, T. Druffel, M.K. Sunkara, and K. Pal, Enhanced moisture stability of MAPbI3 perovskite solar cells through barium doping. Sol. Energy 190, 396 (2019).CrossRef J. Bahadur, A.H. Ghahremani, S. Gupta, T. Druffel, M.K. Sunkara, and K. Pal, Enhanced moisture stability of MAPbI3 perovskite solar cells through barium doping. Sol. Energy 190, 396 (2019).CrossRef
33.
go back to reference N. Besra, S. Pal, B.K. Das, and K.K. Chattopadhyay, Perovskites beyond photovoltaics: field emission from morphology-tailored nanostructured methylammonium lead triiodide. Phys. Chem. Chem. Phys. 19, 26708 (2017).CrossRef N. Besra, S. Pal, B.K. Das, and K.K. Chattopadhyay, Perovskites beyond photovoltaics: field emission from morphology-tailored nanostructured methylammonium lead triiodide. Phys. Chem. Chem. Phys. 19, 26708 (2017).CrossRef
34.
go back to reference J.H. Heo, S.H. Im, J.H. Noh, T.N. Mandal, C.S. Lim, J.A. Chang, Y.H. Lee, H.J. Kim, A. Sarkar, M.K. Nazeeruddin, and M. Grätzel, Efficient inorganic–organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors. Nat. Photonics 7, 486 (2013).CrossRef J.H. Heo, S.H. Im, J.H. Noh, T.N. Mandal, C.S. Lim, J.A. Chang, Y.H. Lee, H.J. Kim, A. Sarkar, M.K. Nazeeruddin, and M. Grätzel, Efficient inorganic–organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors. Nat. Photonics 7, 486 (2013).CrossRef
35.
go back to reference D.S. Mann, P. Patil, D.H. Kim, S.N. Kwon, and S.I. Na, Boron nitride-incorporated NiOx as a hole transport material for high-performance pin planar perovskite solar cells. J. Power Sources 477, 228738 (2020).CrossRef D.S. Mann, P. Patil, D.H. Kim, S.N. Kwon, and S.I. Na, Boron nitride-incorporated NiOx as a hole transport material for high-performance pin planar perovskite solar cells. J. Power Sources 477, 228738 (2020).CrossRef
36.
go back to reference Y. Yang, H. Peng, C. Liu, Z. Arain, Y. Ding, S. Ma, X. Liu, T. Hayat, A. Alsaedi, and S. Dai, Bi-functional additive engineering for high-performance perovskite solar cells with reduced trap density. J. Mater. Chem. A 7, 6450 (2019).CrossRef Y. Yang, H. Peng, C. Liu, Z. Arain, Y. Ding, S. Ma, X. Liu, T. Hayat, A. Alsaedi, and S. Dai, Bi-functional additive engineering for high-performance perovskite solar cells with reduced trap density. J. Mater. Chem. A 7, 6450 (2019).CrossRef
37.
go back to reference M. Yang, Y. Zeng, Z. Li, D.H. Kim, C.-S. Jiang, J. van de Lagemaat, and K. Zhu, Do grain boundaries dominate non-radiative recombination in CH3NH3PbI3 perovskite thin films? Phys. Chem. Chem. Phys. 19, 5043 (2017).CrossRef M. Yang, Y. Zeng, Z. Li, D.H. Kim, C.-S. Jiang, J. van de Lagemaat, and K. Zhu, Do grain boundaries dominate non-radiative recombination in CH3NH3PbI3 perovskite thin films? Phys. Chem. Chem. Phys. 19, 5043 (2017).CrossRef
38.
go back to reference D. Gedamu, I.M. Asuo, D. Benetti, M. Basti, I. Ka, S.G. Cloutier, F. Rosei, and R. Nechache, Solvent-antisolvent ambient processed large grain size perovskite thin films for high-performance solar cells. Sci. Rep. 8, 12885 (2018).CrossRef D. Gedamu, I.M. Asuo, D. Benetti, M. Basti, I. Ka, S.G. Cloutier, F. Rosei, and R. Nechache, Solvent-antisolvent ambient processed large grain size perovskite thin films for high-performance solar cells. Sci. Rep. 8, 12885 (2018).CrossRef
39.
go back to reference C.M. Wolff, P. Caprioglio, M. Stolterfoht, and D. Neher, Nonradiative recombination in perovskite solar cells: the role of interfaces. Adv. Mater. 31, 1902762 (2019).CrossRef C.M. Wolff, P. Caprioglio, M. Stolterfoht, and D. Neher, Nonradiative recombination in perovskite solar cells: the role of interfaces. Adv. Mater. 31, 1902762 (2019).CrossRef
Metadata
Title
Enhancement of Hole Extraction in Carbon-Based Organic–Inorganic Hybrid Perovskite Solar Cells Using MAPbI3:NiO-NPs Composite
Authors
R. Isaac Daniel
R. Govindaraj
P. Ramasamy
A. K. Chauhan
Publication date
29-08-2023
Publisher
Springer US
Published in
Journal of Electronic Materials / Issue 11/2023
Print ISSN: 0361-5235
Electronic ISSN: 1543-186X
DOI
https://doi.org/10.1007/s11664-023-10674-6

Other articles of this Issue 11/2023

Journal of Electronic Materials 11/2023 Go to the issue