Skip to main content
Top
Published in: Journal of Materials Science: Materials in Electronics 9/2021

09-04-2021

Enhancement of magnetic, supercapacitor applications and theoretical approach on cobalt-doped zinc ferrite nanocomposites

Authors: K. Sathiyamurthy, C. Rajeevgandhi, L. Guganathan, S. Bharanidharan, S. Savithiri

Published in: Journal of Materials Science: Materials in Electronics | Issue 9/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Nanostructured zinc ferrite, cobalt ferrite, and cobalt-doped zinc ferrite were synthesized by using a simple co-precipitation method. Physico-chemical analyses were investigated by thermogravimetric and differential thermal analysis (TG/DTA) and X-ray diffraction (XRD) techniques. The TG/DTA study revealed the thermal transformation of metal hydroxide precursors. The XRD representation confirmed the cubic spinel structure of the cobalt-doped zinc ferrite nanoparticles. The Fourier-transform infrared spectrum, recorded to acquire the characteristic vibration mode of the metal oxides, was present in the composites. The analyzed morphology was confirmed by field-emission transmission electron microscopy and field-emission scanning microscopy, revealing a spherical structure with an agglomeration of nanocomposites. Analysis of the energy dispersive X-ray spectrum of the cobalt-doped zinc ferrite nanocomposites exposed the elemental features. The prepared nanocomposites were examined using a vibrating sample magnetometer, which showed the transformation of paramagnetic to ferromagnetic behavior. The specific capacitance of the three ferrites were calculated, and there was a noticeable enhanced specific capacitance of 218 Fg−1 in Co0.5Zn0.5Fe2O4 at the scan rate of 10mV/s. In the present work, the mixed spinel structure of the nanocomposites revealed the magnetic and electrochemical properties. The prepared nanocomposites can be used in energy storage devices. The theoretical part was calculated by the density functional theory method, which was employed to study the structural, nonlinear optics, and physico-chemical parameters of CoZnFe2O4 NPs.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference G.D. Prasanna, H.S. Jayanna, A.R. Lamani, S. Dash, Polyaniline/CoFe2O4 nanocomposites: A novel synthesis, characterization and magnetic properties. Synthetic Metals 161(21–22), 2306–2311 (2011)CrossRef G.D. Prasanna, H.S. Jayanna, A.R. Lamani, S. Dash, Polyaniline/CoFe2O4 nanocomposites: A novel synthesis, characterization and magnetic properties. Synthetic Metals 161(21–22), 2306–2311 (2011)CrossRef
2.
go back to reference K. Zhang, T. Holloway, A.K. Pradhan, Magnetic behavior of nanocrystalline CoFe2O4. J. Magn. Magn. Mater. 323(12), 1616–1622 (2011)CrossRef K. Zhang, T. Holloway, A.K. Pradhan, Magnetic behavior of nanocrystalline CoFe2O4. J. Magn. Magn. Mater. 323(12), 1616–1622 (2011)CrossRef
3.
go back to reference X. Zhang, W. Jiang, D. Song, H. Sun, Z. Sun, F. Li, Salt-assisted combustion synthesis of highly dispersed superparamagnetic CoFe2O4 nanoparticles. J. Alloy. Compd. 475(1–2), 34–37 (2009)CrossRef X. Zhang, W. Jiang, D. Song, H. Sun, Z. Sun, F. Li, Salt-assisted combustion synthesis of highly dispersed superparamagnetic CoFe2O4 nanoparticles. J. Alloy. Compd. 475(1–2), 34–37 (2009)CrossRef
4.
go back to reference D. Chen, Q. Wang, R. Wang, G. Shen, Ternary oxide nanostructured materials for supercapacitors: a review. J. Mater. Chem. A 3(19), 10158–10173 (2015)CrossRef D. Chen, Q. Wang, R. Wang, G. Shen, Ternary oxide nanostructured materials for supercapacitors: a review. J. Mater. Chem. A 3(19), 10158–10173 (2015)CrossRef
5.
go back to reference P. Lavela, J.L. Tirado, CoFe2O4 and NiFe2O4 synthesized by sol–gel procedures for their use as anode materials for Li ion batteries. J. Power Sources 172(1), 379–387 (2007)CrossRef P. Lavela, J.L. Tirado, CoFe2O4 and NiFe2O4 synthesized by sol–gel procedures for their use as anode materials for Li ion batteries. J. Power Sources 172(1), 379–387 (2007)CrossRef
6.
go back to reference N.V. Long, Y. Yang, T. Teranishi, C.M. Thi, Y. Cao, M. Nogami, Related magnetic properties of CoFe2O4 cobalt ferrite particles synthesised by the polyol method with NaBH4 and heat treatment: new micro and nanoscale structures. RSC Adv. 5(70), 56560–56569 (2015)CrossRef N.V. Long, Y. Yang, T. Teranishi, C.M. Thi, Y. Cao, M. Nogami, Related magnetic properties of CoFe2O4 cobalt ferrite particles synthesised by the polyol method with NaBH4 and heat treatment: new micro and nanoscale structures. RSC Adv. 5(70), 56560–56569 (2015)CrossRef
7.
go back to reference V.S. Kumbhar, A.D. Jagadale, N.M. Shinde, C.D. Lokhande, Chemical synthesis of spinel cobalt ferrite (CoFe2O4) nano-flakes for supercapacitor application. Appl. Surf. Sci. 259, 39–43 (2012)CrossRef V.S. Kumbhar, A.D. Jagadale, N.M. Shinde, C.D. Lokhande, Chemical synthesis of spinel cobalt ferrite (CoFe2O4) nano-flakes for supercapacitor application. Appl. Surf. Sci. 259, 39–43 (2012)CrossRef
8.
go back to reference L. Lv, Q. Xu, R. Ding, L. Qi, H. Wang, Chemical synthesis of mesoporous CoFe2O4 nanoparticles as promising bifunctional electrode materials for supercapacitors. Mater. Lett. 111, 35–38 (2013)CrossRef L. Lv, Q. Xu, R. Ding, L. Qi, H. Wang, Chemical synthesis of mesoporous CoFe2O4 nanoparticles as promising bifunctional electrode materials for supercapacitors. Mater. Lett. 111, 35–38 (2013)CrossRef
9.
go back to reference P. He, K. Yang, W. Wang, F. Dong, L. Du, Y. Deng, Reduced graphene oxide-CoFe2O4 composites for supercapacitor electrode. Russ. J. Electrochem. 49(4), 359–364 (2013)CrossRef P. He, K. Yang, W. Wang, F. Dong, L. Du, Y. Deng, Reduced graphene oxide-CoFe2O4 composites for supercapacitor electrode. Russ. J. Electrochem. 49(4), 359–364 (2013)CrossRef
10.
go back to reference C. Zhou, A. Zhang, T. Chang, Y. Chen, Y. Zhang, F. Tian, W. Zuo, Y. Ren, X. Song, S. Yang, The phase diagram and exotic magnetostrictive behaviors in spinel oxide Co(Fe1 – xAlx)2O4 system. Materials 12(10), 1685 (2019)CrossRef C. Zhou, A. Zhang, T. Chang, Y. Chen, Y. Zhang, F. Tian, W. Zuo, Y. Ren, X. Song, S. Yang, The phase diagram and exotic magnetostrictive behaviors in spinel oxide Co(Fe1 – xAlx)2O4 system. Materials 12(10), 1685 (2019)CrossRef
11.
go back to reference K. Elayakumar, A. Manikandan, A. Dinesh, K. Thanrasu, K.K. Raja, R.T. Kumar, Y. Slimani, S.K. Jaganathan, A. Baykal, Enhanced magnetic property and antibacterial biomedical activity of Ce3+ doped CuFe2O4 spinel nanoparticles synthesized by sol-gel method. J. Magn. Magn. Mater. 478, 140–147 (2019)CrossRef K. Elayakumar, A. Manikandan, A. Dinesh, K. Thanrasu, K.K. Raja, R.T. Kumar, Y. Slimani, S.K. Jaganathan, A. Baykal, Enhanced magnetic property and antibacterial biomedical activity of Ce3+ doped CuFe2O4 spinel nanoparticles synthesized by sol-gel method. J. Magn. Magn. Mater. 478, 140–147 (2019)CrossRef
12.
go back to reference T. Sathitwitayakul, M.V. Kuznetsov, I.P. Parkin, R. Binions, The gas sensing properties of some complex metal oxides prepared by self-propagating high-temperature synthesis. Mater. Lett. 75, 36–38 (2012)CrossRef T. Sathitwitayakul, M.V. Kuznetsov, I.P. Parkin, R. Binions, The gas sensing properties of some complex metal oxides prepared by self-propagating high-temperature synthesis. Mater. Lett. 75, 36–38 (2012)CrossRef
13.
go back to reference M. Kooti, M. Afshari, Magnetic cobalt ferrite nanoparticles as an efficient catalyst for oxidation of alkenes. Sci. Iran. 19(6), 1991–1995 (2012)CrossRef M. Kooti, M. Afshari, Magnetic cobalt ferrite nanoparticles as an efficient catalyst for oxidation of alkenes. Sci. Iran. 19(6), 1991–1995 (2012)CrossRef
14.
go back to reference W. Fu, S. Liu, W. Fan, H. Yang, X. Pang, J. Xu, G. Zou, Hollow glass microspheres coated with CoFe2O4 and its microwave absorption property. J. Magn. Magn. Mater. 316(1), 54–58 (2007)CrossRef W. Fu, S. Liu, W. Fan, H. Yang, X. Pang, J. Xu, G. Zou, Hollow glass microspheres coated with CoFe2O4 and its microwave absorption property. J. Magn. Magn. Mater. 316(1), 54–58 (2007)CrossRef
15.
go back to reference P. Thakur, D. Chahar, S. Taneja, N. Bhalla, A. Thakur, A review on MnZn ferrites: Synthesis, characterization and applications. Ceram. Int. 46(10), 15740–15763 (2020)CrossRef P. Thakur, D. Chahar, S. Taneja, N. Bhalla, A. Thakur, A review on MnZn ferrites: Synthesis, characterization and applications. Ceram. Int. 46(10), 15740–15763 (2020)CrossRef
16.
go back to reference N.A.S. Nogueira, V.H.S. Utuni, Y.C. Silva, P.K. Kiyohara, I.F. Vasconcelos, M.A.R. Miranda, J.M. Sasaki, X-ray diffraction and Mossbauer studies on superparamagnetic nickel ferrite (NiFe2O4) obtained by the proteic sol–gel method. Mater. Chem. Phys. 163, 402–406 (2015)CrossRef N.A.S. Nogueira, V.H.S. Utuni, Y.C. Silva, P.K. Kiyohara, I.F. Vasconcelos, M.A.R. Miranda, J.M. Sasaki, X-ray diffraction and Mossbauer studies on superparamagnetic nickel ferrite (NiFe2O4) obtained by the proteic sol–gel method. Mater. Chem. Phys. 163, 402–406 (2015)CrossRef
17.
go back to reference D.D. Andhare, S.R. Patade, J.S. Kounsalye, K.M. Jadhav, Effect of Zn doping on structural, magnetic and optical properties of cobalt ferrite nanoparticles synthesized via. Co-precipitation method. Physica B 583, 412051 (2020)CrossRef D.D. Andhare, S.R. Patade, J.S. Kounsalye, K.M. Jadhav, Effect of Zn doping on structural, magnetic and optical properties of cobalt ferrite nanoparticles synthesized via. Co-precipitation method. Physica B 583, 412051 (2020)CrossRef
18.
go back to reference Z.H. Yang, Z.W. Li, Y.H. Yang, Structural and magnetic properties of plate-like W-type barium ferrites synthesized with a combination method of molten salt and sol–gel. Mater. Chem. Phys. 144(3), 568–574 (2014)CrossRef Z.H. Yang, Z.W. Li, Y.H. Yang, Structural and magnetic properties of plate-like W-type barium ferrites synthesized with a combination method of molten salt and sol–gel. Mater. Chem. Phys. 144(3), 568–574 (2014)CrossRef
19.
go back to reference U. Kurtan, H. Erdemi, A. Baykal, H. Güngüneş, Synthesis and magneto-electrical properties of MFe2O4 (Co, Zn) nanoparticles by oleylamine route. Ceram. Int. 42(12), 13350–13358 (2016)CrossRef U. Kurtan, H. Erdemi, A. Baykal, H. Güngüneş, Synthesis and magneto-electrical properties of MFe2O4 (Co, Zn) nanoparticles by oleylamine route. Ceram. Int. 42(12), 13350–13358 (2016)CrossRef
20.
go back to reference J. Töpfer, A. Angermann, Nanocrystalline magnetite and Mn–Zn ferrite particles via the polyol process: Synthesis and magnetic properties. Mater. Chem. Phys. 129(1–2), 337–342 (2011)CrossRef J. Töpfer, A. Angermann, Nanocrystalline magnetite and Mn–Zn ferrite particles via the polyol process: Synthesis and magnetic properties. Mater. Chem. Phys. 129(1–2), 337–342 (2011)CrossRef
21.
go back to reference M.A. Noor Ismail, M. Hashim, A. Hajalilou, I. Ismail, M.M.M. Zulkimi, N. Abdullah, W.N.A. Rahman, M.S. Abdullah, M. Manap, Magnetic Properties of Mechanically Alloyed Cobalt-Zinc Ferrite Nanoparticles. J. Supercond. Novel Magn. 27(5), 1293–1298 (2013)CrossRef M.A. Noor Ismail, M. Hashim, A. Hajalilou, I. Ismail, M.M.M. Zulkimi, N. Abdullah, W.N.A. Rahman, M.S. Abdullah, M. Manap, Magnetic Properties of Mechanically Alloyed Cobalt-Zinc Ferrite Nanoparticles. J. Supercond. Novel Magn. 27(5), 1293–1298 (2013)CrossRef
22.
go back to reference J. Rehman, M.A. Khan, A. Hussain, F. Iqbal, I. Shakir, G. Murtaza, M.N. Akhtar, G. Nasar, M.F. Warsi, Structural, magnetic and dielectric properties of terbium doped NiCoX strontium hexagonal nano-ferrites synthesized via micro-emulsion route. Ceram. Int. 42(7), 9079–9085 (2016)CrossRef J. Rehman, M.A. Khan, A. Hussain, F. Iqbal, I. Shakir, G. Murtaza, M.N. Akhtar, G. Nasar, M.F. Warsi, Structural, magnetic and dielectric properties of terbium doped NiCoX strontium hexagonal nano-ferrites synthesized via micro-emulsion route. Ceram. Int. 42(7), 9079–9085 (2016)CrossRef
23.
go back to reference S.J. Azhagushanmugam, N. Suriyanarayanan, R. Jayaprakash, Magnetic properties of zinc-substituted cobalt ferric oxide nanoparticles: Correlation with annealing temperature and particle size. Mater. Sci. Semicond. Process. 21, 33–37 (2014)CrossRef S.J. Azhagushanmugam, N. Suriyanarayanan, R. Jayaprakash, Magnetic properties of zinc-substituted cobalt ferric oxide nanoparticles: Correlation with annealing temperature and particle size. Mater. Sci. Semicond. Process. 21, 33–37 (2014)CrossRef
24.
go back to reference A. Schütz, M. Günthner, G. Motz, O. Greißl, U. Glatzel, High temperature (salt melt) corrosion tests with ceramic-coated steel. Mater. Chem. Phys. 159, 10–18 (2015)CrossRef A. Schütz, M. Günthner, G. Motz, O. Greißl, U. Glatzel, High temperature (salt melt) corrosion tests with ceramic-coated steel. Mater. Chem. Phys. 159, 10–18 (2015)CrossRef
25.
go back to reference X. Huang, J. Zhang, S. Xiao, G. Chen, The cobalt zinc spinel ferrite nanofiber: lightweight and efficient microwave absorber. J. Am. Ceram. Soc. 97(5), 1363–1366 (2014)CrossRef X. Huang, J. Zhang, S. Xiao, G. Chen, The cobalt zinc spinel ferrite nanofiber: lightweight and efficient microwave absorber. J. Am. Ceram. Soc. 97(5), 1363–1366 (2014)CrossRef
26.
go back to reference M. Mozaffari, S. Manouchehri, M.H. Yousefi, J. Amighian, The effect of solution temperature on crystallite size and magnetic properties of Zn substituted Co ferrite nanoparticles. J. Magn. Magn. Mater. 322(4), 383–388 (2010)CrossRef M. Mozaffari, S. Manouchehri, M.H. Yousefi, J. Amighian, The effect of solution temperature on crystallite size and magnetic properties of Zn substituted Co ferrite nanoparticles. J. Magn. Magn. Mater. 322(4), 383–388 (2010)CrossRef
27.
go back to reference A.B. Kulkarni, S.N. Mathad, Variation in structural and mechanical properties of Cd-doped Co-Zn ferrites. Mater. Sci. Ener. Technol. 2(3), 455–462 (2019) A.B. Kulkarni, S.N. Mathad, Variation in structural and mechanical properties of Cd-doped Co-Zn ferrites. Mater. Sci. Ener. Technol. 2(3), 455–462 (2019)
28.
go back to reference S. Raghuvanshi, F. Mazaleyrat, S.N. Kane, Mg1 – xZnxFe2O4 nanoparticles: Interplay between cation distribution and magnetic properties. AIP Adv. 8(4), 047804 (2018)CrossRef S. Raghuvanshi, F. Mazaleyrat, S.N. Kane, Mg1 – xZnxFe2O4 nanoparticles: Interplay between cation distribution and magnetic properties. AIP Adv. 8(4), 047804 (2018)CrossRef
29.
go back to reference A. Manikandan, L.J. Kennedy, M. Bououdina, J.J. Vijaya, Synthesis, optical and magnetic properties of pure and Co-doped ZnFe2O4 nanoparticles by microwave combustion method. J. Magn. Magn. Mater. 349, 249–258 (2014)CrossRef A. Manikandan, L.J. Kennedy, M. Bououdina, J.J. Vijaya, Synthesis, optical and magnetic properties of pure and Co-doped ZnFe2O4 nanoparticles by microwave combustion method. J. Magn. Magn. Mater. 349, 249–258 (2014)CrossRef
30.
go back to reference K.M. Batoo, G. Kumar, Y. Yang, Y. Al-Douri, M. Singh, R.B. Jotania, A. Imran, Structural, morphological and electrical properties of Cd2+ doped MgFe2 – xO4 ferrite nanoparticles. J. Alloy. Compd. 726, 179–186 (2017)CrossRef K.M. Batoo, G. Kumar, Y. Yang, Y. Al-Douri, M. Singh, R.B. Jotania, A. Imran, Structural, morphological and electrical properties of Cd2+ doped MgFe2 – xO4 ferrite nanoparticles. J. Alloy. Compd. 726, 179–186 (2017)CrossRef
31.
go back to reference D. Varshney, K. Verma, A. Kumar, Substitutional effect on structural and magnetic properties of AxCo1–xFe2O4 (A = Zn, Mg and x = 0.0, 0.5) ferrites. J. Mol. Struct. 1006(1–3), 447–452 (2011)CrossRef D. Varshney, K. Verma, A. Kumar, Substitutional effect on structural and magnetic properties of AxCo1–xFe2O4 (A = Zn, Mg and x = 0.0, 0.5) ferrites. J. Mol. Struct. 1006(1–3), 447–452 (2011)CrossRef
32.
go back to reference K.A. Mohammed, A.D. Al-Rawas, A.M. Gismelseed, A. Sellai, H.M. Widatallah, A. Yousif, M.E. Elzain, M. Shongwe, Infrared and structural studies of Mg1 – xZnxFe2O4 ferrites. Physica B 407(4), 795–804 (2012)CrossRef K.A. Mohammed, A.D. Al-Rawas, A.M. Gismelseed, A. Sellai, H.M. Widatallah, A. Yousif, M.E. Elzain, M. Shongwe, Infrared and structural studies of Mg1 – xZnxFe2O4 ferrites. Physica B 407(4), 795–804 (2012)CrossRef
33.
go back to reference Y. Köseoğlu, A. Baykal, F. Gözüak, H. Kavas, Structural and magnetic properties of CoxZn1–xFe2O4 nanocrystals synthesized by microwave method. Polyhedron 28(14), 2887–2892 (2009)CrossRef Y. Köseoğlu, A. Baykal, F. Gözüak, H. Kavas, Structural and magnetic properties of CoxZn1–xFe2O4 nanocrystals synthesized by microwave method. Polyhedron 28(14), 2887–2892 (2009)CrossRef
34.
go back to reference G. Gnanaprakash, J. Philip, B. Raj, Effect of divalent metal hydroxide solubility product on the size of ferrite nanoparticles. Mater. Lett. 61(23–24), 4545–4548 (2007)CrossRef G. Gnanaprakash, J. Philip, B. Raj, Effect of divalent metal hydroxide solubility product on the size of ferrite nanoparticles. Mater. Lett. 61(23–24), 4545–4548 (2007)CrossRef
35.
go back to reference R.D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. Sect. A 32(5), 751–767 (1976)CrossRef R.D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. Sect. A 32(5), 751–767 (1976)CrossRef
36.
go back to reference A.M.M. Farea, S. Kumar, K.M. Batoo, A. Yousef, C.G. Lee, Alimuddin, Structure and electrical properties of Co0.5CdxFe2.5–xO4 ferrites. J. Alloy. Compd. 464(1–2), 361–369 (2008)CrossRef A.M.M. Farea, S. Kumar, K.M. Batoo, A. Yousef, C.G. Lee, Alimuddin, Structure and electrical properties of Co0.5CdxFe2.5–xO4 ferrites. J. Alloy. Compd. 464(1–2), 361–369 (2008)CrossRef
37.
go back to reference S. Ayyappan, G. Paneerselvam, M.P. Antony, J. Philip, Structural stability of ZnFe2O4 nanoparticles under different annealing conditions. Mater. Chem. Phys. 128(3), 400–404 (2011)CrossRef S. Ayyappan, G. Paneerselvam, M.P. Antony, J. Philip, Structural stability of ZnFe2O4 nanoparticles under different annealing conditions. Mater. Chem. Phys. 128(3), 400–404 (2011)CrossRef
38.
go back to reference S. Ayyappan, G. Panneerselvam, M.P. Antony, J. Philip, High temperature stability of surfactant capped CoFe2O4 nanoparticles. Mater. Chem. Phys. 130(3), 1300–1306 (2011)CrossRef S. Ayyappan, G. Panneerselvam, M.P. Antony, J. Philip, High temperature stability of surfactant capped CoFe2O4 nanoparticles. Mater. Chem. Phys. 130(3), 1300–1306 (2011)CrossRef
39.
go back to reference S.H. Xiao, W.F. Jiang, L.Y. Li, X.J. Li, Low-temperature auto-combustion synthesis and magnetic properties of cobalt ferrite nanopowder. Mater. Chem. Phys. 106(1), 82–87 (2007)CrossRef S.H. Xiao, W.F. Jiang, L.Y. Li, X.J. Li, Low-temperature auto-combustion synthesis and magnetic properties of cobalt ferrite nanopowder. Mater. Chem. Phys. 106(1), 82–87 (2007)CrossRef
40.
go back to reference Z. Chen, L. Gao, Synthesis and magnetic properties of CoFe2O4 nanoparticles by using PEG as surfactant additive. Mater. Sci. Engin. B 141(1–2), 82–86 (2007)CrossRef Z. Chen, L. Gao, Synthesis and magnetic properties of CoFe2O4 nanoparticles by using PEG as surfactant additive. Mater. Sci. Engin. B 141(1–2), 82–86 (2007)CrossRef
41.
go back to reference Z. Li, Y. Xiong, Y. Xie, Selected-Control Synthesis of ZnO Nanowires and Nanorods via a PEG-Assisted Route. Inorg. Chem. 42(24), 8105–8109 (2003)CrossRef Z. Li, Y. Xiong, Y. Xie, Selected-Control Synthesis of ZnO Nanowires and Nanorods via a PEG-Assisted Route. Inorg. Chem. 42(24), 8105–8109 (2003)CrossRef
42.
go back to reference H.H. Huang, X.P. Ni, G.L. Loy, C.H. Chew, K.L. Tan, F.C. Loh, J.F. Deng, G.Q. Xu, Photochemical Formation of Silver Nanoparticles in Poly(N-vinylpyrrolidone). Langmuir 12(4), 909–912 (1996)CrossRef H.H. Huang, X.P. Ni, G.L. Loy, C.H. Chew, K.L. Tan, F.C. Loh, J.F. Deng, G.Q. Xu, Photochemical Formation of Silver Nanoparticles in Poly(N-vinylpyrrolidone). Langmuir 12(4), 909–912 (1996)CrossRef
43.
go back to reference Y. Sun, Y. Xia, Large-scale synthesis of uniform silver nanowires through a soft, self‐seeding, polyol process. Adv. Mater. 14(11), 833–837 (2002)CrossRef Y. Sun, Y. Xia, Large-scale synthesis of uniform silver nanowires through a soft, self‐seeding, polyol process. Adv. Mater. 14(11), 833–837 (2002)CrossRef
44.
go back to reference G. Sathishkumar, C. Venkataraju, K. Sivakumar, Synthesis, structural and dielectric studies of nickel substituted cobalt-zinc ferrite. Mater. Sci. Appl. 01(01), 19–24 (2010) G. Sathishkumar, C. Venkataraju, K. Sivakumar, Synthesis, structural and dielectric studies of nickel substituted cobalt-zinc ferrite. Mater. Sci. Appl. 01(01), 19–24 (2010)
45.
go back to reference T.R. Tatarchuk, N.D. Paliychuk, M. Bououdina, B. Al-Najar, M. Pacia, W. Macyk, A. Shyichuk, Effect of cobalt substitution on structural, elastic, magnetic and optical properties of zinc ferrite nanoparticles. J. Alloy. Compd. 731, 1256–1266 (2018)CrossRef T.R. Tatarchuk, N.D. Paliychuk, M. Bououdina, B. Al-Najar, M. Pacia, W. Macyk, A. Shyichuk, Effect of cobalt substitution on structural, elastic, magnetic and optical properties of zinc ferrite nanoparticles. J. Alloy. Compd. 731, 1256–1266 (2018)CrossRef
46.
go back to reference A.I. Nandapure, S.B. Kondawar, P.S. Sawadh, B.I. Nandapure, Effect of zinc substitution on magnetic and electrical properties of nanocrystalline nickel ferrite synthesized by refluxing method. Physica B 407(7), 1104–1107 (2012)CrossRef A.I. Nandapure, S.B. Kondawar, P.S. Sawadh, B.I. Nandapure, Effect of zinc substitution on magnetic and electrical properties of nanocrystalline nickel ferrite synthesized by refluxing method. Physica B 407(7), 1104–1107 (2012)CrossRef
47.
go back to reference R.S. Yadav, J. Havlica, M. Hnatko, P. Šajgalík, C. Alexander, M. Palou, E. Bartoníčková, M. Boháč, F. Frajkorová, J. Masilko, M. Zmrzlý, L. Kalina, M. Hajdúchová, V. Enev, Magnetic properties of Co1 – xZnxFe2O4 spinel ferrite nanoparticles synthesized by starch-assisted sol–gel autocombustion method and its ball milling. J. Magn. Magn. Mater. 378, 190–199 (2015)CrossRef R.S. Yadav, J. Havlica, M. Hnatko, P. Šajgalík, C. Alexander, M. Palou, E. Bartoníčková, M. Boháč, F. Frajkorová, J. Masilko, M. Zmrzlý, L. Kalina, M. Hajdúchová, V. Enev, Magnetic properties of Co1 – xZnxFe2O4 spinel ferrite nanoparticles synthesized by starch-assisted sol–gel autocombustion method and its ball milling. J. Magn. Magn. Mater. 378, 190–199 (2015)CrossRef
48.
go back to reference K.M. Batoo, E.H. Raslan, Y. Yang, S.F. Adil, M. Khan, A. Imran, Y. Al-Douri, Structural, dielectric and low temperature magnetic response of Zn doped cobalt ferrite nanoparticles. AIP Adv. 9(5), 055202 (2019)CrossRef K.M. Batoo, E.H. Raslan, Y. Yang, S.F. Adil, M. Khan, A. Imran, Y. Al-Douri, Structural, dielectric and low temperature magnetic response of Zn doped cobalt ferrite nanoparticles. AIP Adv. 9(5), 055202 (2019)CrossRef
49.
go back to reference M.M. Vadiyar, S.C. Bhise, S.K. Patil, S.A. Patil, D.K. Pawar, A.V. Ghule, P.S. Patil, S.S. Kolekar, Mechanochemical growth of a porous ZnFe2O4 nano-flake thin film as an electrode for supercapacitor application. RSC Adv. 5(57), 45935–45942 (2015)CrossRef M.M. Vadiyar, S.C. Bhise, S.K. Patil, S.A. Patil, D.K. Pawar, A.V. Ghule, P.S. Patil, S.S. Kolekar, Mechanochemical growth of a porous ZnFe2O4 nano-flake thin film as an electrode for supercapacitor application. RSC Adv. 5(57), 45935–45942 (2015)CrossRef
50.
go back to reference B.J. Rani, G. Ravi, R. Yuvakkumar, V. Ganesh, S. Ravichandran, M. Thambidurai, A.P. Rajalakshmi, A. Sakunthala, Pure and cobalt-substituted zinc-ferrite magnetic ceramics for supercapacitor applications. Appl. Phys. A 124(7), 1–12 (2018)CrossRef B.J. Rani, G. Ravi, R. Yuvakkumar, V. Ganesh, S. Ravichandran, M. Thambidurai, A.P. Rajalakshmi, A. Sakunthala, Pure and cobalt-substituted zinc-ferrite magnetic ceramics for supercapacitor applications. Appl. Phys. A 124(7), 1–12 (2018)CrossRef
51.
go back to reference M.A. Maksoud, R.A. Fahim, A.E. Shalan, M. Abd Elkodous, S.O. Olojede, A.I. Osman, C. Farrell, H. Ala’a, A.S. Awed, A.H. Ashour, D.W. Rooney, Advanced materials and technologies for supercapacitors used in energy conversion and storage: a review. Environmental Chemistry Letters, 1–65 (2020) M.A. Maksoud, R.A. Fahim, A.E. Shalan, M. Abd Elkodous, S.O. Olojede, A.I. Osman, C. Farrell, H. Ala’a, A.S. Awed, A.H. Ashour, D.W. Rooney, Advanced materials and technologies for supercapacitors used in energy conversion and storage: a review. Environmental Chemistry Letters, 1–65 (2020)
52.
go back to reference M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. Petersson, H. Nakatsuji, H. Gaussian 09, Revision d (Gaussian. Inc., Wallingford, CT, 2009), p. 01 M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. Petersson, H. Nakatsuji, H. Gaussian 09, Revision d (Gaussian. Inc., Wallingford, CT, 2009), p. 01
53.
go back to reference H.B. Schlegel, Optimization of equilibrium geometries and transition structures. J. Comput. Chem. 3(2), 214–218 (1982)CrossRef H.B. Schlegel, Optimization of equilibrium geometries and transition structures. J. Comput. Chem. 3(2), 214–218 (1982)CrossRef
Metadata
Title
Enhancement of magnetic, supercapacitor applications and theoretical approach on cobalt-doped zinc ferrite nanocomposites
Authors
K. Sathiyamurthy
C. Rajeevgandhi
L. Guganathan
S. Bharanidharan
S. Savithiri
Publication date
09-04-2021
Publisher
Springer US
Published in
Journal of Materials Science: Materials in Electronics / Issue 9/2021
Print ISSN: 0957-4522
Electronic ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-021-05764-2

Other articles of this Issue 9/2021

Journal of Materials Science: Materials in Electronics 9/2021 Go to the issue