Skip to main content
Top
Published in: Journal of Materials Science: Materials in Electronics 8/2020

03-03-2020

Enhancing gas-sensing property and sensing mechanism at molecule level of the hollow microspheres assembled with ZnO nanoflakes exposing {001} facets

Authors: Yan Chen, Bin Liu, Junfang Liu, Cuijin Pei, Hua Zhao, Yonghui Shang, Heqing Yang

Published in: Journal of Materials Science: Materials in Electronics | Issue 8/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The hollow microspheres assembled with ZnO nanoflakes exposing {001} facets have been successfully synthesized by annealing ZnS nanospheres at 550 °C for 2 h. Response of the hollow microspheres assembled from ZnO nanoflakes for ethanol, acetone, or triethylamine is significantly higher than hollow microspheres assembled from ZnO nanorod with dominant {100} facets. The exposed Zn-terminated (001) face is considered to be an active surface for gas sensing. Threefold coordinated Zn (Zn3c) atom with a dangling bond on the Zn-terminated (001) surface serves as a gas-sensing active atom, and thus a gas-sensing mechanism at atomic and molecular level is proposed. The concept of unsaturated Zn3c atoms as a gas-sensing active atoms will be useful for designing of high-performance sensing materials.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference H. Tong, S.X. Ouyang, Y.P. Bi, N. Umezawa, M. Oshikiri, J.H. Ye, Nano-photocatalytic materials: possibilities and challenges. Adv. Mater. 24, 229–251 (2012)CrossRef H. Tong, S.X. Ouyang, Y.P. Bi, N. Umezawa, M. Oshikiri, J.H. Ye, Nano-photocatalytic materials: possibilities and challenges. Adv. Mater. 24, 229–251 (2012)CrossRef
2.
go back to reference Z.Y. Jiang, Q. Kuang, Z.X. Xie, L.S. Zheng, Syntheses and properties of micro/nanostructured crystallites with high-energy surfaces. Adv. Funct. Mater. 20, 3634–3645 (2010)CrossRef Z.Y. Jiang, Q. Kuang, Z.X. Xie, L.S. Zheng, Syntheses and properties of micro/nanostructured crystallites with high-energy surfaces. Adv. Funct. Mater. 20, 3634–3645 (2010)CrossRef
3.
go back to reference K.B. Zhou, Y.D. Li, Catalysis based on nanocrystals with well-defined facets. Angew. Chem. Int. Ed. 51, 602–613 (2012)CrossRef K.B. Zhou, Y.D. Li, Catalysis based on nanocrystals with well-defined facets. Angew. Chem. Int. Ed. 51, 602–613 (2012)CrossRef
4.
go back to reference S. Xu, Z.L. Wang, One-dimensional ZnO nanostructures: solution growth and functional properties. Nano Res. 4, 1013–1098 (2011)CrossRef S. Xu, Z.L. Wang, One-dimensional ZnO nanostructures: solution growth and functional properties. Nano Res. 4, 1013–1098 (2011)CrossRef
5.
go back to reference Y. Ning, Z.M. Zhang, F. Teng, X.S. Fang, Novel transparent and self-powered UV photodetector based on crossed ZnO nanofiber array homojunction. Small 14, 1703754 (2018)CrossRef Y. Ning, Z.M. Zhang, F. Teng, X.S. Fang, Novel transparent and self-powered UV photodetector based on crossed ZnO nanofiber array homojunction. Small 14, 1703754 (2018)CrossRef
6.
go back to reference F. Yang, W.H. Liu, X.W. Wang, J. Zheng, R.Y. Shi, H. Zhao, H.Q. Yang, Controllable low temperature vapor-solid growth and hexagonal disk enhanced field emission property of ZnO nanorod arrays and hexagonal nanodisk networks. ACS Appl. Mater. Interfaces 4, 3852–3859 (2012)CrossRef F. Yang, W.H. Liu, X.W. Wang, J. Zheng, R.Y. Shi, H. Zhao, H.Q. Yang, Controllable low temperature vapor-solid growth and hexagonal disk enhanced field emission property of ZnO nanorod arrays and hexagonal nanodisk networks. ACS Appl. Mater. Interfaces 4, 3852–3859 (2012)CrossRef
7.
go back to reference J.J. Tian, E. Uchaker, Q.F. Zhang, G.Z. Cao, Hierarchically structured ZnO nanorods-nanosheets for improved quantum-dot-sensitized solar cells. ACS Appl. Mater. Interfaces 6, 4466–4472 (2014)CrossRef J.J. Tian, E. Uchaker, Q.F. Zhang, G.Z. Cao, Hierarchically structured ZnO nanorods-nanosheets for improved quantum-dot-sensitized solar cells. ACS Appl. Mater. Interfaces 6, 4466–4472 (2014)CrossRef
8.
go back to reference R. Bao, C.F. Wang, L. Dong, R.M. Yu, K. Zhao, Z.L. Wang, C.F. Pan, Flexible and controllable piezo-phototronic pressure mapping sensor matrix by ZnO NW/p-polymer LED array. Adv. Funct. Mater. 25, 2884–2891 (2015)CrossRef R. Bao, C.F. Wang, L. Dong, R.M. Yu, K. Zhao, Z.L. Wang, C.F. Pan, Flexible and controllable piezo-phototronic pressure mapping sensor matrix by ZnO NW/p-polymer LED array. Adv. Funct. Mater. 25, 2884–2891 (2015)CrossRef
9.
go back to reference Y. Chen, H. Zhao, B. Liu, H.Q. Yang, Charge separation between wurtzite ZnO polar 001 surfaces andtheir enhanced photocatalytic activity. Appl. Catal. B 163, 189–197 (2015)CrossRef Y. Chen, H. Zhao, B. Liu, H.Q. Yang, Charge separation between wurtzite ZnO polar 001 surfaces andtheir enhanced photocatalytic activity. Appl. Catal. B 163, 189–197 (2015)CrossRef
10.
go back to reference J.P. Labis, A.Q. Al-Anazi, H.A. Al-Brithen, M. Hezam, M.A. Alduraibi, A. Algarni, A.A. Alharbi, A.S. Al-Awadi, A. Khan, A.M. El-Toni, Designing zinc oxide nanostructures (nanoworms, nanoflowers, nanowalls and nanorods) by pulsed laser ablation technique for gas-sensing application. J. Am. Ceram. Soc. 102, 4367–4375 (2019)CrossRef J.P. Labis, A.Q. Al-Anazi, H.A. Al-Brithen, M. Hezam, M.A. Alduraibi, A. Algarni, A.A. Alharbi, A.S. Al-Awadi, A. Khan, A.M. El-Toni, Designing zinc oxide nanostructures (nanoworms, nanoflowers, nanowalls and nanorods) by pulsed laser ablation technique for gas-sensing application. J. Am. Ceram. Soc. 102, 4367–4375 (2019)CrossRef
11.
go back to reference S. Diodati, J. Hennemann, F. Fresno, S. Gialanella, P. Dolcet, U.L. Štangar, B.M. Smarsly, S. Gross, Easy and green route towards nanostructured ZnO as an active sensing material with unexpected H2S dosimeter-type behavior. Eur. J. Inorg. Chem. 6, 837–846 (2019)CrossRef S. Diodati, J. Hennemann, F. Fresno, S. Gialanella, P. Dolcet, U.L. Štangar, B.M. Smarsly, S. Gross, Easy and green route towards nanostructured ZnO as an active sensing material with unexpected H2S dosimeter-type behavior. Eur. J. Inorg. Chem. 6, 837–846 (2019)CrossRef
12.
go back to reference Y.F. Qiu, M.L. Yang, H.B. Fan, Y.J. Xu, Y.Y. Shao, X.X. Yang, S.H. Yang, Synthesis of ZnO nanorod arrays on Zn substrates by a gas-solution-solid method and their application as an ammonia sensor. J. Mater. Sci. Mater. Electron. 49, 347–352 (2014) Y.F. Qiu, M.L. Yang, H.B. Fan, Y.J. Xu, Y.Y. Shao, X.X. Yang, S.H. Yang, Synthesis of ZnO nanorod arrays on Zn substrates by a gas-solution-solid method and their application as an ammonia sensor. J. Mater. Sci. Mater. Electron. 49, 347–352 (2014)
13.
go back to reference S. Park, S. An, H. Ko, C. Jin, C.M. Lee, Synthesis of nanograined ZnO nanowires and their enhanced gas sensing properties. ACS Appl. Mater. Interfaces 4, 3650–3656 (2012)CrossRef S. Park, S. An, H. Ko, C. Jin, C.M. Lee, Synthesis of nanograined ZnO nanowires and their enhanced gas sensing properties. ACS Appl. Mater. Interfaces 4, 3650–3656 (2012)CrossRef
14.
go back to reference A. Katoch, Z.U. Abideen, J.H. Kim, S.S. Kim, Influence of hollowness variation on the gas-sensing properties of ZnO hollow nanofibers. Sensors Actuators B 232, 698–704 (2016)CrossRef A. Katoch, Z.U. Abideen, J.H. Kim, S.S. Kim, Influence of hollowness variation on the gas-sensing properties of ZnO hollow nanofibers. Sensors Actuators B 232, 698–704 (2016)CrossRef
15.
go back to reference B. Zeng, L.C. Zhang, L.Q. Wu, Y.Y. Su, Y. Lv, Enclosed hollow tubular ZnO: controllable synthesis and their high performance cataluminescence gas sensing of H2S. Sensors Actuators B. 242, 1086–1094 (2017)CrossRef B. Zeng, L.C. Zhang, L.Q. Wu, Y.Y. Su, Y. Lv, Enclosed hollow tubular ZnO: controllable synthesis and their high performance cataluminescence gas sensing of H2S. Sensors Actuators B. 242, 1086–1094 (2017)CrossRef
16.
go back to reference M. Chen, Z.H. Wang, D.M. Han, F.B. Gu, G.S. Guo, High-sensitivity NO2 gas sensors based on flower-like and tube-like ZnO nanomaterials. Sensors Actuators B 157, 565–574 (2011)CrossRef M. Chen, Z.H. Wang, D.M. Han, F.B. Gu, G.S. Guo, High-sensitivity NO2 gas sensors based on flower-like and tube-like ZnO nanomaterials. Sensors Actuators B 157, 565–574 (2011)CrossRef
17.
go back to reference Y.J. Sun, Z.H. Wei, W.D. Zhang, P.W. Li, K. Lian, J. Hu, Synthesis of brush-like ZnO nanowires and their enhanced gas-sensing properties. J. Mater. Sci. Mater. Electron. 51, 1428–1436 (2016) Y.J. Sun, Z.H. Wei, W.D. Zhang, P.W. Li, K. Lian, J. Hu, Synthesis of brush-like ZnO nanowires and their enhanced gas-sensing properties. J. Mater. Sci. Mater. Electron. 51, 1428–1436 (2016)
18.
go back to reference H.Y. Yuan, S.A.A.A. Aljneibi, J.R. Yuan, Y.X. Wang, H. Liu, J. Fang, C.H. Tang, X.H. Yan, H. Cai, Y.D. Gu, S.J. Pennycook, J.F. Tao, D. Zhao, ZnO nanosheets abundant in oxygen vacancies derived from metal-organic frameworks for ppb-level gas sensing. Adv. Mater. 31, 1807161 (2019)CrossRef H.Y. Yuan, S.A.A.A. Aljneibi, J.R. Yuan, Y.X. Wang, H. Liu, J. Fang, C.H. Tang, X.H. Yan, H. Cai, Y.D. Gu, S.J. Pennycook, J.F. Tao, D. Zhao, ZnO nanosheets abundant in oxygen vacancies derived from metal-organic frameworks for ppb-level gas sensing. Adv. Mater. 31, 1807161 (2019)CrossRef
19.
go back to reference M. Chen, Z.H. Wang, D.M. Han, F.B. Gu, G.S. Guo, Porous ZnO polygonal nanoflakes: synthesis, use in high-sensitivity NO2 gas sensor, and proposed mechanism of gas sensing. J. Phys. Chem. C. 115, 12763–12773 (2011)CrossRef M. Chen, Z.H. Wang, D.M. Han, F.B. Gu, G.S. Guo, Porous ZnO polygonal nanoflakes: synthesis, use in high-sensitivity NO2 gas sensor, and proposed mechanism of gas sensing. J. Phys. Chem. C. 115, 12763–12773 (2011)CrossRef
20.
go back to reference Y.K. Mishra, G. Modi, V. Cretu, V. Postica, O. Lupan, T. Reimer, I. Paulowicz, V. Hrkac, W. Benecke, L. Kienle, R. Adelung, Direct growth of freestanding ZnO tetrapod networks for multifunctional applications in photocatalysis, UV photodetection, and gas sensing. ACS Appl. Mater. Interfaces 7, 14303–14316 (2015)CrossRef Y.K. Mishra, G. Modi, V. Cretu, V. Postica, O. Lupan, T. Reimer, I. Paulowicz, V. Hrkac, W. Benecke, L. Kienle, R. Adelung, Direct growth of freestanding ZnO tetrapod networks for multifunctional applications in photocatalysis, UV photodetection, and gas sensing. ACS Appl. Mater. Interfaces 7, 14303–14316 (2015)CrossRef
21.
go back to reference J.J. Hassan, M.A. Mahdi, C.W. Chin, H. Abu-Hassan, Z. Hassan, Room temperature hydrogen gas sensor based on ZnO nanorod arrays grown on a SiO2/Si substrate via a microwave-assisted chemical solution method. J. Alloys Compd. 546, 107–111 (2013)CrossRef J.J. Hassan, M.A. Mahdi, C.W. Chin, H. Abu-Hassan, Z. Hassan, Room temperature hydrogen gas sensor based on ZnO nanorod arrays grown on a SiO2/Si substrate via a microwave-assisted chemical solution method. J. Alloys Compd. 546, 107–111 (2013)CrossRef
22.
go back to reference K.V. Gurav, M.G. Gang, S.W. Shin, U.M. Patil, P.R. Deshmukh, G.L. Agawane, M.P. Suryawanshi, S.M. Pawar, P.S. Patil, C.D. Lokhande, J.H. Kim, Gas sensing properties of hydrothermally grown ZnO nanorods with different aspect ratios. Sensors Actuators B 190, 439–445 (2014)CrossRef K.V. Gurav, M.G. Gang, S.W. Shin, U.M. Patil, P.R. Deshmukh, G.L. Agawane, M.P. Suryawanshi, S.M. Pawar, P.S. Patil, C.D. Lokhande, J.H. Kim, Gas sensing properties of hydrothermally grown ZnO nanorods with different aspect ratios. Sensors Actuators B 190, 439–445 (2014)CrossRef
23.
go back to reference Q. Zhao, Q. Shen, F. Yang, H. Zhao, B. Liu, Q. Liang, A.H. Wei, H.Q. Yang, S.Z. Liu, Direct growth of ZnO nanodisk networks with an exposed (0001) facet on Au comb-shaped interdigitating electrodes and the enhanced gas-sensing property of polar 0001 surfaces. Sensors Actuators B 195, 71–79 (2014)CrossRef Q. Zhao, Q. Shen, F. Yang, H. Zhao, B. Liu, Q. Liang, A.H. Wei, H.Q. Yang, S.Z. Liu, Direct growth of ZnO nanodisk networks with an exposed (0001) facet on Au comb-shaped interdigitating electrodes and the enhanced gas-sensing property of polar 0001 surfaces. Sensors Actuators B 195, 71–79 (2014)CrossRef
24.
go back to reference C.W. Na, S.Y. Park, J.H. Lee, Punched ZnO nanobelt networks for highly sensitive gas sensors. Sensors Actuators B 174, 495–499 (2012)CrossRef C.W. Na, S.Y. Park, J.H. Lee, Punched ZnO nanobelt networks for highly sensitive gas sensors. Sensors Actuators B 174, 495–499 (2012)CrossRef
25.
go back to reference K.W. Liu, M. Sakurai, M. Aono, Pinecone-shaped ZnO nanostructures: growth, optical and gas sensor properties. Sensors Actuators B 157, 98–102 (2011)CrossRef K.W. Liu, M. Sakurai, M. Aono, Pinecone-shaped ZnO nanostructures: growth, optical and gas sensor properties. Sensors Actuators B 157, 98–102 (2011)CrossRef
26.
go back to reference L.X. Zhang, J.H. Zhao, H.Q. Lu, L.M. Gong, L. Li, J.F. Zheng, H. Li, Z.P. Zhu, High sensitive and selective formaldehyde sensors based on nanoparticle-assembled ZnO micro-octahedrons synthesized by homogeneous precipitation method. Sensors Actuators B 160, 364–370 (2011)CrossRef L.X. Zhang, J.H. Zhao, H.Q. Lu, L.M. Gong, L. Li, J.F. Zheng, H. Li, Z.P. Zhu, High sensitive and selective formaldehyde sensors based on nanoparticle-assembled ZnO micro-octahedrons synthesized by homogeneous precipitation method. Sensors Actuators B 160, 364–370 (2011)CrossRef
27.
go back to reference X.Z. Wang, W. Liu, J.R. Liu, F.L. Wang, J. Kong, S. Qiu, C.Z. He, L.Q. Luan, Synthesis of nestlike ZnO hierarchically porous structures and analysis of their gas sensing properties. ACS Appl. Mater. Interfaces 4, 817–825 (2012)CrossRef X.Z. Wang, W. Liu, J.R. Liu, F.L. Wang, J. Kong, S. Qiu, C.Z. He, L.Q. Luan, Synthesis of nestlike ZnO hierarchically porous structures and analysis of their gas sensing properties. ACS Appl. Mater. Interfaces 4, 817–825 (2012)CrossRef
28.
go back to reference B.X. Li, Y.F. Wang, Hierarchically assembled porous ZnO microstructures and applications in a gas sensor. Superlattice Microstruct. 49, 433–440 (2011)CrossRef B.X. Li, Y.F. Wang, Hierarchically assembled porous ZnO microstructures and applications in a gas sensor. Superlattice Microstruct. 49, 433–440 (2011)CrossRef
29.
go back to reference W.X. Jin, S.Y. Ma, Z.Z. Tie, X.L. Xu, X.H. Jiang, W.Q. Li, T.T. Wang, Y. Lu, S.H. Yan, Synthesis of monodisperse ZnO hollow six-sided pyramids and their high gas-sensing properties. Mater. Lett. 159, 102–105 (2015)CrossRef W.X. Jin, S.Y. Ma, Z.Z. Tie, X.L. Xu, X.H. Jiang, W.Q. Li, T.T. Wang, Y. Lu, S.H. Yan, Synthesis of monodisperse ZnO hollow six-sided pyramids and their high gas-sensing properties. Mater. Lett. 159, 102–105 (2015)CrossRef
30.
go back to reference M.L. Yin, S.Z. Liu, Preparation of ZnO hollow spheres with different surface roughness and their enhanced gas sensing property. Sensors Actuators B 197, 58–65 (2014)CrossRef M.L. Yin, S.Z. Liu, Preparation of ZnO hollow spheres with different surface roughness and their enhanced gas sensing property. Sensors Actuators B 197, 58–65 (2014)CrossRef
31.
go back to reference Y. Wang, J.F. Liu, M. Wang, C.J. Pei, B. Liu, Y.K. Yuan, S.Z. Liu, H.Q. Yang, Enhancing the sensing properties of TiO2 nanosheets with exposed 001 facets by a hydrogenation and sensing mechanism. Inorg. Chem. 56, 1504–1510 (2017)CrossRef Y. Wang, J.F. Liu, M. Wang, C.J. Pei, B. Liu, Y.K. Yuan, S.Z. Liu, H.Q. Yang, Enhancing the sensing properties of TiO2 nanosheets with exposed 001 facets by a hydrogenation and sensing mechanism. Inorg. Chem. 56, 1504–1510 (2017)CrossRef
32.
go back to reference A.H. Wei, B. Liu, H. Zhao, Y. Chen, W.L. Wang, Y. Ma, H.Q. Yang, S.Z. Liu, Synthesis and formation mechanism of flowerlike architectures assembled from ultrathin NiO nanoflakes and their adsorption to malachite green and acid red in water. Chem. Eng. J. 239, 141–148 (2014)CrossRef A.H. Wei, B. Liu, H. Zhao, Y. Chen, W.L. Wang, Y. Ma, H.Q. Yang, S.Z. Liu, Synthesis and formation mechanism of flowerlike architectures assembled from ultrathin NiO nanoflakes and their adsorption to malachite green and acid red in water. Chem. Eng. J. 239, 141–148 (2014)CrossRef
33.
go back to reference K.S.W. Sing, D.H. Everett, R.A.W. Haul, L. Moscou, R.A. Pierotti, J. Rouquerol, T. Siemieniewska, Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure Appl. Chem. 57, 603–619 (1985)CrossRef K.S.W. Sing, D.H. Everett, R.A.W. Haul, L. Moscou, R.A. Pierotti, J. Rouquerol, T. Siemieniewska, Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure Appl. Chem. 57, 603–619 (1985)CrossRef
34.
go back to reference L. Li, H.Q. Yang, G.C. Qi, J.H. Ma, X.L. Xie, H. Zhao, F. Gao, Synthesis and photoluminescence of hollow microspheres constructed with ZnO nanorods by H2 bubble templates. Chem. Phys. Lett. 455, 93–97 (2008)CrossRef L. Li, H.Q. Yang, G.C. Qi, J.H. Ma, X.L. Xie, H. Zhao, F. Gao, Synthesis and photoluminescence of hollow microspheres constructed with ZnO nanorods by H2 bubble templates. Chem. Phys. Lett. 455, 93–97 (2008)CrossRef
35.
go back to reference N. Kumar, A.K. Srivastava, H.S. Patel, B.P.K. Gupta, G.D. Varma, Facile synthesis of ZnO- reduced graphene oxide nanocomposites for NO2 gas sensing applications. Eur. J. Inorg. Chem. 11, 1912–1923 (2015)CrossRef N. Kumar, A.K. Srivastava, H.S. Patel, B.P.K. Gupta, G.D. Varma, Facile synthesis of ZnO- reduced graphene oxide nanocomposites for NO2 gas sensing applications. Eur. J. Inorg. Chem. 11, 1912–1923 (2015)CrossRef
36.
go back to reference C.W. Zou, F. Liang, S.W. Xue, Synthesis and oxygen vacancy-related photocatalytic properties of ZnO nanotubes grown by thermal evaporation. Res. Chem. Intermed. 41, 5167–5176 (2014)CrossRef C.W. Zou, F. Liang, S.W. Xue, Synthesis and oxygen vacancy-related photocatalytic properties of ZnO nanotubes grown by thermal evaporation. Res. Chem. Intermed. 41, 5167–5176 (2014)CrossRef
37.
go back to reference Y.H. Shi, M.Q. Wang, C. Hong, Z. Yang, J.P. Deng, X.H. Song, L.L. Wang, J.Y. Shao, H.Z. Liu, Y.C. Ding, Multi-junction joints network self-assembled with converging ZnO nanowires as multi-barrier gas sensor. Sensors Actuators B 177, 1027–1034 (2013)CrossRef Y.H. Shi, M.Q. Wang, C. Hong, Z. Yang, J.P. Deng, X.H. Song, L.L. Wang, J.Y. Shao, H.Z. Liu, Y.C. Ding, Multi-junction joints network self-assembled with converging ZnO nanowires as multi-barrier gas sensor. Sensors Actuators B 177, 1027–1034 (2013)CrossRef
Metadata
Title
Enhancing gas-sensing property and sensing mechanism at molecule level of the hollow microspheres assembled with ZnO nanoflakes exposing {001} facets
Authors
Yan Chen
Bin Liu
Junfang Liu
Cuijin Pei
Hua Zhao
Yonghui Shang
Heqing Yang
Publication date
03-03-2020
Publisher
Springer US
Published in
Journal of Materials Science: Materials in Electronics / Issue 8/2020
Print ISSN: 0957-4522
Electronic ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-020-03165-5

Other articles of this Issue 8/2020

Journal of Materials Science: Materials in Electronics 8/2020 Go to the issue