Skip to main content
Top
Published in: Metallurgical and Materials Transactions A 1/2019

23-10-2018

Entrapped Oxide Formation in the Friction Stir Weld (FSW) Process

Authors: Judy Schneider, Poshou Chen, Arthur C. Nunes Jr.

Published in: Metallurgical and Materials Transactions A | Issue 1/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The ultimate design values for a friction stir weld (FSW) are not based on the average strength, but the lowest strength or outlier. Thus, the robustness of the process could be ultimately increased by understanding and minimizing the sources of data scatter within the mechanical properties of a FSW panel. Internal voids are known to result in reduced strength, but are detectable using non-destructive evaluation (NDE). Other metallurgical discontinuities, such as internal oxides, are difficult to detect using NDE and are often blamed for random variations in the mechanical properties of FSWs. Current efforts to minimize internal oxides within a FSW nugget focus on cleaning of the workpiece surfaces prior to the FSW. This study proposes that internal oxides within FSW interiors may occur during the process and not from a redistribution of native oxides on the workpiece surfaces as commonly cited. Typical temperatures during FSWing of aluminum and its alloys are reported to be in the range of 0.7 to 0.9 the absolute melting temperature. At the upper limit of this range, the expected temperature is above 500 °C where the oxidation rate of aluminum changes from self-limiting parabolic to linear. At these temperatures, entrained air could enhance the oxidization of the freshly sheared surfaces and become trapped. In this study, a series of intentionally “hot” FSWs were made in three different thickness panels of AA2219 (0.95, 1.27, and 1.56 cm) at two different weld pitches. Microstructures from the as-welded FSW nugget showed thickened grain boundary regions. Cracks were observed in transverse sections of the FSW nugget after tensile tests. Electron microscopy found evidence of eutectic structures along grain boundaries. At the expected FSW temperatures, the eutectic temperature of 548 °C could be exceeded thereby causing localized melting. Thus in addition to oxidation of the freshly sheared surfaces, exposure of molten metal to air would also promote formation of internal oxides. Results from this study will assist in a better understanding of strength outliers in FSWs and provide methodology for minimizing their occurrence.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference B. Li, Y. Shen and W. Hu: MATLS & Design, 2011, 32, 2073–2084 B. Li, Y. Shen and W. Hu: MATLS & Design, 2011, 32, 2073–2084
2.
go back to reference H-B. Chen, K. Yan, T. Lin, S-B. Chen, C-Y. Jiang and Y. Zhao: Mat. Sci. Eng. A, 2006, vol. 433, pp. 64–69.CrossRef H-B. Chen, K. Yan, T. Lin, S-B. Chen, C-Y. Jiang and Y. Zhao: Mat. Sci. Eng. A, 2006, vol. 433, pp. 64–69.CrossRef
3.
go back to reference H. K. Klages: Navy Postgraduate School, Monterey, CA, MS Thesis, December 2007. H. K. Klages: Navy Postgraduate School, Monterey, CA, MS Thesis, December 2007.
4.
go back to reference A.J. Leonard and S.A. Lockyer: Proc. 4th Int. Symp. FSW, Park City, Utah, May 14–16, 2003. A.J. Leonard and S.A. Lockyer: Proc. 4th Int. Symp. FSW, Park City, Utah, May 14–16, 2003.
5.
go back to reference H.J. Liu, Y.C. Chen and J.C. Feng: Scripta Mater., 2006, vol. 55, no. 3, pp. 231-234.CrossRef H.J. Liu, Y.C. Chen and J.C. Feng: Scripta Mater., 2006, vol. 55, no. 3, pp. 231-234.CrossRef
6.
go back to reference A. C. Nunes, Jr.: MS&T Conf. Proc., ASM International, Cincinnati, OH. Oct. 15–19, 2006. A. C. Nunes, Jr.: MS&T Conf. Proc., ASM International, Cincinnati, OH. Oct. 15–19, 2006.
7.
go back to reference D.P. Field, T.W. Nelson, Y. Hovanski and K.V. Jata: Metall. Mater. Trans. A, 2001, vol. 32, pp. 2869-2877.CrossRef D.P. Field, T.W. Nelson, Y. Hovanski and K.V. Jata: Metall. Mater. Trans. A, 2001, vol. 32, pp. 2869-2877.CrossRef
8.
go back to reference Y.S. Sato, H. Kokawa, K. Ikeda, M. Enomoto, S. Jogan and T. Hasimoto: Metall. Mater. Trans. A, 2001, vol. 32, no. 4, pp. 941-948.CrossRef Y.S. Sato, H. Kokawa, K. Ikeda, M. Enomoto, S. Jogan and T. Hasimoto: Metall. Mater. Trans. A, 2001, vol. 32, no. 4, pp. 941-948.CrossRef
9.
go back to reference S.H.C. Park, Y.S. Sato and H. Kokawa: Metall. Mater. Trans. A, 2001, vol. 32, no. 12, pp. 3033-3042.CrossRef S.H.C. Park, Y.S. Sato and H. Kokawa: Metall. Mater. Trans. A, 2001, vol. 32, no. 12, pp. 3033-3042.CrossRef
10.
go back to reference Y.S. Sato, F. Yamashita, Y. Sugiura, S.H.C Park and H. Kokawa: Scripta Mater., 2004, vol. 50, no. 3, pp. 365–369.CrossRef Y.S. Sato, F. Yamashita, Y. Sugiura, S.H.C Park and H. Kokawa: Scripta Mater., 2004, vol. 50, no. 3, pp. 365–369.CrossRef
11.
12.
go back to reference H. Larsson, L. Karlson, S. Stoltz and E.L. Bergqvist: 2nd Int. Conf. Friction Stir Welds, Gothenburg, Sweden, 2000. H. Larsson, L. Karlson, S. Stoltz and E.L. Bergqvist: 2nd Int. Conf. Friction Stir Welds, Gothenburg, Sweden, 2000.
13.
go back to reference R. Crawford, G.E. Cook, A.M. Strauss, D.A. Hartman, M.A. Stremler: Sci. Technol. Weld Joining (2006) 11(6):657–665.CrossRef R. Crawford, G.E. Cook, A.M. Strauss, D.A. Hartman, M.A. Stremler: Sci. Technol. Weld Joining (2006) 11(6):657–665.CrossRef
14.
go back to reference H.J. Liu, H, Fujii, M. Maeda and K. Nogi: J. Mater. Sci. Technol., 2004, vol. 20, no. 1, pp. 103–105.CrossRef H.J. Liu, H, Fujii, M. Maeda and K. Nogi: J. Mater. Sci. Technol., 2004, vol. 20, no. 1, pp. 103–105.CrossRef
15.
16.
go back to reference Y.G. Kim, H, Fujii, T. Tsumura, T. Komazaki, and K. Nakata: Mater. Sci. Eng. A-Struct., 2006, vol. 415, no. 1-2, pp. 250–254.CrossRef Y.G. Kim, H, Fujii, T. Tsumura, T. Komazaki, and K. Nakata: Mater. Sci. Eng. A-Struct., 2006, vol. 415, no. 1-2, pp. 250–254.CrossRef
17.
go back to reference K. Kumar, and S.V. Kailas: Sci. Technol. Weld Joining, 2010, vol. 15, no. 4, pp. 305-311CrossRef K. Kumar, and S.V. Kailas: Sci. Technol. Weld Joining, 2010, vol. 15, no. 4, pp. 305-311CrossRef
18.
go back to reference P.L. Threadgill, A.J. Leonard, H.R. Shercliff and P.J. Withers: Intl. Mat. Review, 2009, vol. 54, pp. 49-93.CrossRef P.L. Threadgill, A.J. Leonard, H.R. Shercliff and P.J. Withers: Intl. Mat. Review, 2009, vol. 54, pp. 49-93.CrossRef
19.
go back to reference U. Alfaro-Mercado and G. Biallas: Proc. 12th Int. Conf. Al. Alloys, Sept. 5–9, 2010, Yokohama, Japan. U. Alfaro-Mercado and G. Biallas: Proc. 12th Int. Conf. Al. Alloys, Sept. 5–9, 2010, Yokohama, Japan.
20.
go back to reference G. Cao, S. Kou: Weld. J. Supp 11, 1s-8s, 2005. G. Cao, S. Kou: Weld. J. Supp 11, 1s-8s, 2005.
21.
go back to reference J.T. Staley, R.F. Ashton, I. Broverman, P.R. Sperry: in Chapter 5, Aluminum Properties and Physical Metallurgy, J.E. Hatch, ed., ASM Internatioanl Publication, 1984, p. 135. J.T. Staley, R.F. Ashton, I. Broverman, P.R. Sperry: in Chapter 5, Aluminum Properties and Physical Metallurgy, J.E. Hatch, ed., ASM Internatioanl Publication, 1984, p. 135.
22.
go back to reference J.H. Record, J.L. Covington, T.W. Nelson, C.D. Sorensen and B.W. Webb: Welding J., 2007, vol. 86, no. 4, pp. 97s - 103s. J.H. Record, J.L. Covington, T.W. Nelson, C.D. Sorensen and B.W. Webb: Welding J., 2007, vol. 86, no. 4, pp. 97s - 103s.
23.
go back to reference J.A. Querin and J.A. Schneider: Welding J., 2012, 91, 76s-82s J.A. Querin and J.A. Schneider: Welding J., 2012, 91, 76s-82s
24.
go back to reference J.A. Schneider, R. Stromberg, P. Schilling, B. Cao, W. Zhou, J. Morfa and O. Myers: Welding J., 2013, vol. 92, no. 1, pp. 11s-19s. J.A. Schneider, R. Stromberg, P. Schilling, B. Cao, W. Zhou, J. Morfa and O. Myers: Welding J., 2013, vol. 92, no. 1, pp. 11s-19s.
25.
go back to reference R.K. Hart: Proc. R. Soc. Lond. A. Math. Phy. Sci., 1956, 236, 68-88. R.K. Hart: Proc. R. Soc. Lond. A. Math. Phy. Sci., 1956, 236, 68-88.
26.
go back to reference L.P.H. Jeurgens, W.G. Sloof, F.D. Tichelaar and E.J. Mittemeijer: Thin Solid Films, 2002, vol. 418, no. 2, pp. 89-101.CrossRef L.P.H. Jeurgens, W.G. Sloof, F.D. Tichelaar and E.J. Mittemeijer: Thin Solid Films, 2002, vol. 418, no. 2, pp. 89-101.CrossRef
27.
go back to reference P.E. Doherty and R.S. Davis: J. Appl. Phys., 1963, vol. 34, no. 3, pp. 619-628.CrossRef P.E. Doherty and R.S. Davis: J. Appl. Phys., 1963, vol. 34, no. 3, pp. 619-628.CrossRef
29.
go back to reference A. Steinheil: Ann. Phys., 1934, vol. 19, pp. 465–483. NASA-TT-F-11905, English translation, 1968. A. Steinheil: Ann. Phys., 1934, vol. 19, pp. 465–483. NASA-TT-F-11905, English translation, 1968.
30.
go back to reference M.A. Trunox, M. Schoenitz, X. Zhu and E.L. Dreizin: Combustion & Flame, 2005, vol. 140, pp. 310-318.CrossRef M.A. Trunox, M. Schoenitz, X. Zhu and E.L. Dreizin: Combustion & Flame, 2005, vol. 140, pp. 310-318.CrossRef
31.
go back to reference J.C. Sanchez-Lopez, A.R. Gonzalez-Elipe, and A. Fernandez: J. Mater. Res., 1998, vol. 13, no. 3, pp. 703-710.CrossRef J.C. Sanchez-Lopez, A.R. Gonzalez-Elipe, and A. Fernandez: J. Mater. Res., 1998, vol. 13, no. 3, pp. 703-710.CrossRef
33.
go back to reference L. P. H. Jeurgens, W. G. Sloof, F. D. Tichelaar and E. J. Mittemeijerc: J. Appl. Phys., 2002, vol. 92, pp. 1649-1656.CrossRef L. P. H. Jeurgens, W. G. Sloof, F. D. Tichelaar and E. J. Mittemeijerc: J. Appl. Phys., 2002, vol. 92, pp. 1649-1656.CrossRef
34.
go back to reference E. Bergsmark, C.J. Simenen and P. Kofstad: Mater. Sci. Eng. A-Struct., 1989, vol. 120, pp. 91-95.CrossRef E. Bergsmark, C.J. Simenen and P. Kofstad: Mater. Sci. Eng. A-Struct., 1989, vol. 120, pp. 91-95.CrossRef
35.
go back to reference W. Thiele: Aluminum, 1962, vol. 38, pp. 707-786. W. Thiele: Aluminum, 1962, vol. 38, pp. 707-786.
36.
go back to reference C.N. Cochran, D.L. Belitskus and D.L. Kinosz: Metall. Mater. Trans. B, 1977, vol. 8, no. 1, pp. 323-332.CrossRef C.N. Cochran, D.L. Belitskus and D.L. Kinosz: Metall. Mater. Trans. B, 1977, vol. 8, no. 1, pp. 323-332.CrossRef
37.
go back to reference Y-J. Oh, J-I. Mun and J-H. Kim: Surface & Coatings Tech., 2009, vol. 204, no. 1-2, pp. 141-148.CrossRef Y-J. Oh, J-I. Mun and J-H. Kim: Surface & Coatings Tech., 2009, vol. 204, no. 1-2, pp. 141-148.CrossRef
Metadata
Title
Entrapped Oxide Formation in the Friction Stir Weld (FSW) Process
Authors
Judy Schneider
Poshou Chen
Arthur C. Nunes Jr.
Publication date
23-10-2018
Publisher
Springer US
Published in
Metallurgical and Materials Transactions A / Issue 1/2019
Print ISSN: 1073-5623
Electronic ISSN: 1543-1940
DOI
https://doi.org/10.1007/s11661-018-4974-8

Other articles of this Issue 1/2019

Metallurgical and Materials Transactions A 1/2019 Go to the issue

Premium Partners