Skip to main content
Erschienen in: Metallurgical and Materials Transactions A 1/2019

23.10.2018

Entrapped Oxide Formation in the Friction Stir Weld (FSW) Process

verfasst von: Judy Schneider, Poshou Chen, Arthur C. Nunes Jr.

Erschienen in: Metallurgical and Materials Transactions A | Ausgabe 1/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The ultimate design values for a friction stir weld (FSW) are not based on the average strength, but the lowest strength or outlier. Thus, the robustness of the process could be ultimately increased by understanding and minimizing the sources of data scatter within the mechanical properties of a FSW panel. Internal voids are known to result in reduced strength, but are detectable using non-destructive evaluation (NDE). Other metallurgical discontinuities, such as internal oxides, are difficult to detect using NDE and are often blamed for random variations in the mechanical properties of FSWs. Current efforts to minimize internal oxides within a FSW nugget focus on cleaning of the workpiece surfaces prior to the FSW. This study proposes that internal oxides within FSW interiors may occur during the process and not from a redistribution of native oxides on the workpiece surfaces as commonly cited. Typical temperatures during FSWing of aluminum and its alloys are reported to be in the range of 0.7 to 0.9 the absolute melting temperature. At the upper limit of this range, the expected temperature is above 500 °C where the oxidation rate of aluminum changes from self-limiting parabolic to linear. At these temperatures, entrained air could enhance the oxidization of the freshly sheared surfaces and become trapped. In this study, a series of intentionally “hot” FSWs were made in three different thickness panels of AA2219 (0.95, 1.27, and 1.56 cm) at two different weld pitches. Microstructures from the as-welded FSW nugget showed thickened grain boundary regions. Cracks were observed in transverse sections of the FSW nugget after tensile tests. Electron microscopy found evidence of eutectic structures along grain boundaries. At the expected FSW temperatures, the eutectic temperature of 548 °C could be exceeded thereby causing localized melting. Thus in addition to oxidation of the freshly sheared surfaces, exposure of molten metal to air would also promote formation of internal oxides. Results from this study will assist in a better understanding of strength outliers in FSWs and provide methodology for minimizing their occurrence.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat B. Li, Y. Shen and W. Hu: MATLS & Design, 2011, 32, 2073–2084 B. Li, Y. Shen and W. Hu: MATLS & Design, 2011, 32, 2073–2084
2.
Zurück zum Zitat H-B. Chen, K. Yan, T. Lin, S-B. Chen, C-Y. Jiang and Y. Zhao: Mat. Sci. Eng. A, 2006, vol. 433, pp. 64–69.CrossRef H-B. Chen, K. Yan, T. Lin, S-B. Chen, C-Y. Jiang and Y. Zhao: Mat. Sci. Eng. A, 2006, vol. 433, pp. 64–69.CrossRef
3.
Zurück zum Zitat H. K. Klages: Navy Postgraduate School, Monterey, CA, MS Thesis, December 2007. H. K. Klages: Navy Postgraduate School, Monterey, CA, MS Thesis, December 2007.
4.
Zurück zum Zitat A.J. Leonard and S.A. Lockyer: Proc. 4th Int. Symp. FSW, Park City, Utah, May 14–16, 2003. A.J. Leonard and S.A. Lockyer: Proc. 4th Int. Symp. FSW, Park City, Utah, May 14–16, 2003.
5.
Zurück zum Zitat H.J. Liu, Y.C. Chen and J.C. Feng: Scripta Mater., 2006, vol. 55, no. 3, pp. 231-234.CrossRef H.J. Liu, Y.C. Chen and J.C. Feng: Scripta Mater., 2006, vol. 55, no. 3, pp. 231-234.CrossRef
6.
Zurück zum Zitat A. C. Nunes, Jr.: MS&T Conf. Proc., ASM International, Cincinnati, OH. Oct. 15–19, 2006. A. C. Nunes, Jr.: MS&T Conf. Proc., ASM International, Cincinnati, OH. Oct. 15–19, 2006.
7.
Zurück zum Zitat D.P. Field, T.W. Nelson, Y. Hovanski and K.V. Jata: Metall. Mater. Trans. A, 2001, vol. 32, pp. 2869-2877.CrossRef D.P. Field, T.W. Nelson, Y. Hovanski and K.V. Jata: Metall. Mater. Trans. A, 2001, vol. 32, pp. 2869-2877.CrossRef
8.
Zurück zum Zitat Y.S. Sato, H. Kokawa, K. Ikeda, M. Enomoto, S. Jogan and T. Hasimoto: Metall. Mater. Trans. A, 2001, vol. 32, no. 4, pp. 941-948.CrossRef Y.S. Sato, H. Kokawa, K. Ikeda, M. Enomoto, S. Jogan and T. Hasimoto: Metall. Mater. Trans. A, 2001, vol. 32, no. 4, pp. 941-948.CrossRef
9.
Zurück zum Zitat S.H.C. Park, Y.S. Sato and H. Kokawa: Metall. Mater. Trans. A, 2001, vol. 32, no. 12, pp. 3033-3042.CrossRef S.H.C. Park, Y.S. Sato and H. Kokawa: Metall. Mater. Trans. A, 2001, vol. 32, no. 12, pp. 3033-3042.CrossRef
10.
Zurück zum Zitat Y.S. Sato, F. Yamashita, Y. Sugiura, S.H.C Park and H. Kokawa: Scripta Mater., 2004, vol. 50, no. 3, pp. 365–369.CrossRef Y.S. Sato, F. Yamashita, Y. Sugiura, S.H.C Park and H. Kokawa: Scripta Mater., 2004, vol. 50, no. 3, pp. 365–369.CrossRef
11.
Zurück zum Zitat K.N. Krishnan: Mater. Sci. Eng. A-Struct., 2002, vol. 327 pp. 246–251.CrossRef K.N. Krishnan: Mater. Sci. Eng. A-Struct., 2002, vol. 327 pp. 246–251.CrossRef
12.
Zurück zum Zitat H. Larsson, L. Karlson, S. Stoltz and E.L. Bergqvist: 2nd Int. Conf. Friction Stir Welds, Gothenburg, Sweden, 2000. H. Larsson, L. Karlson, S. Stoltz and E.L. Bergqvist: 2nd Int. Conf. Friction Stir Welds, Gothenburg, Sweden, 2000.
13.
Zurück zum Zitat R. Crawford, G.E. Cook, A.M. Strauss, D.A. Hartman, M.A. Stremler: Sci. Technol. Weld Joining (2006) 11(6):657–665.CrossRef R. Crawford, G.E. Cook, A.M. Strauss, D.A. Hartman, M.A. Stremler: Sci. Technol. Weld Joining (2006) 11(6):657–665.CrossRef
14.
Zurück zum Zitat H.J. Liu, H, Fujii, M. Maeda and K. Nogi: J. Mater. Sci. Technol., 2004, vol. 20, no. 1, pp. 103–105.CrossRef H.J. Liu, H, Fujii, M. Maeda and K. Nogi: J. Mater. Sci. Technol., 2004, vol. 20, no. 1, pp. 103–105.CrossRef
15.
Zurück zum Zitat X. Long and S.K. Khanna:Sci. Technol. Weld Joining, 2005, 10, 482–87.CrossRef X. Long and S.K. Khanna:Sci. Technol. Weld Joining, 2005, 10, 482–87.CrossRef
16.
Zurück zum Zitat Y.G. Kim, H, Fujii, T. Tsumura, T. Komazaki, and K. Nakata: Mater. Sci. Eng. A-Struct., 2006, vol. 415, no. 1-2, pp. 250–254.CrossRef Y.G. Kim, H, Fujii, T. Tsumura, T. Komazaki, and K. Nakata: Mater. Sci. Eng. A-Struct., 2006, vol. 415, no. 1-2, pp. 250–254.CrossRef
17.
Zurück zum Zitat K. Kumar, and S.V. Kailas: Sci. Technol. Weld Joining, 2010, vol. 15, no. 4, pp. 305-311CrossRef K. Kumar, and S.V. Kailas: Sci. Technol. Weld Joining, 2010, vol. 15, no. 4, pp. 305-311CrossRef
18.
Zurück zum Zitat P.L. Threadgill, A.J. Leonard, H.R. Shercliff and P.J. Withers: Intl. Mat. Review, 2009, vol. 54, pp. 49-93.CrossRef P.L. Threadgill, A.J. Leonard, H.R. Shercliff and P.J. Withers: Intl. Mat. Review, 2009, vol. 54, pp. 49-93.CrossRef
19.
Zurück zum Zitat U. Alfaro-Mercado and G. Biallas: Proc. 12th Int. Conf. Al. Alloys, Sept. 5–9, 2010, Yokohama, Japan. U. Alfaro-Mercado and G. Biallas: Proc. 12th Int. Conf. Al. Alloys, Sept. 5–9, 2010, Yokohama, Japan.
20.
Zurück zum Zitat G. Cao, S. Kou: Weld. J. Supp 11, 1s-8s, 2005. G. Cao, S. Kou: Weld. J. Supp 11, 1s-8s, 2005.
21.
Zurück zum Zitat J.T. Staley, R.F. Ashton, I. Broverman, P.R. Sperry: in Chapter 5, Aluminum Properties and Physical Metallurgy, J.E. Hatch, ed., ASM Internatioanl Publication, 1984, p. 135. J.T. Staley, R.F. Ashton, I. Broverman, P.R. Sperry: in Chapter 5, Aluminum Properties and Physical Metallurgy, J.E. Hatch, ed., ASM Internatioanl Publication, 1984, p. 135.
22.
Zurück zum Zitat J.H. Record, J.L. Covington, T.W. Nelson, C.D. Sorensen and B.W. Webb: Welding J., 2007, vol. 86, no. 4, pp. 97s - 103s. J.H. Record, J.L. Covington, T.W. Nelson, C.D. Sorensen and B.W. Webb: Welding J., 2007, vol. 86, no. 4, pp. 97s - 103s.
23.
Zurück zum Zitat J.A. Querin and J.A. Schneider: Welding J., 2012, 91, 76s-82s J.A. Querin and J.A. Schneider: Welding J., 2012, 91, 76s-82s
24.
Zurück zum Zitat J.A. Schneider, R. Stromberg, P. Schilling, B. Cao, W. Zhou, J. Morfa and O. Myers: Welding J., 2013, vol. 92, no. 1, pp. 11s-19s. J.A. Schneider, R. Stromberg, P. Schilling, B. Cao, W. Zhou, J. Morfa and O. Myers: Welding J., 2013, vol. 92, no. 1, pp. 11s-19s.
25.
Zurück zum Zitat R.K. Hart: Proc. R. Soc. Lond. A. Math. Phy. Sci., 1956, 236, 68-88. R.K. Hart: Proc. R. Soc. Lond. A. Math. Phy. Sci., 1956, 236, 68-88.
26.
Zurück zum Zitat L.P.H. Jeurgens, W.G. Sloof, F.D. Tichelaar and E.J. Mittemeijer: Thin Solid Films, 2002, vol. 418, no. 2, pp. 89-101.CrossRef L.P.H. Jeurgens, W.G. Sloof, F.D. Tichelaar and E.J. Mittemeijer: Thin Solid Films, 2002, vol. 418, no. 2, pp. 89-101.CrossRef
27.
Zurück zum Zitat P.E. Doherty and R.S. Davis: J. Appl. Phys., 1963, vol. 34, no. 3, pp. 619-628.CrossRef P.E. Doherty and R.S. Davis: J. Appl. Phys., 1963, vol. 34, no. 3, pp. 619-628.CrossRef
28.
29.
Zurück zum Zitat A. Steinheil: Ann. Phys., 1934, vol. 19, pp. 465–483. NASA-TT-F-11905, English translation, 1968. A. Steinheil: Ann. Phys., 1934, vol. 19, pp. 465–483. NASA-TT-F-11905, English translation, 1968.
30.
Zurück zum Zitat M.A. Trunox, M. Schoenitz, X. Zhu and E.L. Dreizin: Combustion & Flame, 2005, vol. 140, pp. 310-318.CrossRef M.A. Trunox, M. Schoenitz, X. Zhu and E.L. Dreizin: Combustion & Flame, 2005, vol. 140, pp. 310-318.CrossRef
31.
Zurück zum Zitat J.C. Sanchez-Lopez, A.R. Gonzalez-Elipe, and A. Fernandez: J. Mater. Res., 1998, vol. 13, no. 3, pp. 703-710.CrossRef J.C. Sanchez-Lopez, A.R. Gonzalez-Elipe, and A. Fernandez: J. Mater. Res., 1998, vol. 13, no. 3, pp. 703-710.CrossRef
33.
Zurück zum Zitat L. P. H. Jeurgens, W. G. Sloof, F. D. Tichelaar and E. J. Mittemeijerc: J. Appl. Phys., 2002, vol. 92, pp. 1649-1656.CrossRef L. P. H. Jeurgens, W. G. Sloof, F. D. Tichelaar and E. J. Mittemeijerc: J. Appl. Phys., 2002, vol. 92, pp. 1649-1656.CrossRef
34.
Zurück zum Zitat E. Bergsmark, C.J. Simenen and P. Kofstad: Mater. Sci. Eng. A-Struct., 1989, vol. 120, pp. 91-95.CrossRef E. Bergsmark, C.J. Simenen and P. Kofstad: Mater. Sci. Eng. A-Struct., 1989, vol. 120, pp. 91-95.CrossRef
35.
Zurück zum Zitat W. Thiele: Aluminum, 1962, vol. 38, pp. 707-786. W. Thiele: Aluminum, 1962, vol. 38, pp. 707-786.
36.
Zurück zum Zitat C.N. Cochran, D.L. Belitskus and D.L. Kinosz: Metall. Mater. Trans. B, 1977, vol. 8, no. 1, pp. 323-332.CrossRef C.N. Cochran, D.L. Belitskus and D.L. Kinosz: Metall. Mater. Trans. B, 1977, vol. 8, no. 1, pp. 323-332.CrossRef
37.
Zurück zum Zitat Y-J. Oh, J-I. Mun and J-H. Kim: Surface & Coatings Tech., 2009, vol. 204, no. 1-2, pp. 141-148.CrossRef Y-J. Oh, J-I. Mun and J-H. Kim: Surface & Coatings Tech., 2009, vol. 204, no. 1-2, pp. 141-148.CrossRef
Metadaten
Titel
Entrapped Oxide Formation in the Friction Stir Weld (FSW) Process
verfasst von
Judy Schneider
Poshou Chen
Arthur C. Nunes Jr.
Publikationsdatum
23.10.2018
Verlag
Springer US
Erschienen in
Metallurgical and Materials Transactions A / Ausgabe 1/2019
Print ISSN: 1073-5623
Elektronische ISSN: 1543-1940
DOI
https://doi.org/10.1007/s11661-018-4974-8

Weitere Artikel der Ausgabe 1/2019

Metallurgical and Materials Transactions A 1/2019 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.