Skip to main content
Top
Published in: Journal of Materials Engineering and Performance 9/2022

27-06-2022 | Technical Article

Environmental Effects on the Creep Response of Thin-Walled Ni-Based Single Crystal Superalloys

Authors: Z. Y. Yu, X. M. Wang, G. W. Cao, R. Q. Chen, Y. D. Lian

Published in: Journal of Materials Engineering and Performance | Issue 9/2022

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Environmental effects on 980 °C high temperature creep response of thin-walled Ni-based single crystal superalloys were isolated by testing in air and vacuum, respectively. For each gaseous environment, different stress levels and specimen thicknesses were considered. Results showed that the creep rupture life reduced at 275 MPa in both air and vacuum, when the specimen thickness decreased from 1.3 to 0.5 mm. The reduction in life was more obvious in air than that in vacuum. At 330 MPa, the variation tendency of creep life with the specimen thickness was not evident in both gaseous environments. In the air environment, metallographic analyses indicated that oxidation effect, voids and cracks growth could affect the creep response of thin-walled specimens. Cracks propagation in air exhibited a go-stop mode, which was the competition result of air strengthening and air weakening. The former was dominant under the low stress, while the latter was dominant under the high stress. Phase-field analyses pointed out that the existence of multilayer structure caused by the oxidation effect led to larger plastic strain in the normal γ/γ′ phase region. And this was more serious in the thin specimen with relatively wider oxidation layers. In the vacuum environment, only the crack growth contributed to different creep lives in thin-walled specimens. Cracks in vacuum continued to grow in the whole propagation process. Once their length reached the critical value, cracks would grow dramatically in the thin specimen and finally led to the fracture of specimens.

Graphical Abstract

Phase-field simulation combined with the morphology analysis revealed the mechanical behavior of the thin-walled superalloys in air and vacuum.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference E. Sciubba, Air-Cooled Gas Turbine Cycles–Part 1: An Analytical Method for the Preliminary Assessment of Blade Cooling Flow Rates, Energy, 2015, 83, p 104–114.CrossRef E. Sciubba, Air-Cooled Gas Turbine Cycles–Part 1: An Analytical Method for the Preliminary Assessment of Blade Cooling Flow Rates, Energy, 2015, 83, p 104–114.CrossRef
2.
go back to reference H.Q. Pei, Z.X. Wen, Z.H. Wang, W.Y. Gan, G.X. Lu, and Z.F. Yue, Transient Thermal Fatigue Crack Propagation Behavior of a Nickel-Based Single-Crystal Superalloy, Int. J. Fat., 2020, 131, p 105303.CrossRef H.Q. Pei, Z.X. Wen, Z.H. Wang, W.Y. Gan, G.X. Lu, and Z.F. Yue, Transient Thermal Fatigue Crack Propagation Behavior of a Nickel-Based Single-Crystal Superalloy, Int. J. Fat., 2020, 131, p 105303.CrossRef
3.
go back to reference J. Nawrocki, M. Motyka, D. Szeliga, W. Ziaja, R. Cygan, and J. Sieniawski, Effect of Cooling Rate on Macro-and Microstructure of Thin-Walled Nickel Superalloy Precision Castings, J. Manuf. Process., 2020, 49, p 153–161.CrossRef J. Nawrocki, M. Motyka, D. Szeliga, W. Ziaja, R. Cygan, and J. Sieniawski, Effect of Cooling Rate on Macro-and Microstructure of Thin-Walled Nickel Superalloy Precision Castings, J. Manuf. Process., 2020, 49, p 153–161.CrossRef
4.
go back to reference A. Baldan, On the Thin-Section Size Dependent Creep Strength of a Single Crystal Nickel-Base Superalloy, J. Mater. Sci., 1995, 30(24), p 6288–6298.CrossRef A. Baldan, On the Thin-Section Size Dependent Creep Strength of a Single Crystal Nickel-Base Superalloy, J. Mater. Sci., 1995, 30(24), p 6288–6298.CrossRef
5.
go back to reference M. Doner, J. Heckler, Identification of Mechanism Responsible for Degradation in Thin-Wall Stress Rupture properties, In: Superalloys 1988, Proceedings of 6th international symposium on superalloys, Warrendale, PA: TMS, 1988, p 653–662. M. Doner, J. Heckler, Identification of Mechanism Responsible for Degradation in Thin-Wall Stress Rupture properties, In: Superalloys 1988, Proceedings of 6th international symposium on superalloys, Warrendale, PA: TMS, 1988, p 653–662.
6.
go back to reference R. Hüttner, R. Völkl, J. Gabel, and U. Glatzel, Creep Behavior of Thick and Thin Walled Structures of a Single Crystal Ni-Base Superalloy at High Temperatures - Experimental Method and Results, Superalloys, 2008, 1, p 719–723. R. Hüttner, R. Völkl, J. Gabel, and U. Glatzel, Creep Behavior of Thick and Thin Walled Structures of a Single Crystal Ni-Base Superalloy at High Temperatures - Experimental Method and Results, Superalloys, 2008, 1, p 719–723.
7.
go back to reference M. Bensch, J. Preußner, R. Hüttner, G. Obigodi, S. Virtanen, J. Gabel, and U. Glatzel, Modelling and Analysis of the Oxidation Influence on Creep Behaviour of Thin-Walled Structures of the Single-Crystal Nickel-Base Superalloy René N5 at 980 °C, Acta Mater., 2010, 58(5), p 1607–1617.CrossRef M. Bensch, J. Preußner, R. Hüttner, G. Obigodi, S. Virtanen, J. Gabel, and U. Glatzel, Modelling and Analysis of the Oxidation Influence on Creep Behaviour of Thin-Walled Structures of the Single-Crystal Nickel-Base Superalloy René N5 at 980 °C, Acta Mater., 2010, 58(5), p 1607–1617.CrossRef
8.
go back to reference A. Srivastava, S. Gopagoni, A. Needleman, V. Seetharaman, A. Staroselsky, and R. Banerjee, Effect of Specimen Thickness on the Creep Response of a Ni-Based Single-Crystal Superalloy, Acta Mater., 2012, 60(16), p 5697–5711.CrossRef A. Srivastava, S. Gopagoni, A. Needleman, V. Seetharaman, A. Staroselsky, and R. Banerjee, Effect of Specimen Thickness on the Creep Response of a Ni-Based Single-Crystal Superalloy, Acta Mater., 2012, 60(16), p 5697–5711.CrossRef
9.
go back to reference R. Hüttner, J. Gabel, U. Glatzel, and R. Völkl, First Creep Results on Thin-Walled Single-Crystal Superalloys, Mater. Sci. Eng., A, 2009, 510, p 307–311.CrossRef R. Hüttner, J. Gabel, U. Glatzel, and R. Völkl, First Creep Results on Thin-Walled Single-Crystal Superalloys, Mater. Sci. Eng., A, 2009, 510, p 307–311.CrossRef
10.
go back to reference Y.B. Hu, L. Zhang, T.S. Cao, C.Q. Cheng, P.T. Zhao, G.P. Guo, and J. Zhao, The Effect of Thickness on the Creep Properties of a Single-Crystal Nickel-Based Superalloy, Mater. Sci. Eng., A, 2018, 728, p 124–132.CrossRef Y.B. Hu, L. Zhang, T.S. Cao, C.Q. Cheng, P.T. Zhao, G.P. Guo, and J. Zhao, The Effect of Thickness on the Creep Properties of a Single-Crystal Nickel-Based Superalloy, Mater. Sci. Eng., A, 2018, 728, p 124–132.CrossRef
11.
go back to reference Z.Y. Yu, X.M. Wang, H. Liang, Z.X. Li, L. Li, and Z.F. Yue, Thickness Debit Effect in Ni-Based Single Crystal Superalloys at Different Stress Levels, Int. J. Mech. Sci., 2020, 170, p 105357.CrossRef Z.Y. Yu, X.M. Wang, H. Liang, Z.X. Li, L. Li, and Z.F. Yue, Thickness Debit Effect in Ni-Based Single Crystal Superalloys at Different Stress Levels, Int. J. Mech. Sci., 2020, 170, p 105357.CrossRef
12.
go back to reference D.N. Duhl, Directional solidified superalloys, Superalloys II. C.T. Sims, N.S. Stoloff, W.C. Hagel Ed., John Wiley, New York, 1987, p 189–214 D.N. Duhl, Directional solidified superalloys, Superalloys II. C.T. Sims, N.S. Stoloff, W.C. Hagel Ed., John Wiley, New York, 1987, p 189–214
13.
go back to reference I. Seetharaman, Superalloys 2004, tenth international symposium. K.A. Green, H. Harada, T.W. Howson, T.M. Pollock, R.C. Reed, J.J. Schirra, S. Walston Ed., The Minerals, Metals, and Materials Society, Warrendale, PA, 2004, p 207–214CrossRef I. Seetharaman, Superalloys 2004, tenth international symposium. K.A. Green, H. Harada, T.W. Howson, T.M. Pollock, R.C. Reed, J.J. Schirra, S. Walston Ed., The Minerals, Metals, and Materials Society, Warrendale, PA, 2004, p 207–214CrossRef
14.
go back to reference M. Brunner, M. Bensch, R. Völkl, E. Affeldt, and U. Glatzel, Thickness Influence on Creep Properties for Ni-Based Superalloy M247LC SX, Mater. Sci. Eng., A, 2012, 550, p 254–262.CrossRef M. Brunner, M. Bensch, R. Völkl, E. Affeldt, and U. Glatzel, Thickness Influence on Creep Properties for Ni-Based Superalloy M247LC SX, Mater. Sci. Eng., A, 2012, 550, p 254–262.CrossRef
15.
go back to reference M.L. Sessions, C.J. McMahon Jr., and J.L. Walker, Further Observations on the Effect of Environment on the Creep/Rupture Behavior of a Nickel-Base High Temperature Alloy: Grain Size Effects, Mater. Sci. Eng., 1977, 27(1), p 17–24.CrossRef M.L. Sessions, C.J. McMahon Jr., and J.L. Walker, Further Observations on the Effect of Environment on the Creep/Rupture Behavior of a Nickel-Base High Temperature Alloy: Grain Size Effects, Mater. Sci. Eng., 1977, 27(1), p 17–24.CrossRef
16.
go back to reference K. Aning, and J.K. Tien, Creep and Stress Rupture Behavior of a Wrought Nickel-Base Superalloy in Air and Vacuum, Mater. Sci. Eng., 1980, 43(1), p 23–33.CrossRef K. Aning, and J.K. Tien, Creep and Stress Rupture Behavior of a Wrought Nickel-Base Superalloy in Air and Vacuum, Mater. Sci. Eng., 1980, 43(1), p 23–33.CrossRef
17.
go back to reference P.N. Chaku, and C.J. McMahon, The Effect of an Air Environment on the Creep and Rupture Behavior of a Nickel-Base High Temperature Alloy, Metallurgical Trans., 1974, 5(2), p 441–450. P.N. Chaku, and C.J. McMahon, The Effect of an Air Environment on the Creep and Rupture Behavior of a Nickel-Base High Temperature Alloy, Metallurgical Trans., 1974, 5(2), p 441–450.
18.
go back to reference W.S. Xia, X.B. Zhao, L. Yue, and Z. Zhang, A Review of Composition Evolution in Ni-Based Single Crystal Superalloys, J. Mater. Sci. Technol., 2020, 44, p 76–95.CrossRef W.S. Xia, X.B. Zhao, L. Yue, and Z. Zhang, A Review of Composition Evolution in Ni-Based Single Crystal Superalloys, J. Mater. Sci. Technol., 2020, 44, p 76–95.CrossRef
19.
go back to reference D. Kaddour, A.F. Gourgues-Lorenzon, J.C. Brachet, L. Portier, and A. Pineau, Microstructural Influence on High Temperature Creep Flow of Zr–1% NbO Alloy in Near-α,(α+ β), and β Temperature Ranges in a High Vacuum Environment, J. Nucl. Mater., 2011, 408(1), p 116–124.CrossRef D. Kaddour, A.F. Gourgues-Lorenzon, J.C. Brachet, L. Portier, and A. Pineau, Microstructural Influence on High Temperature Creep Flow of Zr–1% NbO Alloy in Near-α,(α+ β), and β Temperature Ranges in a High Vacuum Environment, J. Nucl. Mater., 2011, 408(1), p 116–124.CrossRef
20.
go back to reference L.M. Suave, A.S. Munoz, A. Gaubert, G. Benoit, L. Marcin, P. Kontis, P. Villechaise, and J. Cormier, Thin-Wall Debit in Creep of DS200 + Hf Alloy, Metall. and Mater. Trans. A., 2018, 49(9), p 4012–4028.CrossRef L.M. Suave, A.S. Munoz, A. Gaubert, G. Benoit, L. Marcin, P. Kontis, P. Villechaise, and J. Cormier, Thin-Wall Debit in Creep of DS200 + Hf Alloy, Metall. and Mater. Trans. A., 2018, 49(9), p 4012–4028.CrossRef
21.
go back to reference D.J. Duquette, The Effect of High Vacuum on the Creep Properties of a High Strength Nickel Alloy Single Crystal, Scr. Metall., 1970, 4(8), p 633–636.CrossRef D.J. Duquette, The Effect of High Vacuum on the Creep Properties of a High Strength Nickel Alloy Single Crystal, Scr. Metall., 1970, 4(8), p 633–636.CrossRef
22.
go back to reference L.M. Suave, J. Cormier, P. Villechaise, D. Bertheau, G. Benoit, G. Cailletaud, and L. Marcin, Anisotropy in Creep Properties of DS200 + Hf Alloy, Mater. High Temp., 2016, 33(4–5), p 361–371.CrossRef L.M. Suave, J. Cormier, P. Villechaise, D. Bertheau, G. Benoit, G. Cailletaud, and L. Marcin, Anisotropy in Creep Properties of DS200 + Hf Alloy, Mater. High Temp., 2016, 33(4–5), p 361–371.CrossRef
23.
go back to reference A.K. Vasudevan, K. Sadananda, and R.L. Holtz, Analysis of Vacuum Fatigue Crack Growth Results and its Implications, Int. J. Fatigue, 2005, 27(10–12), p 1519–1529.CrossRef A.K. Vasudevan, K. Sadananda, and R.L. Holtz, Analysis of Vacuum Fatigue Crack Growth Results and its Implications, Int. J. Fatigue, 2005, 27(10–12), p 1519–1529.CrossRef
24.
go back to reference A. Gaubert, Y. Le Bouar, and A. Finel, Coupling Phase Field and Viscoplasticity to Study Rafting in Ni-Based Superalloys, Phil. Mag., 2010, 90(1–4), p 375–404.CrossRef A. Gaubert, Y. Le Bouar, and A. Finel, Coupling Phase Field and Viscoplasticity to Study Rafting in Ni-Based Superalloys, Phil. Mag., 2010, 90(1–4), p 375–404.CrossRef
25.
go back to reference R. Harikrishnan, and J.B. le Graverend, A Creep-Damage Phase-Field Model: Predicting Topological Inversion in Ni-Based Single Crystal Superalloys, Mater. Des., 2018, 160, p 405–416.CrossRef R. Harikrishnan, and J.B. le Graverend, A Creep-Damage Phase-Field Model: Predicting Topological Inversion in Ni-Based Single Crystal Superalloys, Mater. Des., 2018, 160, p 405–416.CrossRef
26.
go back to reference M.A. Ali, W. Amin, O. Shchyglo, and I. Steinbach, 45-Degree Rafting in Ni-Based Superalloys: A Combined Phase-Field and Strain Gradient Crystal Plasticity Study, Int. J. Plast, 2020, 128, p 102659.CrossRef M.A. Ali, W. Amin, O. Shchyglo, and I. Steinbach, 45-Degree Rafting in Ni-Based Superalloys: A Combined Phase-Field and Strain Gradient Crystal Plasticity Study, Int. J. Plast, 2020, 128, p 102659.CrossRef
27.
go back to reference L.J. Zhang, I. Steinbach, and Y. Du, Phase-Field Simulation of Diffusion Couples in the Ni–Al System, Int. J. Mater. Res., 2011, 102(4), p 371–380.CrossRef L.J. Zhang, I. Steinbach, and Y. Du, Phase-Field Simulation of Diffusion Couples in the Ni–Al System, Int. J. Mater. Res., 2011, 102(4), p 371–380.CrossRef
28.
go back to reference Z.Y. Yu, X.M. Wang, Z.F. Yue, and S.Y. Sun, Visco-Plasticity Phase-Field Simulation of the Mechanical Property and Rafting Behavior in Nickel-Based Superalloys, Intermetallics, 2020, 125, p 106884.CrossRef Z.Y. Yu, X.M. Wang, Z.F. Yue, and S.Y. Sun, Visco-Plasticity Phase-Field Simulation of the Mechanical Property and Rafting Behavior in Nickel-Based Superalloys, Intermetallics, 2020, 125, p 106884.CrossRef
29.
go back to reference V. Vaithyanathan, and L.Q. Chen, Coarsening of Ordered Intermetallic Precipitates with Coherency Stress, Acta Mater., 2002, 50(16), p 4061–4073.CrossRef V. Vaithyanathan, and L.Q. Chen, Coarsening of Ordered Intermetallic Precipitates with Coherency Stress, Acta Mater., 2002, 50(16), p 4061–4073.CrossRef
30.
go back to reference M. Yang, J. Zhang, H. Wei, W.M. Gui, T. Jin, and L. Liu, Three-Dimensional Elastoplastic Phase-Field Simulation of γ′ Rafting and Creep Deformation, J. Mater. Sci., 2017, 52(24), p 13940–13947.CrossRef M. Yang, J. Zhang, H. Wei, W.M. Gui, T. Jin, and L. Liu, Three-Dimensional Elastoplastic Phase-Field Simulation of γ′ Rafting and Creep Deformation, J. Mater. Sci., 2017, 52(24), p 13940–13947.CrossRef
31.
go back to reference T. Tinga, W.A.M. Brekelmans, and M.G.D. Geers, Incorporating Strain Gradient Effects in a Multiscale Constitutive Framework for Nickel-Base Superalloys, Phil. Mag., 2008, 88(30–32), p 3793–3825.CrossRef T. Tinga, W.A.M. Brekelmans, and M.G.D. Geers, Incorporating Strain Gradient Effects in a Multiscale Constitutive Framework for Nickel-Base Superalloys, Phil. Mag., 2008, 88(30–32), p 3793–3825.CrossRef
32.
go back to reference L.Q. Chen, and J. Shen, Applications of Semi-Implicit Fourier-Spectral Method to Phase Field Equations, Comput. Phys. Commun., 1998, 108(2–3), p 147–158.CrossRef L.Q. Chen, and J. Shen, Applications of Semi-Implicit Fourier-Spectral Method to Phase Field Equations, Comput. Phys. Commun., 1998, 108(2–3), p 147–158.CrossRef
33.
go back to reference M. Yang, J. Zhang, H. Wei, W.M. Gui, H.J. Su, T. Jin, and L. Liu, A Phase-Field Model for Creep Behavior in Nickel-Base Single-Crystal Superalloy: Coupled With Creep Damage, Scripta Mater., 2018, 147, p 16–20.CrossRef M. Yang, J. Zhang, H. Wei, W.M. Gui, H.J. Su, T. Jin, and L. Liu, A Phase-Field Model for Creep Behavior in Nickel-Base Single-Crystal Superalloy: Coupled With Creep Damage, Scripta Mater., 2018, 147, p 16–20.CrossRef
34.
go back to reference X.M. Wang, H. Liu, Y.Z. Hui, Z.Y. Yu, L. Li, C.H. Deng, and Z.F. Yue, Quantitative Study of the Microstructure Evolution Along the Thickness Direction in the Nickel-Based Single Crystal Superalloy DD6 at 1323 K Thermal Exposure, Mater. Charact., 2019, 154, p 285–293.CrossRef X.M. Wang, H. Liu, Y.Z. Hui, Z.Y. Yu, L. Li, C.H. Deng, and Z.F. Yue, Quantitative Study of the Microstructure Evolution Along the Thickness Direction in the Nickel-Based Single Crystal Superalloy DD6 at 1323 K Thermal Exposure, Mater. Charact., 2019, 154, p 285–293.CrossRef
35.
go back to reference A. Weck, D.S. Wilkinson, and E. Maire, Observation of Void Nucleation, Growth and Coalescence in a Model Metal Matrix Composite Using X-Ray Tomography, Mater. Sci. Eng., A, 2008, 488, p 435–445.CrossRef A. Weck, D.S. Wilkinson, and E. Maire, Observation of Void Nucleation, Growth and Coalescence in a Model Metal Matrix Composite Using X-Ray Tomography, Mater. Sci. Eng., A, 2008, 488, p 435–445.CrossRef
36.
go back to reference J.B. le Graverend, J. Adrien, and J. Cormier, Ex-Situ X-Ray Tomography Characterization of Porosity During High-Temperature Creep in a Ni-Based Single-Crystal Superalloy: Toward Understanding What is Damage, Mater. Sci. Eng., A, 2017, 695, p 367–378.CrossRef J.B. le Graverend, J. Adrien, and J. Cormier, Ex-Situ X-Ray Tomography Characterization of Porosity During High-Temperature Creep in a Ni-Based Single-Crystal Superalloy: Toward Understanding What is Damage, Mater. Sci. Eng., A, 2017, 695, p 367–378.CrossRef
37.
go back to reference K.S. Chan, Time-Dependent Crack Growth Thresholds of Ni-Base Superalloys, Metall. and Mater. Trans. A., 2014, 45(8), p 3454–3466.CrossRef K.S. Chan, Time-Dependent Crack Growth Thresholds of Ni-Base Superalloys, Metall. and Mater. Trans. A., 2014, 45(8), p 3454–3466.CrossRef
38.
go back to reference R. Bao, H. Liu, S.S. Lu, C.Y. Yue, and B.J. Fei, Experimental Investigation of Creep Crack Growth Behavior in Nickel Base Superally by Constant Displacement Loading Method at Elevated Temperature, Mater. Sci. Eng., A, 2016, 665, p 161–170.CrossRef R. Bao, H. Liu, S.S. Lu, C.Y. Yue, and B.J. Fei, Experimental Investigation of Creep Crack Growth Behavior in Nickel Base Superally by Constant Displacement Loading Method at Elevated Temperature, Mater. Sci. Eng., A, 2016, 665, p 161–170.CrossRef
39.
go back to reference D.R. Wang, Y.S. Huang, and Y.T. Gao, Handbook of stress intensity factors, Chinese Academy of Sciences press, Beijing, 1981. D.R. Wang, Y.S. Huang, and Y.T. Gao, Handbook of stress intensity factors, Chinese Academy of Sciences press, Beijing, 1981.
40.
go back to reference H. Tada, P.C. Paris, and G.R. Irwin, The stress analysis of cracks handbook, Del Research. Corp, Hellertown, PA, 1973. H. Tada, P.C. Paris, and G.R. Irwin, The stress analysis of cracks handbook, Del Research. Corp, Hellertown, PA, 1973.
Metadata
Title
Environmental Effects on the Creep Response of Thin-Walled Ni-Based Single Crystal Superalloys
Authors
Z. Y. Yu
X. M. Wang
G. W. Cao
R. Q. Chen
Y. D. Lian
Publication date
27-06-2022
Publisher
Springer US
Published in
Journal of Materials Engineering and Performance / Issue 9/2022
Print ISSN: 1059-9495
Electronic ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-022-06791-8

Other articles of this Issue 9/2022

Journal of Materials Engineering and Performance 9/2022 Go to the issue

Premium Partners