Skip to main content
Top

2021 | OriginalPaper | Chapter

15. Environmental Feasibility of Solar Hybrid Systems

Authors : Sumit Tiwari, Prabhakar Tiwari, V. K. Dwivedi, G. N. Tiwari

Published in: Fundamentals and Innovations in Solar Energy

Publisher: Springer Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This chapter includes environment feasibility of solar hybrid systems. In this regard, drying system with PVT air collector has been studied in details. It is seen that the market has different types of PV modules (a-Si, CdTe p-Si, c-Si, and CIGS) are available in the market. Further, thermal modeling has been explored to calculate the thermal energy (TE). Weather-related data has been taken from IMD, Pune, for yearly analysis. Various temperatures, namely outlet air from collector, cell, drying chamber, and crop surface have been calculated through thermal modeling developed for the system. Further, energy payback time (EPBT) for 100% PV area with different PV technologies used on flat plate air collector-integrated drying system found between 3.2 and 1.59 years. Environmental feasibility has also been evaluated for various solar PV cell technologies integrated with the system.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Adnane L, Noureddine M, Kamel A, Adel B (2016) Solar drying of henna (Lawsonia inermis) using different models of solar flat plate collectors: an experimental investigation in the region of Biskra (Algeria). J Clean Prod 112:2545–2552CrossRef Adnane L, Noureddine M, Kamel A, Adel B (2016) Solar drying of henna (Lawsonia inermis) using different models of solar flat plate collectors: an experimental investigation in the region of Biskra (Algeria). J Clean Prod 112:2545–2552CrossRef
2.
go back to reference Akbulut A, Durmus A (2010) Energy and exergy analyses of thin layer drying of mulberry in a forced solar dryer. Energy 35:1754–1763CrossRef Akbulut A, Durmus A (2010) Energy and exergy analyses of thin layer drying of mulberry in a forced solar dryer. Energy 35:1754–1763CrossRef
3.
go back to reference Anyanwu CN, Okonkwo WI (2006) Experimental determination of the drying rate constant of chilly yellow pepper. In: Proceedings of National Solar Energy Forum, Nnamdi Azikiwe University Awka Anyanwu CN, Okonkwo WI (2006) Experimental determination of the drying rate constant of chilly yellow pepper. In: Proceedings of National Solar Energy Forum, Nnamdi Azikiwe University Awka
5.
go back to reference Barnwal P, Tiwari GN (2008) Grape drying by using hybrid photovoltaic-thermal (PV/T) greenhouse dryer: an experimental study. Sol Energy 82:1131–1144CrossRef Barnwal P, Tiwari GN (2008) Grape drying by using hybrid photovoltaic-thermal (PV/T) greenhouse dryer: an experimental study. Sol Energy 82:1131–1144CrossRef
6.
go back to reference Browne MC, Norton Brian, McCormack Sarah J (2016) Heat retention of a photovoltaic/thermal collector with PCM. Solar Energy 133:533–548 Browne MC, Norton Brian, McCormack Sarah J (2016) Heat retention of a photovoltaic/thermal collector with PCM. Solar Energy 133:533–548
7.
go back to reference Castillo-Téllez M, Pilatowsky-Figueroa I, López-Vidaña EC, Sarracino-Martínez O, Hernández-Galvez G (2017) Dehydration of the red chilli (Capsicum annuum L., costeño) using an indirect-type forced convection solar dryer. Appl Thermal Eng 114:1137–1144 Castillo-Téllez M, Pilatowsky-Figueroa I, López-Vidaña EC, Sarracino-Martínez O, Hernández-Galvez G (2017) Dehydration of the red chilli (Capsicum annuum L., costeño) using an indirect-type forced convection solar dryer. Appl Thermal Eng 114:1137–1144
8.
go back to reference Condorí M, Condorí G, Echazú R, Altobelli F (2017) Semi-industrial drying of vegetables using an array of large solar air collectors. Energy Sustain Dev 37:1–9CrossRef Condorí M, Condorí G, Echazú R, Altobelli F (2017) Semi-industrial drying of vegetables using an array of large solar air collectors. Energy Sustain Dev 37:1–9CrossRef
9.
go back to reference Crawford RH, Treloar GJ, Fuller RJ, Bazilian M (2006) Life-cycle energy analysis of building integrated photovoltaic systems (BIPVs) with heat recovery unit. Renew Sust Energy Rev 10(6):559–575CrossRef Crawford RH, Treloar GJ, Fuller RJ, Bazilian M (2006) Life-cycle energy analysis of building integrated photovoltaic systems (BIPVs) with heat recovery unit. Renew Sust Energy Rev 10(6):559–575CrossRef
10.
go back to reference Dorouzi M, Mortezapour H, Akhavan H-R, Moghaddam AG (2018) Tomato slices drying in a liquid desiccant-assisted solar dryer coupled with a photovoltaic-thermal regeneration system. Sol Energy 162:364–371 Dorouzi M, Mortezapour H, Akhavan H-R, Moghaddam AG (2018) Tomato slices drying in a liquid desiccant-assisted solar dryer coupled with a photovoltaic-thermal regeneration system. Sol Energy 162:364–371
11.
go back to reference Evans DL (1981) Simplified method for predicting PV array output. Sol Energy 27:555–560CrossRef Evans DL (1981) Simplified method for predicting PV array output. Sol Energy 27:555–560CrossRef
12.
go back to reference Fterich M, Chouikhi H, Bentaher H, Maalej A (2018) Experimental parametric study of a mixed-mode forced convection solar dryer equipped with a PV/T air collector. Sol Energy 171:751–760CrossRef Fterich M, Chouikhi H, Bentaher H, Maalej A (2018) Experimental parametric study of a mixed-mode forced convection solar dryer equipped with a PV/T air collector. Sol Energy 171:751–760CrossRef
13.
go back to reference Hussain CMI, Norton B, Duffy A (2017) Technological assessment of different solar-biomass systems for hybrid power generation in Europe. Renew Sustain Energy Rev 68:1115–1129 Hussain CMI, Norton B, Duffy A (2017) Technological assessment of different solar-biomass systems for hybrid power generation in Europe. Renew Sustain Energy Rev 68:1115–1129
14.
go back to reference Kabeel AE, Abdelgaied M (2016) Performance of novel solar dryer. Process Saf Environ Prot 102:183–189CrossRef Kabeel AE, Abdelgaied M (2016) Performance of novel solar dryer. Process Saf Environ Prot 102:183–189CrossRef
15.
go back to reference Kalogirou SA (2004) Solar thermal collectors and applications. Prog Energy Combust Sci 30:231–295CrossRef Kalogirou SA (2004) Solar thermal collectors and applications. Prog Energy Combust Sci 30:231–295CrossRef
16.
go back to reference Kumar M, Sahdev RK, Tiwari S, Panchal H, Manchanda H (2019) Experimental free convection thin layer groundnut greenhouse drying. Agric Eng Int CIGR J 21(3):203–211 Kumar M, Sahdev RK, Tiwari S, Panchal H, Manchanda H (2019) Experimental free convection thin layer groundnut greenhouse drying. Agric Eng Int CIGR J 21(3):203–211
17.
go back to reference Lamnatou C, Papanicolaou E, Belessiotis V, Kyriakis N (2012) Experimental investigation and thermodynamic performance analysis of a solar dryer using an evacuated-tube air collector. Appl Energy 94:232–243 Lamnatou C, Papanicolaou E, Belessiotis V, Kyriakis N (2012) Experimental investigation and thermodynamic performance analysis of a solar dryer using an evacuated-tube air collector. Appl Energy 94:232–243
19.
go back to reference Mishra RK, Tiwari GN (2013) Energy matrices analyses of hybrid photovoltaic thermal (HPVT) water collector with different PV technology. Sol Energy 91:161–173CrossRef Mishra RK, Tiwari GN (2013) Energy matrices analyses of hybrid photovoltaic thermal (HPVT) water collector with different PV technology. Sol Energy 91:161–173CrossRef
20.
go back to reference Muthukarupan KS, Eashwar SS, Subramanian V, Tiwari S, Singh DB (2020) Performance improvement of PVT module with applications of nano-fluids and phase change materials: a review. In: International conference on electrical and electronics engineering (ICEEE) 2020 Muthukarupan KS, Eashwar SS, Subramanian V, Tiwari S, Singh DB (2020) Performance improvement of PVT module with applications of nano-fluids and phase change materials: a review. In: International conference on electrical and electronics engineering (ICEEE) 2020
21.
go back to reference Odeh N, Grassie T, Henderson D, Muneer T (2006) Modelling of flow rate in a photovoltaic-driven roof slate-based solar ventilation air preheating system. Energy Convers Manage 47:909–925CrossRef Odeh N, Grassie T, Henderson D, Muneer T (2006) Modelling of flow rate in a photovoltaic-driven roof slate-based solar ventilation air preheating system. Energy Convers Manage 47:909–925CrossRef
22.
go back to reference Pawar RS, Takwale MG, Bhide VG (1995) Solar drying of custard powder. Energy Convers Manage 36:1085–1096CrossRef Pawar RS, Takwale MG, Bhide VG (1995) Solar drying of custard powder. Energy Convers Manage 36:1085–1096CrossRef
23.
go back to reference Parsa SM, Rahbar A, Davoud Javadi Y, Koleini MH, Afrand M, Amidpour M (2020) Energy-matrices, exergy, economic, environmental, exergoeconomic, enviroeconomic, and heat transfer (6E/HT) analysis of two passive/active solar still water desalination nearly 4000 m: Altitude concept. J Cleaner Prod 261:121243 Parsa SM, Rahbar A, Davoud Javadi Y, Koleini MH, Afrand M, Amidpour M (2020) Energy-matrices, exergy, economic, environmental, exergoeconomic, enviroeconomic, and heat transfer (6E/HT) analysis of two passive/active solar still water desalination nearly 4000 m: Altitude concept. J Cleaner Prod 261:121243
24.
go back to reference Saeedi F, Sarhaddi F, Behzadmehr A (2015) Optimization of a PV/T (photovoltaic/thermal) active solar still. Energy 87:142–152CrossRef Saeedi F, Sarhaddi F, Behzadmehr A (2015) Optimization of a PV/T (photovoltaic/thermal) active solar still. Energy 87:142–152CrossRef
25.
go back to reference Sahota L, Shyam, Tiwari GN (2017) Energy matrices, enviroeconomic and exergoeconomic analysis of passive double slope solar still with water based nanofluids. Desalination 409:66–79 Sahota L, Shyam, Tiwari GN (2017) Energy matrices, enviroeconomic and exergoeconomic analysis of passive double slope solar still with water based nanofluids. Desalination 409:66–79
26.
go back to reference Saini V, Tiwari S, Tiwari GN (2017) Environ economic analysis of various types of photovoltaic technologies integrated with greenhouse solar drying system. J Cleaner Prod 156:30–40 Saini V, Tiwari S, Tiwari GN (2017) Environ economic analysis of various types of photovoltaic technologies integrated with greenhouse solar drying system. J Cleaner Prod 156:30–40
27.
go back to reference Saini V, Tiwari S, Jain VK, Tiwari GN (2020) Performance evaluation of different types PV materials for PVTAC with solar drying system. Mater Today Proc 25(4):544–550 Saini V, Tiwari S, Jain VK, Tiwari GN (2020) Performance evaluation of different types PV materials for PVTAC with solar drying system. Mater Today Proc 25(4):544–550
28.
go back to reference Sami S, Rahimi A, Etesami N (2011) Dynamic modeling and a parametric study of an indirect solar cabinet dryer. Dry Technol 29:825–835CrossRef Sami S, Rahimi A, Etesami N (2011) Dynamic modeling and a parametric study of an indirect solar cabinet dryer. Dry Technol 29:825–835CrossRef
29.
go back to reference Scanlin D, Renner M, Domermuth D, Moody H (1997) The design, construction and use of an indirect, through – pass solar food dryer. Home Power 57:62–72 Scanlin D, Renner M, Domermuth D, Moody H (1997) The design, construction and use of an indirect, through – pass solar food dryer. Home Power 57:62–72
30.
go back to reference Singh AK, Samsher (2020) Material conscious energy matrix and enviro-economic analysis of passive ETC solar still. Mater Today Proc Singh AK, Samsher (2020) Material conscious energy matrix and enviro-economic analysis of passive ETC solar still. Mater Today Proc
31.
go back to reference Singh DB, Tiwari GN (2016) Effect of energy matrices on life cycle cost analysis of partially covered photovoltaic compound parabolic concentrator collector active solar distillation system. Desalination 397:75–91CrossRef Singh DB, Tiwari GN (2016) Effect of energy matrices on life cycle cost analysis of partially covered photovoltaic compound parabolic concentrator collector active solar distillation system. Desalination 397:75–91CrossRef
32.
go back to reference Singh DB, Raturi A, Kumar N, Nirala A, Singh AK, Tiwari S (2020a) Effect of flow of fluid mass per unit time on life cycle conversion efficiency of single slope solar desalination unit coupled with N identical evacuated tubular collectors. Mater Today Proc 28(4):2096–2100 Singh DB, Raturi A, Kumar N, Nirala A, Singh AK, Tiwari S (2020a) Effect of flow of fluid mass per unit time on life cycle conversion efficiency of single slope solar desalination unit coupled with N identical evacuated tubular collectors. Mater Today Proc 28(4):2096–2100
33.
go back to reference Singh DB, Bansal G, Yadav JK, Kumar N, Tiwari S, Raturi A (2020) Exergoeconomic and enviroeconomic analyses of single slope solar desalination unit loaded with/without nanofluid: a comprehensive review. MS&E 748(1):012031 Singh DB, Bansal G, Yadav JK, Kumar N, Tiwari S, Raturi A (2020) Exergoeconomic and enviroeconomic analyses of single slope solar desalination unit loaded with/without nanofluid: a comprehensive review. MS&E 748(1):012031
34.
go back to reference Singh DB, Bansal G, Yadav JK, Kumar N, Tiwari S, Raturi A (2020) Exergoeconomic and enviroeconomic analyses of single slope solar desalination unit loaded with/without nanofluid: A comprehensive review. Mater Sci Eng 748:012031 Singh DB, Bansal G, Yadav JK, Kumar N, Tiwari S, Raturi A (2020) Exergoeconomic and enviroeconomic analyses of single slope solar desalination unit loaded with/without nanofluid: A comprehensive review. Mater Sci Eng 748:012031
35.
go back to reference Song H, Starfelt F, Daianova L, Yan J (2012) Influence of drying process on the biomass-based polygeneration system of bioethanol, power and heat. Appl Energy 90:32–37CrossRef Song H, Starfelt F, Daianova L, Yan J (2012) Influence of drying process on the biomass-based polygeneration system of bioethanol, power and heat. Appl Energy 90:32–37CrossRef
36.
go back to reference Tiwari S, Tiwari GN, Al-Helal IM (2016) Performance analysis of photovoltaic–thermal (PVT) mixed mode greenhouse solar dryer. Sol Energy 133:421–428 Tiwari S, Tiwari GN, Al-Helal IM (2016) Performance analysis of photovoltaic–thermal (PVT) mixed mode greenhouse solar dryer. Sol Energy 133:421–428
37.
go back to reference Tiwari S, Tiwari GN (2016) Thermal analysis of photovoltaic-thermal (PVT) single slope roof integrated greenhouse solar dryer. Sol Energy 138:128–136 Tiwari S, Tiwari GN (2016) Thermal analysis of photovoltaic-thermal (PVT) single slope roof integrated greenhouse solar dryer. Sol Energy 138:128–136
38.
go back to reference Tiwari S, Tiwari GN (2016b) Exergoeconomic analysis of photovoltaic-thermal (PVT) mixed mode greenhouse solar dryer. Energy 114:155–164 Tiwari S, Tiwari GN (2016b) Exergoeconomic analysis of photovoltaic-thermal (PVT) mixed mode greenhouse solar dryer. Energy 114:155–164
39.
go back to reference Tiwari S, Tiwari GN, Al-Helal IM (2016) Development and recent trends in greenhouse dryer: a review. Renew Sustain Energy Rev 65:1048–1064 Tiwari S, Tiwari GN, Al-Helal IM (2016) Development and recent trends in greenhouse dryer: a review. Renew Sustain Energy Rev 65:1048–1064
40.
go back to reference Tiwari S (2020a) ANN and mathematical modelling for moisture evaporation with thermal modelling of bitter gourd flakes drying in SPVT solar dryer. Heat Mass Transfer Tiwari S (2020a) ANN and mathematical modelling for moisture evaporation with thermal modelling of bitter gourd flakes drying in SPVT solar dryer. Heat Mass Transfer
41.
go back to reference Tiwari S, Srivastava AK, Sahu R (2020b) 2nd international conference on computational and experimental methods in mechanical engineering. Mater Today Proc 25(4): 537–960 Tiwari S, Srivastava AK, Sahu R (2020b) 2nd international conference on computational and experimental methods in mechanical engineering. Mater Today Proc 25(4): 537–960
43.
go back to reference Tiwari S, Tiwari P, Singh SN (2020d) Study to improve the efficiency of c-Si material in photovoltaic power plant. Mater Today Proc 25:691–694 Tiwari S, Tiwari P, Singh SN (2020d) Study to improve the efficiency of c-Si material in photovoltaic power plant. Mater Today Proc 25:691–694
44.
go back to reference Watt M, Jhonson A, Ellis M, Quthred N (1998) Life cycle air emission from PV power systems. Prog Photovoltaic Res Appl 6(2):127–136CrossRef Watt M, Jhonson A, Ellis M, Quthred N (1998) Life cycle air emission from PV power systems. Prog Photovoltaic Res Appl 6(2):127–136CrossRef
45.
go back to reference Whitefield D (2000) Solar dryer systems and the Internet: important resources to improve food preparation. In: conference paper: international conference on solar cooking, Kimberly, South Africa Whitefield D (2000) Solar dryer systems and the Internet: important resources to improve food preparation. In: conference paper: international conference on solar cooking, Kimberly, South Africa
46.
Metadata
Title
Environmental Feasibility of Solar Hybrid Systems
Authors
Sumit Tiwari
Prabhakar Tiwari
V. K. Dwivedi
G. N. Tiwari
Copyright Year
2021
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-33-6456-1_15