Skip to main content
Top
Published in: Tribology Letters 3/2011

01-03-2011 | Original Paper

Erosive Wear Mechanism of New SiC/SiC Composites by Solid Particles

Authors: Min-Soo Suh, Tatsuya Hinoki, Akira Kohyama

Published in: Tribology Letters | Issue 3/2011

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

A solid-particle erosive wear test by impinging silicon carbide (SiC) powders was carried out at room temperature over a range of median particle sizes of 425–600 μm, speed of 100 m/s and impact angle of 90° and assessed by wear measurements and scanning electron microscopy. Erosive wear behaviour was examined on newly fabricated nano-powder infiltration and transient eutectoid (NITE) SiC/SiC composites and two commercial composites by the chemical vapour infiltration (CVI) and NITE fabrication route. Microstructural observation was performed to examine the correlation between erosive wear behaviours and fabrication impurities. Conspicuous defects were observed in the prototype materials as the forms of porosity, fibre deformation, residual oxide, pyrolytic carbon (PyC) deformation, PyC cleavage, among others. Erosive wear behaviour was rather serious in the prototype of fabricated composites, which employ pre-SiC fibre and phenolic resin. Two dominant erosive wear mechanisms were observed: delamination of constituents, mainly caused by erosive crack propagation, and fragmentation and detachment of constituents, which usually resulted from erosive impact. A unit size of delamination was the most decisive factor affecting wear volume. The bonding strength of each constituent was mostly affected by various forms of porosities. Therefore, the fundamental cause and subsequent results must be carefully elucidated. The correlation of microstructural defect and wear behaviour was investigated with the aim of reducing dominant wear by improving fabrication conditions. The final product of the cost-effective composite had a 2.5-fold higher resistance than the commercial CVI composite. Consequently, by controlling fabrication impurities, we have been successful in developing and improving a new fabrication technique; consequently, the known defects are rarely observed in final product. A schematic wear model of erosive wear mechanisms is proposed for the newly fabricated SiC/SiC composites under particle erosion.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Brennan, J.J., Prewo, K.M.: Silicon carbide fibre reinforced glass–ceramic matrix composites exhibiting high strength and toughness. J. Mater. Sci. 17(8), 2371–2383 (1982)CrossRef Brennan, J.J., Prewo, K.M.: Silicon carbide fibre reinforced glass–ceramic matrix composites exhibiting high strength and toughness. J. Mater. Sci. 17(8), 2371–2383 (1982)CrossRef
2.
go back to reference Sternitzke, M., Dupas, E., Twigg, P., Derby, B.: Surface mechanical properties of alumina matrix nanocomposites. Acta Mater. 45(10), 3963–3973 (1997)CrossRef Sternitzke, M., Dupas, E., Twigg, P., Derby, B.: Surface mechanical properties of alumina matrix nanocomposites. Acta Mater. 45(10), 3963–3973 (1997)CrossRef
3.
go back to reference Prouhet, S., Camus, G., Labrugere, C., Guette, A., Martin, E.: Mechanical characterization of Si-C(O) fiber/SiC (CVI) matrix composites with a BN-interphase. J. Am. Ceram. Soc. 77(3), 649–656 (1994)CrossRef Prouhet, S., Camus, G., Labrugere, C., Guette, A., Martin, E.: Mechanical characterization of Si-C(O) fiber/SiC (CVI) matrix composites with a BN-interphase. J. Am. Ceram. Soc. 77(3), 649–656 (1994)CrossRef
4.
go back to reference Xu, Y., Cheng, L., Zhang, L., Yin, H., Yin, X.: Mechanical properties of 3D fiber reinforced C/SiC composites. Mater. Sci. Eng. A 300(1–2), 196–202 (2001) Xu, Y., Cheng, L., Zhang, L., Yin, H., Yin, X.: Mechanical properties of 3D fiber reinforced C/SiC composites. Mater. Sci. Eng. A 300(1–2), 196–202 (2001)
5.
go back to reference Mogilevsky, P., Werner, A., Dudek, H.J.: Application of diffusion barriers in composite materials. Mater. Sci. Eng. A 242(1–2), 235–247 (1998) Mogilevsky, P., Werner, A., Dudek, H.J.: Application of diffusion barriers in composite materials. Mater. Sci. Eng. A 242(1–2), 235–247 (1998)
6.
go back to reference Anya, C.C.: Wet erosive wear of alumina and its composites with SiC nano-particles. Ceram. Int. 24(7), 533–542 (1998)CrossRef Anya, C.C.: Wet erosive wear of alumina and its composites with SiC nano-particles. Ceram. Int. 24(7), 533–542 (1998)CrossRef
7.
go back to reference Marschall, J., Erlich, D.C., Manning, H., Duppler, W., Ellerby, D., Gasch, M.: Microhardness and high-velocity impact resistance of HfB2/SiC and ZrB2/SiC composites. J. Mater. Sci. 39(19), 5959–5968 (2004)CrossRef Marschall, J., Erlich, D.C., Manning, H., Duppler, W., Ellerby, D., Gasch, M.: Microhardness and high-velocity impact resistance of HfB2/SiC and ZrB2/SiC composites. J. Mater. Sci. 39(19), 5959–5968 (2004)CrossRef
8.
go back to reference Bajwa, S., Rainforth, W.M., Lee, W.E.: Sliding wear behaviour of SiC–Al2O3 nanocomposites. Wear 259(1–6), 553–561 (2005)CrossRef Bajwa, S., Rainforth, W.M., Lee, W.E.: Sliding wear behaviour of SiC–Al2O3 nanocomposites. Wear 259(1–6), 553–561 (2005)CrossRef
9.
go back to reference Xu, Y., Cheng, L., Zhang, L., Yin, X., Yin, H.: High performance 3D textile Hi-Nicalon SiC/SiC composites by chemical vapor infiltration. Ceram. Int. 27(5), 565–570 (2001)CrossRef Xu, Y., Cheng, L., Zhang, L., Yin, X., Yin, H.: High performance 3D textile Hi-Nicalon SiC/SiC composites by chemical vapor infiltration. Ceram. Int. 27(5), 565–570 (2001)CrossRef
10.
go back to reference Jones, R.H., Henager Jr., C.H.: Subcritical crack growth processes in SiC/SiC ceramic matrix composites. J. Eur. Ceram. Soc. 25(10 SPEC. ISS.), 1717–1722 (2005)CrossRef Jones, R.H., Henager Jr., C.H.: Subcritical crack growth processes in SiC/SiC ceramic matrix composites. J. Eur. Ceram. Soc. 25(10 SPEC. ISS.), 1717–1722 (2005)CrossRef
11.
go back to reference Zhan, Y., Zhang, G., Zhuang, Y.: Wear transitions in particulate reinforced copper matrix composites. Mater. Trans. 45(7), 2332–2338 (2004)CrossRef Zhan, Y., Zhang, G., Zhuang, Y.: Wear transitions in particulate reinforced copper matrix composites. Mater. Trans. 45(7), 2332–2338 (2004)CrossRef
12.
go back to reference Tuersley, I.P., Hoult, T.P., Pashby, I.R.: The processing of SiC–SiC ceramic matrix composites using a pulsed Nd-YAG laser: part II. The effect of process variables. J. Mater. Sci. 33(4), 963–967 (1998)CrossRef Tuersley, I.P., Hoult, T.P., Pashby, I.R.: The processing of SiC–SiC ceramic matrix composites using a pulsed Nd-YAG laser: part II. The effect of process variables. J. Mater. Sci. 33(4), 963–967 (1998)CrossRef
13.
go back to reference Liu, Y.M., Mitchell, T.E., Wadley, H.N.G.: Anisotropic damage evolution in unidirectional fiber reinforced ceramics. Acta Mater. 45(10), 3981–3992 (1997)CrossRef Liu, Y.M., Mitchell, T.E., Wadley, H.N.G.: Anisotropic damage evolution in unidirectional fiber reinforced ceramics. Acta Mater. 45(10), 3981–3992 (1997)CrossRef
14.
go back to reference Routbort, J.L.: Degradation of structural ceramics by erosion. J. Nondestruct. Eval. 15(3–4), 107–112 (1996)CrossRef Routbort, J.L.: Degradation of structural ceramics by erosion. J. Nondestruct. Eval. 15(3–4), 107–112 (1996)CrossRef
15.
go back to reference Aigbodion, V.S., Hassan, S.B.: Effects of silicon carbide reinforcement on microstructure and properties of cast Al–Si–Fe/SiC particulate composites. Mater. Sci. Eng. A 447(1–2), 355–360 (2007) Aigbodion, V.S., Hassan, S.B.: Effects of silicon carbide reinforcement on microstructure and properties of cast Al–Si–Fe/SiC particulate composites. Mater. Sci. Eng. A 447(1–2), 355–360 (2007)
16.
go back to reference Hohler, V., Weber, K., Tham, R., James, B., Barker, A., Pickup, I.: Comparative analysis of oblique impact on ceramic composite systems. Int. J. Impact Eng. 26(1–10), 333–344 (2001)CrossRef Hohler, V., Weber, K., Tham, R., James, B., Barker, A., Pickup, I.: Comparative analysis of oblique impact on ceramic composite systems. Int. J. Impact Eng. 26(1–10), 333–344 (2001)CrossRef
17.
go back to reference Kobayashi, A.S.: Dynamic fracture of ceramics and ceramic composites. Mater. Sci. Eng. A 143(1–2), 111–117 (1991) Kobayashi, A.S.: Dynamic fracture of ceramics and ceramic composites. Mater. Sci. Eng. A 143(1–2), 111–117 (1991)
18.
go back to reference El-Hija, H.A., Krenkel, W., Hugel, S.: Development of C/C-SiC brake pads for high-performance elevators. Int. J. Appl. Ceram. Technol. 2(2), 105–113 (2005)CrossRef El-Hija, H.A., Krenkel, W., Hugel, S.: Development of C/C-SiC brake pads for high-performance elevators. Int. J. Appl. Ceram. Technol. 2(2), 105–113 (2005)CrossRef
19.
go back to reference Ham, A.L., Yeomans, J.A., Watts, J.F.: Elevated temperature solid particle erosion of silicon carbide continuous fibre reinforced calcium aluminosilicate glass–ceramic matrix composite. Wear 203–204, 387–392 (1997)CrossRef Ham, A.L., Yeomans, J.A., Watts, J.F.: Elevated temperature solid particle erosion of silicon carbide continuous fibre reinforced calcium aluminosilicate glass–ceramic matrix composite. Wear 203–204, 387–392 (1997)CrossRef
20.
go back to reference Sarva, E., Nemat-Nasser, S., McGee, J., Isaacs, J.: The effect of thin membrane restraint on the ballistic performance of armor grade ceramic tiles. Int. J. Impact Eng. 34(2), 277–302 (2007)CrossRef Sarva, E., Nemat-Nasser, S., McGee, J., Isaacs, J.: The effect of thin membrane restraint on the ballistic performance of armor grade ceramic tiles. Int. J. Impact Eng. 34(2), 277–302 (2007)CrossRef
21.
go back to reference Raghuraman, S., Stubbins, J.F., Ferber, M.K., Wereszczak, A.A.: Crack propagation in SiCf/SiC ceramic matrix composite under static and cyclic loading conditions. J. Nucl. Mater. 212–215(Part 1), 840–844 (1994)CrossRef Raghuraman, S., Stubbins, J.F., Ferber, M.K., Wereszczak, A.A.: Crack propagation in SiCf/SiC ceramic matrix composite under static and cyclic loading conditions. J. Nucl. Mater. 212–215(Part 1), 840–844 (1994)CrossRef
22.
go back to reference Ramulu, M., See, H.-W., Wang, D.H.: Machining of ceramic composite TiB2/SiC by spark erosion. Manuf. Rev. 3(2), 123–129 (1990) Ramulu, M., See, H.-W., Wang, D.H.: Machining of ceramic composite TiB2/SiC by spark erosion. Manuf. Rev. 3(2), 123–129 (1990)
23.
go back to reference Kim, J.J., Park, S.K.: Solid particle erosion of SiC and SiC–TiB2 composite hot-pressed with Y2O3. Wear 222(2), 114–119 (1998)CrossRef Kim, J.J., Park, S.K.: Solid particle erosion of SiC and SiC–TiB2 composite hot-pressed with Y2O3. Wear 222(2), 114–119 (1998)CrossRef
24.
go back to reference Fang, Q., Sidky, P., Hocking, M.G.: Erosive wear behaviour of aluminium based composites. Mater. Des. 18(4–6), 389–393 (1997) Fang, Q., Sidky, P., Hocking, M.G.: Erosive wear behaviour of aluminium based composites. Mater. Des. 18(4–6), 389–393 (1997)
25.
go back to reference Akimune, Y., Katano, Y., Matoba, K.: Spherical-impact damage and strength degradation in silicon carbide whisker/silicon nitride composites. J. Am. Ceram. Soc. 72(5), 791–798 (1989)CrossRef Akimune, Y., Katano, Y., Matoba, K.: Spherical-impact damage and strength degradation in silicon carbide whisker/silicon nitride composites. J. Am. Ceram. Soc. 72(5), 791–798 (1989)CrossRef
26.
go back to reference Sykes, M.T., Scattergood, R.O., Routbort, J.L.: Erosion of SiC-reinforced alumina ceramic composites. Composites 18(2), 153–163 (1987)CrossRef Sykes, M.T., Scattergood, R.O., Routbort, J.L.: Erosion of SiC-reinforced alumina ceramic composites. Composites 18(2), 153–163 (1987)CrossRef
27.
go back to reference Subhash, G., Maiti, S., Geubelle, P.H., Ghosh, D.: Recent advances in dynamic indentation fracture, impact damage and fragmentation of ceramics. J. Am. Ceram. Soc. 91(9), 2777–2791 (2008)CrossRef Subhash, G., Maiti, S., Geubelle, P.H., Ghosh, D.: Recent advances in dynamic indentation fracture, impact damage and fragmentation of ceramics. J. Am. Ceram. Soc. 91(9), 2777–2791 (2008)CrossRef
28.
go back to reference Jianxin, D., Lili, L., Jinlong, Z., Junlong, S.: Erosion wear of laminated ceramic nozzles. Int. J. Refract Metal Hard Mater. 25(3), 263–270 (2007)CrossRef Jianxin, D., Lili, L., Jinlong, Z., Junlong, S.: Erosion wear of laminated ceramic nozzles. Int. J. Refract Metal Hard Mater. 25(3), 263–270 (2007)CrossRef
29.
go back to reference Jianxin, D., Lili, L., Mingwei, D.: Erosion wear behaviours of SiC/(W,Ti)C laminated ceramic nozzles in dry sand blasting processes. Mater. Sci. Eng. A 444(1–2), 120–129 (2007) Jianxin, D., Lili, L., Mingwei, D.: Erosion wear behaviours of SiC/(W,Ti)C laminated ceramic nozzles in dry sand blasting processes. Mater. Sci. Eng. A 444(1–2), 120–129 (2007)
30.
go back to reference Tamura, H., Mutou, Y.: Quantitative analysis of debris clouds from SiC-fiber-reinforced silicon nitride bumpers. Int. J. Impact Eng. 31(9), 1192–1207 (2005)CrossRef Tamura, H., Mutou, Y.: Quantitative analysis of debris clouds from SiC-fiber-reinforced silicon nitride bumpers. Int. J. Impact Eng. 31(9), 1192–1207 (2005)CrossRef
31.
go back to reference Al-Dheylan, K.A.: The low velocity impact loading of Al2O3/SiC whisker reinforced ceramic composite. J. Mater. Process. Technol. 155–156(1–3), 1986–1994 (2004)CrossRef Al-Dheylan, K.A.: The low velocity impact loading of Al2O3/SiC whisker reinforced ceramic composite. J. Mater. Process. Technol. 155–156(1–3), 1986–1994 (2004)CrossRef
32.
go back to reference Medvedovski, E.: Silicon carbide-based ceramics for ballistic protection. Ceram. Trans. 151, 19–35 (2003) Medvedovski, E.: Silicon carbide-based ceramics for ballistic protection. Ceram. Trans. 151, 19–35 (2003)
33.
go back to reference Badini, C., Fino, P., Ubertalli, G., Taricco, F.: Degradation at 1200°C of a SiC coated 2D-Nicalon/C/SiC composite processed by SICFILL® method. J. Eur. Ceram. Soc. 20(10), 1505–1514 (2000)CrossRef Badini, C., Fino, P., Ubertalli, G., Taricco, F.: Degradation at 1200°C of a SiC coated 2D-Nicalon/C/SiC composite processed by SICFILL® method. J. Eur. Ceram. Soc. 20(10), 1505–1514 (2000)CrossRef
34.
go back to reference Ham, A.L., Yeomans, J.A., Watts, J.F.: Effect of temperature and particle velocity on the erosion of a silicon carbide continuous fibre reinforced calcium aluminosilicate glass–ceramic matrix composite. Wear 233–235, 237–245 (1999)CrossRef Ham, A.L., Yeomans, J.A., Watts, J.F.: Effect of temperature and particle velocity on the erosion of a silicon carbide continuous fibre reinforced calcium aluminosilicate glass–ceramic matrix composite. Wear 233–235, 237–245 (1999)CrossRef
35.
go back to reference Hayun, S., Frage, N., Dariel, M.P., Zaretsky, E., Ashuah, Y.: Dynamic response of B4C-SiC ceramic composites. Ceram. Trans. 178, 147–156 (2006) Hayun, S., Frage, N., Dariel, M.P., Zaretsky, E., Ashuah, Y.: Dynamic response of B4C-SiC ceramic composites. Ceram. Trans. 178, 147–156 (2006)
36.
go back to reference Vanswijgenhoven, E., Wevers, M., Van Der Biest, O.: The transverse strain response of cross-plied fibre-reinforced ceramic–matrix composites. Compos. Sci. Technol. 59(10), 1469–1481 (1999)CrossRef Vanswijgenhoven, E., Wevers, M., Van Der Biest, O.: The transverse strain response of cross-plied fibre-reinforced ceramic–matrix composites. Compos. Sci. Technol. 59(10), 1469–1481 (1999)CrossRef
37.
go back to reference Unal, O., Eckel, A.J., Laabs, F.C.: Mechanical properties and microstructure of oxidized SiC/SiC composites. Ceram. Eng. Sci. Proc. 17(4), 333–341 (1996) Unal, O., Eckel, A.J., Laabs, F.C.: Mechanical properties and microstructure of oxidized SiC/SiC composites. Ceram. Eng. Sci. Proc. 17(4), 333–341 (1996)
38.
go back to reference Akimune, Y.: Impact damage and strength degradation in a silicon carbide reinforced silicon nitride composite. J. Am. Ceram. Soc. 73(10), 3019–3025 (1990)CrossRef Akimune, Y.: Impact damage and strength degradation in a silicon carbide reinforced silicon nitride composite. J. Am. Ceram. Soc. 73(10), 3019–3025 (1990)CrossRef
39.
go back to reference Van Roode, M., Ferber, M.K.: Long-term degradation of ceramics for gas turbine applications. Proc. ASME Turbo Expo 1, 305–321 (2007) Van Roode, M., Ferber, M.K.: Long-term degradation of ceramics for gas turbine applications. Proc. ASME Turbo Expo 1, 305–321 (2007)
40.
go back to reference Srivastava, V.K.: Damage morphology of C/C-SiC composites under impact tests. Ceram. Trans. 175, 181–187 (2006) Srivastava, V.K.: Damage morphology of C/C-SiC composites under impact tests. Ceram. Trans. 175, 181–187 (2006)
41.
go back to reference Xu, Y., Cheng, L., Zhang, L., Yin, H., Yin, X.: Microstructure and mechanical properties of three-dimensional textile Hi-Nicalon SiC/SiC composites by chemical vapor infiltration. J. Am. Ceram. Soc. 85(5), 1217–1221 (2002)CrossRef Xu, Y., Cheng, L., Zhang, L., Yin, H., Yin, X.: Microstructure and mechanical properties of three-dimensional textile Hi-Nicalon SiC/SiC composites by chemical vapor infiltration. J. Am. Ceram. Soc. 85(5), 1217–1221 (2002)CrossRef
42.
go back to reference Wiederhorn, S.M., Lawn, B.R.: Strength degradation of glass resulting from impact with spheres. J. Am. Ceram. Soc. 60(9–10), 451–458 (1977)CrossRef Wiederhorn, S.M., Lawn, B.R.: Strength degradation of glass resulting from impact with spheres. J. Am. Ceram. Soc. 60(9–10), 451–458 (1977)CrossRef
43.
go back to reference Wiederhorn, S.M., Lawn, B.R.: Strength degradation of glass impact with sharp particles: I, annealed surfaces. J. Am. Ceram. Soc. 62(1–2), 66–70 (1979)CrossRef Wiederhorn, S.M., Lawn, B.R.: Strength degradation of glass impact with sharp particles: I, annealed surfaces. J. Am. Ceram. Soc. 62(1–2), 66–70 (1979)CrossRef
44.
go back to reference Breder, K., de Portu, G., Ritter, J.E., Fabbriche, D.D.: Erosion damage and strength degradation of zirconia-toughened alumina. J. Am. Ceram. Soc. 71(9), 770–775 (1988)CrossRef Breder, K., de Portu, G., Ritter, J.E., Fabbriche, D.D.: Erosion damage and strength degradation of zirconia-toughened alumina. J. Am. Ceram. Soc. 71(9), 770–775 (1988)CrossRef
45.
go back to reference Ritter, J.E., Choi, S.R., Jakus, K., Whalen, P.J., Rateick, R.G.: Effect of microstructure on the erosion and impact damage of sintered silicon nitride. J. Mater. Sci. 26, 5543–5546 (1991)CrossRef Ritter, J.E., Choi, S.R., Jakus, K., Whalen, P.J., Rateick, R.G.: Effect of microstructure on the erosion and impact damage of sintered silicon nitride. J. Mater. Sci. 26, 5543–5546 (1991)CrossRef
46.
go back to reference Akimune, Y., Katano, Y., Matoba, K.: Spherical-impact damage and strength degradation in silicon nitrides for automobile turbocharger rotors. J. Am. Ceram. Soc. 72(8), 1422–1428 (1989)CrossRef Akimune, Y., Katano, Y., Matoba, K.: Spherical-impact damage and strength degradation in silicon nitrides for automobile turbocharger rotors. J. Am. Ceram. Soc. 72(8), 1422–1428 (1989)CrossRef
47.
go back to reference Shockey, D.A., Rowcliff, D.J., Dao, K.C., Seaman, L.: Particle impact damage in silicon nitride. J. Am. Ceram. Soc. 73(6), 1613–1619 (1990)CrossRef Shockey, D.A., Rowcliff, D.J., Dao, K.C., Seaman, L.: Particle impact damage in silicon nitride. J. Am. Ceram. Soc. 73(6), 1613–1619 (1990)CrossRef
48.
go back to reference Knight, C.G., Swain, M.V., Chaudhri, M.M.: Impact of small steel spheres on glass surfaces. J. Mater. Sci. 12, 1573–1586 (1977)CrossRef Knight, C.G., Swain, M.V., Chaudhri, M.M.: Impact of small steel spheres on glass surfaces. J. Mater. Sci. 12, 1573–1586 (1977)CrossRef
49.
go back to reference Taylor, L.N., Chen, E.P., Kuszmaul, J.S.: Microcrack-induced damage accumulation in brittle rock under dynamic loading. Comput. Methods Appl. Mech. Eng. 55, 301–320 (1986)CrossRef Taylor, L.N., Chen, E.P., Kuszmaul, J.S.: Microcrack-induced damage accumulation in brittle rock under dynamic loading. Comput. Methods Appl. Mech. Eng. 55, 301–320 (1986)CrossRef
50.
go back to reference Mouginot, R., Maugis, D.: Fracture indentation beneath flat and spherical punches. J. Mater. Sci. 20, 4354–4376 (1985)CrossRef Mouginot, R., Maugis, D.: Fracture indentation beneath flat and spherical punches. J. Mater. Sci. 20, 4354–4376 (1985)CrossRef
51.
go back to reference Evans, G., Wilshaw, T.R.: Dynamic solid particle damage in brittle materials: an appraisal. J. Mater. Sci. 12, 97–116 (1977)CrossRef Evans, G., Wilshaw, T.R.: Dynamic solid particle damage in brittle materials: an appraisal. J. Mater. Sci. 12, 97–116 (1977)CrossRef
52.
go back to reference Liaw, M., Kobayashi, A.S., Emery, A.G.: Theoretical model of impact damage in structural ceramics. J. Am. Ceram. Soc. 67, 544–548 (1984)CrossRef Liaw, M., Kobayashi, A.S., Emery, A.G.: Theoretical model of impact damage in structural ceramics. J. Am. Ceram. Soc. 67, 544–548 (1984)CrossRef
53.
go back to reference Richerson, D.W., Johansen, K.M.: Ceramic gas turbine engine demonstration program. Final Report, DARPA/Navy Contract N00024-76-C-5352. Garrett Report 21-4410 (1982) Richerson, D.W., Johansen, K.M.: Ceramic gas turbine engine demonstration program. Final Report, DARPA/Navy Contract N00024-76-C-5352. Garrett Report 21-4410 (1982)
54.
go back to reference Yoshida, H., Chaudhri, M.M., Hoshi, Y.: Quasistatic indentation and spherical particle impact studies of turbine-grade silicon nitrides. Philos. Mag. A 82(10), 2031–2040 (2002)CrossRef Yoshida, H., Chaudhri, M.M., Hoshi, Y.: Quasistatic indentation and spherical particle impact studies of turbine-grade silicon nitrides. Philos. Mag. A 82(10), 2031–2040 (2002)CrossRef
55.
go back to reference Wang, E.-Q., Levy, A.V.: Erosion behavior of SiC fiber–SiC matrix composites. Wear 138(1–2), 125–136 (1990) Wang, E.-Q., Levy, A.V.: Erosion behavior of SiC fiber–SiC matrix composites. Wear 138(1–2), 125–136 (1990)
56.
go back to reference Ogi, K., Okabe, T., Takahashi, M., Yashiro, S., Yoshimura, A., Ogasawara, T.: Experimental characterization of high-speed impact damage behavior in a three-dimensionally woven SiC/SiC composite. Compos. A 41(4), 489–498 (2010)CrossRef Ogi, K., Okabe, T., Takahashi, M., Yashiro, S., Yoshimura, A., Ogasawara, T.: Experimental characterization of high-speed impact damage behavior in a three-dimensionally woven SiC/SiC composite. Compos. A 41(4), 489–498 (2010)CrossRef
57.
go back to reference Bhatt, R.T., et al.: Impact resistance of uncoated SiC/SiC composites. Mater. Sci. Eng. A 476(1–2), 8–19 (2008) Bhatt, R.T., et al.: Impact resistance of uncoated SiC/SiC composites. Mater. Sci. Eng. A 476(1–2), 8–19 (2008)
58.
go back to reference Choi, S.R.: Foreign object damage phenomenon by steel ball projectiles in a SiC/SiC ceramic matrix composite at ambient and elevated temperatures. J. Am. Ceram. Soc. 91(9), 2963–2968 (2008)CrossRef Choi, S.R.: Foreign object damage phenomenon by steel ball projectiles in a SiC/SiC ceramic matrix composite at ambient and elevated temperatures. J. Am. Ceram. Soc. 91(9), 2963–2968 (2008)CrossRef
59.
go back to reference Komeya, K., Matsui, M.: In: Swain, M.V. (ed.) Materials Science and Technology, vol. 11, pp. 517–565. VCH, Weinheim (1994) Komeya, K., Matsui, M.: In: Swain, M.V. (ed.) Materials Science and Technology, vol. 11, pp. 517–565. VCH, Weinheim (1994)
60.
go back to reference Suh, M.-S., et al.: Friction and wear behavior of structural ceramics sliding against zirconia. Wear 264(9–10), 800–806 (2008)CrossRef Suh, M.-S., et al.: Friction and wear behavior of structural ceramics sliding against zirconia. Wear 264(9–10), 800–806 (2008)CrossRef
61.
go back to reference Suh, M.-S., et al.: Tribological evaluation of structural ceramics under sliding friction. Int. J. Mod. Phys. B 20(25–27), 4407–4412 (2006)CrossRef Suh, M.-S., et al.: Tribological evaluation of structural ceramics under sliding friction. Int. J. Mod. Phys. B 20(25–27), 4407–4412 (2006)CrossRef
62.
go back to reference Suh, M.-S., Kohyama, A., Hinoki, T.: Mechanical properties and microstructure of SiC/SiC composites fabricated for erosion component. In: First International Symposium of Global COE Program Proceedings, pp. 261–265 (2009) Suh, M.-S., Kohyama, A., Hinoki, T.: Mechanical properties and microstructure of SiC/SiC composites fabricated for erosion component. In: First International Symposium of Global COE Program Proceedings, pp. 261–265 (2009)
63.
go back to reference Suh, M.-S., Kohyama, A.: Erosion wear mechanism of SiCf/SiC composites by solid particles. In: World Tribology Congress 2009 Proceedings, p. 909 (2009) Suh, M.-S., Kohyama, A.: Erosion wear mechanism of SiCf/SiC composites by solid particles. In: World Tribology Congress 2009 Proceedings, p. 909 (2009)
64.
go back to reference Suh, M.-S., Kohyama, A.: Effect of porosity on particle erosion wear behavior of lab. Scale SiCf/SiC composites. Int. J. Mod. Phys. B (2010, in press) Suh, M.-S., Kohyama, A.: Effect of porosity on particle erosion wear behavior of lab. Scale SiCf/SiC composites. Int. J. Mod. Phys. B (2010, in press)
65.
go back to reference Suh, M.-S, Kohyama, A.: Special issues on “in situ” crystallized SiC/SiC composites. In: International Symposium on Advanced Engineering, pp. 439–442 (2009) Suh, M.-S, Kohyama, A.: Special issues on “in situ” crystallized SiC/SiC composites. In: International Symposium on Advanced Engineering, pp. 439–442 (2009)
66.
go back to reference Suh, M.-S., et al.: Fabrication of SiCf/SiC by means of “in situ” crystallization of SiC fibers. J. Nucl. Mater. (2010, in press) Suh, M.-S., et al.: Fabrication of SiCf/SiC by means of “in situ” crystallization of SiC fibers. J. Nucl. Mater. (2010, in press)
67.
go back to reference DiCarlo, J.A.: In: Narottam, P.B., Bansal, P. (eds.) Handbook of Ceramic Composites, p. 33. Kluwer, Boston (2005)CrossRef DiCarlo, J.A.: In: Narottam, P.B., Bansal, P. (eds.) Handbook of Ceramic Composites, p. 33. Kluwer, Boston (2005)CrossRef
68.
go back to reference Hinoki, T., Zhang, W., Kohyama, A., Sato, S., Noda, T.: Effect of fiber coating on interfacial shear strength of SiC/SiC by nano-indentation technique. J. Nucl. Mater. 258–263(Part 2 B), 1567–1571 (1998)CrossRef Hinoki, T., Zhang, W., Kohyama, A., Sato, S., Noda, T.: Effect of fiber coating on interfacial shear strength of SiC/SiC by nano-indentation technique. J. Nucl. Mater. 258–263(Part 2 B), 1567–1571 (1998)CrossRef
69.
go back to reference Zhang, W., Hinoki, T., Katoh, Y., Kohyama, A., Noda, T., Muroga, T., Yu, J.: Crack initiation and growth characteristics in SiC/SiC under indentation test. J. Nucl. Mater. 258–263(Part 2 B), 1577–1581 (1998)CrossRef Zhang, W., Hinoki, T., Katoh, Y., Kohyama, A., Noda, T., Muroga, T., Yu, J.: Crack initiation and growth characteristics in SiC/SiC under indentation test. J. Nucl. Mater. 258–263(Part 2 B), 1577–1581 (1998)CrossRef
70.
go back to reference Ferraris, M., Salvo, M., Isola, C., Appendino Montorsi, M., Kohyama, A.: Glass–ceramic joining and coating of SiC/SiC for fusion applications. J. Nucl. Mater. 258–263(Part 2 B), 1546–1550 (1998)CrossRef Ferraris, M., Salvo, M., Isola, C., Appendino Montorsi, M., Kohyama, A.: Glass–ceramic joining and coating of SiC/SiC for fusion applications. J. Nucl. Mater. 258–263(Part 2 B), 1546–1550 (1998)CrossRef
71.
go back to reference Fenici, P., Frias Rebelo, A.J., Jones, R.H., Kohyama, A., Snead, L.L.: Current status of SiC/SiC composites R&D. J. Nucl. Mater. 258–263(Part 1 A), 215–225 (1998)CrossRef Fenici, P., Frias Rebelo, A.J., Jones, R.H., Kohyama, A., Snead, L.L.: Current status of SiC/SiC composites R&D. J. Nucl. Mater. 258–263(Part 1 A), 215–225 (1998)CrossRef
72.
go back to reference Araki, H., Yang, W., Shi, Y., Sato, S., Noda, T., Kohyama, A.: Bending properties of CVI SiCf/SiC composites at elevated temperatures. Ceram. Eng. Sci. Proc. 20(4), 371–378 (1999)CrossRef Araki, H., Yang, W., Shi, Y., Sato, S., Noda, T., Kohyama, A.: Bending properties of CVI SiCf/SiC composites at elevated temperatures. Ceram. Eng. Sci. Proc. 20(4), 371–378 (1999)CrossRef
73.
go back to reference Katoh, Y., Kotani, M., Kohyama, A., Montorsi, M., Salvo, M., Ferraris, M.: Microstructure and mechanical properties of low-activation glass–ceramic joining and coating for SiC/SiC composites. J. Nucl. Mater. 283–287(Part II), 1262–1266 (2000)CrossRef Katoh, Y., Kotani, M., Kohyama, A., Montorsi, M., Salvo, M., Ferraris, M.: Microstructure and mechanical properties of low-activation glass–ceramic joining and coating for SiC/SiC composites. J. Nucl. Mater. 283–287(Part II), 1262–1266 (2000)CrossRef
74.
go back to reference Kohyama, A., Kotani, M., Katoh, Y., Nakayasu, T., Sato, M., Yamamura, T., Okamura, K.: High-performance SiC/SiC composites by improved PIP processing with new precursor polymers. J. Nucl. Mater. 283–287(Part I), 565–569 (2000)CrossRef Kohyama, A., Kotani, M., Katoh, Y., Nakayasu, T., Sato, M., Yamamura, T., Okamura, K.: High-performance SiC/SiC composites by improved PIP processing with new precursor polymers. J. Nucl. Mater. 283–287(Part I), 565–569 (2000)CrossRef
75.
go back to reference Lewinsohn, C.A., Singh, M., Shibayama, T., Hinoki, T., Ando, M., Katoh, Y., Kohyama, A.: Joining of silicon carbide composites for fusion energy applications. J. Nucl. Mater. 283–287(Part II), 1258–1261 (2000)CrossRef Lewinsohn, C.A., Singh, M., Shibayama, T., Hinoki, T., Ando, M., Katoh, Y., Kohyama, A.: Joining of silicon carbide composites for fusion energy applications. J. Nucl. Mater. 283–287(Part II), 1258–1261 (2000)CrossRef
76.
go back to reference Hinoki, T., Yang, W., Nozawa, T., Shibayama, T., Katoh, Y., Kohyama, A.: Improvement of mechanical properties of SiC/SiC composites by various surface treatments of fibers. J. Nucl. Mater. 289(1–2), 23–29 (2001)CrossRef Hinoki, T., Yang, W., Nozawa, T., Shibayama, T., Katoh, Y., Kohyama, A.: Improvement of mechanical properties of SiC/SiC composites by various surface treatments of fibers. J. Nucl. Mater. 289(1–2), 23–29 (2001)CrossRef
77.
go back to reference Dong, S.M., Katoh, Y., Kohyama, A., Schwab, S.T., Snead, L.L.: Microstructural evolution and mechanical performances of SiC/SiC composites by polymer impregnation/microwave pyrolysis (PIMP) process. Ceram. Int. 28(8), 899–905 (2002)CrossRef Dong, S.M., Katoh, Y., Kohyama, A., Schwab, S.T., Snead, L.L.: Microstructural evolution and mechanical performances of SiC/SiC composites by polymer impregnation/microwave pyrolysis (PIMP) process. Ceram. Int. 28(8), 899–905 (2002)CrossRef
78.
go back to reference Dong, S., Katoh, Y., Kohyama, A.: Preparation of SiC/SiC composites by hot pressing, using tyranno-SA fiber as reinforcement. J. Am. Ceram. Soc. 86(1), 26–32 (2003)CrossRef Dong, S., Katoh, Y., Kohyama, A.: Preparation of SiC/SiC composites by hot pressing, using tyranno-SA fiber as reinforcement. J. Am. Ceram. Soc. 86(1), 26–32 (2003)CrossRef
79.
go back to reference Hinoki, T., Jinushi, T., Hirohata, Y., Hashiba, M., Yamauchi, Y., Katoh, Y., Kohyama, A.: Helium gas permeability of SiC/SiC composite developed for blanket component. Fusion Sci. Technol. 43(2), 184–190 (2003) Hinoki, T., Jinushi, T., Hirohata, Y., Hashiba, M., Yamauchi, Y., Katoh, Y., Kohyama, A.: Helium gas permeability of SiC/SiC composite developed for blanket component. Fusion Sci. Technol. 43(2), 184–190 (2003)
80.
go back to reference Yang, W., Kohyama, A., Katoh, Y., Araki, H., Yu, J., Noda, T.: Effect of carbon and silicon carbide/carbon interlayers on the mechanical behavior of tyranno-SA-fiber-reinforced silicon carbide-matrix composites. J. Am. Ceram. Soc. 86(5), 51–856 (2003)CrossRef Yang, W., Kohyama, A., Katoh, Y., Araki, H., Yu, J., Noda, T.: Effect of carbon and silicon carbide/carbon interlayers on the mechanical behavior of tyranno-SA-fiber-reinforced silicon carbide-matrix composites. J. Am. Ceram. Soc. 86(5), 51–856 (2003)CrossRef
81.
go back to reference Kotani, M., Inoue, T., Kohyama, A., Katoh, Y., Okamura, K.: Effect of SiC particle dispersion on microstructure and mechanical properties of polymer-derived SiC/SiC composite. Mater. Sci. Eng. A 357(1–2), 376–385 (2003) Kotani, M., Inoue, T., Kohyama, A., Katoh, Y., Okamura, K.: Effect of SiC particle dispersion on microstructure and mechanical properties of polymer-derived SiC/SiC composite. Mater. Sci. Eng. A 357(1–2), 376–385 (2003)
82.
go back to reference Nozawa, T., Ozawa, K., Katoh, Y., Kohyama, A.: Effect of heat treatment on microstructure and mechanical properties of stoichiometric SiC/SiC composites. Mater. Trans. 45(2), 307–310 (2004)CrossRef Nozawa, T., Ozawa, K., Katoh, Y., Kohyama, A.: Effect of heat treatment on microstructure and mechanical properties of stoichiometric SiC/SiC composites. Mater. Trans. 45(2), 307–310 (2004)CrossRef
83.
go back to reference Katoh, Y., Kohyama, A., Nozawa, T., Sato, M.: SiC/SiC composites through transient eutectic-phase route for fusion applications. J. Nucl. Mater. 329–333(1–3 part A), 587–591 (2004)CrossRef Katoh, Y., Kohyama, A., Nozawa, T., Sato, M.: SiC/SiC composites through transient eutectic-phase route for fusion applications. J. Nucl. Mater. 329–333(1–3 part A), 587–591 (2004)CrossRef
84.
go back to reference Igawa, N., et al.: Fabrication of SiC fiber reinforced SiC composite by chemical vapor infiltration for excellent mechanical properties. J. Phys. Chem. Solids 66(2–4), 551–554 (2005)CrossRef Igawa, N., et al.: Fabrication of SiC fiber reinforced SiC composite by chemical vapor infiltration for excellent mechanical properties. J. Phys. Chem. Solids 66(2–4), 551–554 (2005)CrossRef
85.
go back to reference Shimoda, K., Eiza, N., Park, J.-S., Hinoki, T., Kohyama, A., Kondo, S.: High-temperature mechanical property improvements of SiC ceramics by NITE process. Mater. Trans. 47(4), 1204–1208 (2006)CrossRef Shimoda, K., Eiza, N., Park, J.-S., Hinoki, T., Kohyama, A., Kondo, S.: High-temperature mechanical property improvements of SiC ceramics by NITE process. Mater. Trans. 47(4), 1204–1208 (2006)CrossRef
86.
go back to reference Shimoda, K., Hinoki, T., Katoh, Y., Kohyama, A.: Development of the tailored SiC/SiC composites by the combined fabrication process of ICVI and NITE methods. J. Nucl. Mater. 384(2), 103–108 (2009)CrossRef Shimoda, K., Hinoki, T., Katoh, Y., Kohyama, A.: Development of the tailored SiC/SiC composites by the combined fabrication process of ICVI and NITE methods. J. Nucl. Mater. 384(2), 103–108 (2009)CrossRef
Metadata
Title
Erosive Wear Mechanism of New SiC/SiC Composites by Solid Particles
Authors
Min-Soo Suh
Tatsuya Hinoki
Akira Kohyama
Publication date
01-03-2011
Publisher
Springer US
Published in
Tribology Letters / Issue 3/2011
Print ISSN: 1023-8883
Electronic ISSN: 1573-2711
DOI
https://doi.org/10.1007/s11249-010-9658-5

Other articles of this Issue 3/2011

Tribology Letters 3/2011 Go to the issue

Premium Partners