Skip to main content
Top
Published in: Archive of Applied Mechanics 4/2021

16-11-2020 | Original

Eshelby’s circular cylindrical inclusion with polynomial eigenstrains in transverse direction by residue theorem

Authors: X.-W. Yu, Z.-W. Wang, H. Wang, N.-Y. Leng

Published in: Archive of Applied Mechanics | Issue 4/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Cylindrical inclusions with constant cross section in an infinite isotropic matrix are usually treated as plane elasticity problems and solved by complex potential method without considering the longitudinal eigenstrains. This paper provides a closed-form solution for the Eshelby’s circular cylindrical inclusion with eigenstrains which are polynomial in transverse direction and uniform in longitudinal direction. The integrals of Green’s function are decomposed into the sum of customized L-integrals. Two sets of L-integrals for the regions inside and outside the circular cylindrical inclusion are evaluated by using the residue theorem. Further, the stress and strain fields inside and outside the inclusion resulted from the polynomial eigenstrains are obtained. Circular cylinder inclusions with uniform, linear, and quadric eigenstrains are, respectively, used as examples to illustrate the proposed solution. When the cylindrical inclusion only suffers transverse eigenstrains, the solution is appropriate for the circular inclusion with polynomial eigenstrains in plane elasticity. The proposed method has convenient formulae and simplifies the integrals of Green’s function with polynomial eigenstrains.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Mura, T.: Micromechanics of Defects in Solids. Martinus Nijhoff Publishers, Dordrecht, The Netherlands (1982)CrossRef Mura, T.: Micromechanics of Defects in Solids. Martinus Nijhoff Publishers, Dordrecht, The Netherlands (1982)CrossRef
2.
go back to reference Zhou, K., Hoh, H.J., Wang, X., Keer, L.M., Pang, J.H.L., Song, B., Wang, Q.J.: A review of recent works on inclusions. Mech. Mater. 60, 144–158 (2013)CrossRef Zhou, K., Hoh, H.J., Wang, X., Keer, L.M., Pang, J.H.L., Song, B., Wang, Q.J.: A review of recent works on inclusions. Mech. Mater. 60, 144–158 (2013)CrossRef
3.
go back to reference Sadowsky, M.A.: Equiareal pattern of stress trajectories in plane plastic strain. J. Appl. Mech. 63, A74–A76 (1941)MathSciNetCrossRef Sadowsky, M.A.: Equiareal pattern of stress trajectories in plane plastic strain. J. Appl. Mech. 63, A74–A76 (1941)MathSciNetCrossRef
4.
go back to reference Alexandrov, S., Jeng, Y.-R.: Geometry of principal stress trajectories for piece-wise linear yield criteria under axial symmetry. ZAMM - J. App. Math. Mech./Zeitschrift für Angewandte Mathematik und Mechanik 100, e201900077 (2020)MathSciNet Alexandrov, S., Jeng, Y.-R.: Geometry of principal stress trajectories for piece-wise linear yield criteria under axial symmetry. ZAMM - J. App. Math. Mech./Zeitschrift für Angewandte Mathematik und Mechanik 100, e201900077 (2020)MathSciNet
5.
go back to reference Eshelby, J.D.: The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proc. R. Soc. Lond. A 241, 376–396 (1957)MathSciNetCrossRef Eshelby, J.D.: The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proc. R. Soc. Lond. A 241, 376–396 (1957)MathSciNetCrossRef
6.
7.
go back to reference Walpole, L.J.: The elastic field of an inclusion in an anisotropic medium. Proc. R. Soc. Lond. A 300, 270–289 (1967)CrossRef Walpole, L.J.: The elastic field of an inclusion in an anisotropic medium. Proc. R. Soc. Lond. A 300, 270–289 (1967)CrossRef
8.
go back to reference Jin, X., Keer, L.M., Wang, Q.: A closed-form solution for the Eshelby tensor and the elastic field outside an elliptic cylindrical inclusion. J. Appl. Mech. 78, 031009 (2011)CrossRef Jin, X., Keer, L.M., Wang, Q.: A closed-form solution for the Eshelby tensor and the elastic field outside an elliptic cylindrical inclusion. J. Appl. Mech. 78, 031009 (2011)CrossRef
9.
go back to reference Jin, X., Zhang, X., Li, P., Xu, Z., Hu, Y., Keer, L.M.: On the displacement of a two-dimensional Eshelby inclusion of elliptic cylindrical shape. J. Appl. Mech. 84, 074501 (2017)CrossRef Jin, X., Zhang, X., Li, P., Xu, Z., Hu, Y., Keer, L.M.: On the displacement of a two-dimensional Eshelby inclusion of elliptic cylindrical shape. J. Appl. Mech. 84, 074501 (2017)CrossRef
10.
go back to reference Nozaki, H., Taya, M.: Elastic fields in a polyhedral inclusion with uniform eigenstrains and related problems. J. Appl. Mech. 68, 441–452 (2001)CrossRef Nozaki, H., Taya, M.: Elastic fields in a polyhedral inclusion with uniform eigenstrains and related problems. J. Appl. Mech. 68, 441–452 (2001)CrossRef
11.
go back to reference Sendeckyj, G.P.: Ellipsoidal Inhomogeneity Problem. Northwestern University, Evanston (1967) Sendeckyj, G.P.: Ellipsoidal Inhomogeneity Problem. Northwestern University, Evanston (1967)
12.
go back to reference Eshelby, J.D.: Elastic inclusion and inhomogeneities. Progress Solid Mech. 2, 89–140 (1961)MathSciNet Eshelby, J.D.: Elastic inclusion and inhomogeneities. Progress Solid Mech. 2, 89–140 (1961)MathSciNet
13.
go back to reference Liu, L.: Polynomial eigenstress inducing polynomial strain of the same degree in an ellipsoidal inclusion and its applications. Math. Mech. Solids 18, 168–180 (2012)MathSciNetCrossRef Liu, L.: Polynomial eigenstress inducing polynomial strain of the same degree in an ellipsoidal inclusion and its applications. Math. Mech. Solids 18, 168–180 (2012)MathSciNetCrossRef
14.
go back to reference Zou, W.-N., Zheng, Q.-S., He, Q.-C.: Solutions to Eshelby’s problems of non-elliptical thermal inclusions and cylindrical elastic inclusions of non-elliptical cross section. Proc. R. Soc. A: Math. Phys. Eng. Sci. 467, 607–626 (2011)MathSciNetCrossRef Zou, W.-N., Zheng, Q.-S., He, Q.-C.: Solutions to Eshelby’s problems of non-elliptical thermal inclusions and cylindrical elastic inclusions of non-elliptical cross section. Proc. R. Soc. A: Math. Phys. Eng. Sci. 467, 607–626 (2011)MathSciNetCrossRef
15.
go back to reference Nozaki, H., Taya, M.: Elastic fields in a polygon-shaped inclusion with uniform eigenstrains. J. Appl. Mech. 64, 495–502 (1997)CrossRef Nozaki, H., Taya, M.: Elastic fields in a polygon-shaped inclusion with uniform eigenstrains. J. Appl. Mech. 64, 495–502 (1997)CrossRef
16.
go back to reference Zou, W.N., He, Q.C., Zheng, Q.S.: General solution for Eshelby’s problem of 2D arbitrarily shaped piezoelectric inclusions. Int. J. Solids Struct. 48, 2681–2694 (2011)CrossRef Zou, W.N., He, Q.C., Zheng, Q.S.: General solution for Eshelby’s problem of 2D arbitrarily shaped piezoelectric inclusions. Int. J. Solids Struct. 48, 2681–2694 (2011)CrossRef
17.
go back to reference Hwu, C., Chen, W.-R., Lo, T.-H.: Green’s function of anisotropic elastic solids with piezoelectric or magneto-electro-elastic inclusions. Int. J. Fract. 215, 91–103 (2019)CrossRef Hwu, C., Chen, W.-R., Lo, T.-H.: Green’s function of anisotropic elastic solids with piezoelectric or magneto-electro-elastic inclusions. Int. J. Fract. 215, 91–103 (2019)CrossRef
18.
go back to reference Fischer, F.D., Zickler, G.A., Svoboda, J.: Elastic stress-strain analysis of an infinite cylindrical inclusion with eigenstrain. Arch. Appl. Mech. 88, 453–460 (2018)CrossRef Fischer, F.D., Zickler, G.A., Svoboda, J.: Elastic stress-strain analysis of an infinite cylindrical inclusion with eigenstrain. Arch. Appl. Mech. 88, 453–460 (2018)CrossRef
19.
go back to reference Jaswon, M.A., Bhargava, R.D.: Two-dimensional elastic inclusion problems. Math. Proc. Cambridge Philos. Soc. 57, 669–680 (1961)MathSciNetCrossRef Jaswon, M.A., Bhargava, R.D.: Two-dimensional elastic inclusion problems. Math. Proc. Cambridge Philos. Soc. 57, 669–680 (1961)MathSciNetCrossRef
20.
go back to reference Sendeckyj, G.P.: Elastic inclusion problems in plane elastostatics. Int. J. Solids Struct. 6, 1535–1543 (1970)CrossRef Sendeckyj, G.P.: Elastic inclusion problems in plane elastostatics. Int. J. Solids Struct. 6, 1535–1543 (1970)CrossRef
21.
go back to reference Gong, S.X., Meguid, S.A.: A general treatment of the elastic field of an elliptical inhomogeneity under antiplane shear. J. Appl. Mech. 59, S131–S135 (1992)CrossRef Gong, S.X., Meguid, S.A.: A general treatment of the elastic field of an elliptical inhomogeneity under antiplane shear. J. Appl. Mech. 59, S131–S135 (1992)CrossRef
22.
go back to reference Lee, Y.G., Zou, W.N.: Exterior elastic fields of non-elliptical inclusions characterized by Laurent polynomials. Eur. J. Mech. A. Solids 60, 112–121 (2016)MathSciNetCrossRef Lee, Y.G., Zou, W.N.: Exterior elastic fields of non-elliptical inclusions characterized by Laurent polynomials. Eur. J. Mech. A. Solids 60, 112–121 (2016)MathSciNetCrossRef
23.
go back to reference Zou, W., Lee, Y.: Completely explicit solutions of Eshelby’s problems of smooth inclusions embedded in a circular disk, full- and half-planes. Acta Mech. 229, 1911–1926 (2018)MathSciNetCrossRef Zou, W., Lee, Y.: Completely explicit solutions of Eshelby’s problems of smooth inclusions embedded in a circular disk, full- and half-planes. Acta Mech. 229, 1911–1926 (2018)MathSciNetCrossRef
24.
go back to reference Zou, W., He, Q., Huang, M., Zheng, Q.: Eshelby’s problem of non-elliptical inclusions. J. Mech. Phys. Solids 58, 346–372 (2010)MathSciNetCrossRef Zou, W., He, Q., Huang, M., Zheng, Q.: Eshelby’s problem of non-elliptical inclusions. J. Mech. Phys. Solids 58, 346–372 (2010)MathSciNetCrossRef
25.
go back to reference Chen, Y.Z.: Solution for Eshelby’s elliptic inclusion with polynomials distribution of the eigenstrains in plane elasticity. Appl. Math. Model. 38, 4872–4884 (2014)MathSciNetCrossRef Chen, Y.Z.: Solution for Eshelby’s elliptic inclusion with polynomials distribution of the eigenstrains in plane elasticity. Appl. Math. Model. 38, 4872–4884 (2014)MathSciNetCrossRef
26.
go back to reference Moschovidis, Z.A., Mura, T.: Two-ellipsoidal inhomogeneities by the equivalent inclusion method. J. Appl. Mech. 42, 847–852 (1975)CrossRef Moschovidis, Z.A., Mura, T.: Two-ellipsoidal inhomogeneities by the equivalent inclusion method. J. Appl. Mech. 42, 847–852 (1975)CrossRef
27.
go back to reference Jin, X., Wang, Z., Zhou, Q., Keer, L.M., Wang, Q.: On the Solution of an Elliptical Inhomogeneity in Plane Elasticity by the Equivalent Inclusion Method. J. Elast. 114, 1–18 (2014)MathSciNetCrossRef Jin, X., Wang, Z., Zhou, Q., Keer, L.M., Wang, Q.: On the Solution of an Elliptical Inhomogeneity in Plane Elasticity by the Equivalent Inclusion Method. J. Elast. 114, 1–18 (2014)MathSciNetCrossRef
28.
go back to reference Love, A.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1892)MATH Love, A.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1892)MATH
29.
go back to reference Gamelin, T.W.: Complex Analysis. Springer, New York (2000) Gamelin, T.W.: Complex Analysis. Springer, New York (2000)
30.
go back to reference Nie, G.H., Guo, L., Chan, C.K., Shin, F.G.: Non-uniform eigenstrain induced stress field in an elliptic inhomogeneity embedded in orthotropic media with complex roots. Int. J. Solids Struct. 44, 3575–3593 (2007)CrossRef Nie, G.H., Guo, L., Chan, C.K., Shin, F.G.: Non-uniform eigenstrain induced stress field in an elliptic inhomogeneity embedded in orthotropic media with complex roots. Int. J. Solids Struct. 44, 3575–3593 (2007)CrossRef
Metadata
Title
Eshelby’s circular cylindrical inclusion with polynomial eigenstrains in transverse direction by residue theorem
Authors
X.-W. Yu
Z.-W. Wang
H. Wang
N.-Y. Leng
Publication date
16-11-2020
Publisher
Springer Berlin Heidelberg
Published in
Archive of Applied Mechanics / Issue 4/2021
Print ISSN: 0939-1533
Electronic ISSN: 1432-0681
DOI
https://doi.org/10.1007/s00419-020-01831-y

Other articles of this Issue 4/2021

Archive of Applied Mechanics 4/2021 Go to the issue

Premium Partners