Skip to main content
Top
Published in: Meccanica 1/2016

07-05-2015

Evaluation of nonlocal parameter for single-walled carbon nanotubes with arbitrary chirality

Authors: Esmaeal Ghavanloo, S. Ahmad Fazelzadeh

Published in: Meccanica | Issue 1/2016

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Eringen’s nonlocal parameter is estimated for single-walled carbon nanotubes (SWCNTs) with arbitrary chirality. Analytical solution is presented by using molecular mechanics and nonlocal elasticity theory. The model is used to elucidate the effect of tube chirality, tube diameter, aspect ratio of the nanotube (length/diameter) and wave propagation mode shapes on the magnitude of the nonlocal parameter. The results show that, instead of a constant value for the nonlocal parameter reported in literature, the values of the nonlocal parameter vary with respect to different geometrical parameters of the SWCNTs.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Rafii-Tabar H (2008) Computational physics of carbon nanotubes. Cambridge University Press, Cambridge Rafii-Tabar H (2008) Computational physics of carbon nanotubes. Cambridge University Press, Cambridge
2.
go back to reference Alexiadis A, Kassinos S (2008) Molecular simulation of water in carbon nanotubes. Chem Rev 108:5014–5034CrossRef Alexiadis A, Kassinos S (2008) Molecular simulation of water in carbon nanotubes. Chem Rev 108:5014–5034CrossRef
3.
go back to reference Askes H, Aifantis EC (2009) Gradient elasticity and flexural wave dispersion in carbon nanotubes. Phys Rev B 80:195412ADSCrossRef Askes H, Aifantis EC (2009) Gradient elasticity and flexural wave dispersion in carbon nanotubes. Phys Rev B 80:195412ADSCrossRef
4.
go back to reference Hao MJ, Guo XM, Wang Q (2010) Small-scale effect on torsional buckling of multi-walled carbon nanotubes. Eur J Mech A-Solid 29:49–55MathSciNetCrossRef Hao MJ, Guo XM, Wang Q (2010) Small-scale effect on torsional buckling of multi-walled carbon nanotubes. Eur J Mech A-Solid 29:49–55MathSciNetCrossRef
5.
go back to reference Cinefra M, Carrera E, Brischetto S (2011) Refined shell models for the vibration analysis of multiwalled carbon nanotubes. Mech Adv Mater Struct 18(7):476–483CrossRef Cinefra M, Carrera E, Brischetto S (2011) Refined shell models for the vibration analysis of multiwalled carbon nanotubes. Mech Adv Mater Struct 18(7):476–483CrossRef
6.
go back to reference Yan JW, Liew KM, He LH (2012) Predicting mechanical properties of single-walled carbon nanocones using a higher-order gradient continuum computational framework. Compos Struct 94:3271–3277CrossRef Yan JW, Liew KM, He LH (2012) Predicting mechanical properties of single-walled carbon nanocones using a higher-order gradient continuum computational framework. Compos Struct 94:3271–3277CrossRef
7.
go back to reference Pradhan SC, Mandal U (2013) Analysis of radial nonlocal effect on the structural response of carbon nanotubes. Phys Lett A 377:2154–2163ADSMathSciNetCrossRef Pradhan SC, Mandal U (2013) Analysis of radial nonlocal effect on the structural response of carbon nanotubes. Phys Lett A 377:2154–2163ADSMathSciNetCrossRef
8.
go back to reference Brischetto S (2014) A continuum elastic three-dimensional model for natural frequencies of single-walled carbon nanotubes. Compos Part B-Eng 61:222–228CrossRef Brischetto S (2014) A continuum elastic three-dimensional model for natural frequencies of single-walled carbon nanotubes. Compos Part B-Eng 61:222–228CrossRef
9.
go back to reference Civalek Ö, Akgöz B (2009) Static analysis of single walled carbon nanotubes (SWCNT) based on Eringen’s nonlocal elasticity theory. Int J Eng Appl Sci 1(2):47–56 Civalek Ö, Akgöz B (2009) Static analysis of single walled carbon nanotubes (SWCNT) based on Eringen’s nonlocal elasticity theory. Int J Eng Appl Sci 1(2):47–56
10.
go back to reference Khademolhosseini F, Rajapakse RKND, Nojeh A (2010) Torsional buckling of carbon nanotubes based on nonlocal elasticity shell models. Comput Mater Sci 48:736–742CrossRef Khademolhosseini F, Rajapakse RKND, Nojeh A (2010) Torsional buckling of carbon nanotubes based on nonlocal elasticity shell models. Comput Mater Sci 48:736–742CrossRef
11.
go back to reference Wang Q, Varadan VK (2007) Application of nonlocal elastic shell theory in wave propagation analysis of carbon nanotubes. Smart Mater Struct 16:178–190ADSCrossRef Wang Q, Varadan VK (2007) Application of nonlocal elastic shell theory in wave propagation analysis of carbon nanotubes. Smart Mater Struct 16:178–190ADSCrossRef
12.
go back to reference Hu YG, Liew KM, Wang Q, He XQ, Yakobson BI (2008) Nonlocal shell model for elastic wave propagation in single- and double-walled carbon nanotubes. J Mech Phys Solids 56:3475–3485ADSMATHCrossRef Hu YG, Liew KM, Wang Q, He XQ, Yakobson BI (2008) Nonlocal shell model for elastic wave propagation in single- and double-walled carbon nanotubes. J Mech Phys Solids 56:3475–3485ADSMATHCrossRef
13.
go back to reference Murmu T, Mc Carthy MA, Adhikari S (2012) Vibration response of double-walled carbon nanotubes subjected to an externally applied longitudinal magnetic field: a nonlocal elasticity approach. J Sound Vib 331:5069–5086ADSCrossRef Murmu T, Mc Carthy MA, Adhikari S (2012) Vibration response of double-walled carbon nanotubes subjected to an externally applied longitudinal magnetic field: a nonlocal elasticity approach. J Sound Vib 331:5069–5086ADSCrossRef
14.
go back to reference Fazelzadeh SA, Ghavanloo E (2012) Nonlocal anisotropic elastic shell model for vibrations of single-walled carbon nanotubes with arbitrary chirality. Compos Struct 94:1016–1022CrossRef Fazelzadeh SA, Ghavanloo E (2012) Nonlocal anisotropic elastic shell model for vibrations of single-walled carbon nanotubes with arbitrary chirality. Compos Struct 94:1016–1022CrossRef
15.
go back to reference Kazemi-Lari MA, Ghavanloo E, Fazelzadeh SA (2013) Structural instability of carbon nanotubes embedded in viscoelastic medium and subjected to distributed tangential load. J Mech Sci Technol 27(7):2085–2091CrossRef Kazemi-Lari MA, Ghavanloo E, Fazelzadeh SA (2013) Structural instability of carbon nanotubes embedded in viscoelastic medium and subjected to distributed tangential load. J Mech Sci Technol 27(7):2085–2091CrossRef
16.
go back to reference Carta G, Brun M (2012) A dispersive homogenization model based on lattice approximation for the prediction of wave motion in laminates. J Appl Mech 79:021019CrossRef Carta G, Brun M (2012) A dispersive homogenization model based on lattice approximation for the prediction of wave motion in laminates. J Appl Mech 79:021019CrossRef
17.
go back to reference Eringen AC (1983) On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. J Appl Phys 54:4703–4710ADSCrossRef Eringen AC (1983) On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. J Appl Phys 54:4703–4710ADSCrossRef
18.
go back to reference Sudak LJ (2003) Column buckling of multiwalled carbon nanotubes using nonlocal continuum mechanics. J Appl Phys 94:7281–7287ADSCrossRef Sudak LJ (2003) Column buckling of multiwalled carbon nanotubes using nonlocal continuum mechanics. J Appl Phys 94:7281–7287ADSCrossRef
19.
go back to reference Wang LF, Hu HY (2005) Flexural wave propagation in single-walled carbon nanotubes. Phys Rev B 71:195412ADSCrossRef Wang LF, Hu HY (2005) Flexural wave propagation in single-walled carbon nanotubes. Phys Rev B 71:195412ADSCrossRef
20.
go back to reference Zhang YQ, Liu GR, Xie XY (2005) Free transverse vibrations of doublewalled carbon nanotubes using a theory of nonlocal elasticity. Phys Rev B 71:195404ADSCrossRef Zhang YQ, Liu GR, Xie XY (2005) Free transverse vibrations of doublewalled carbon nanotubes using a theory of nonlocal elasticity. Phys Rev B 71:195404ADSCrossRef
21.
go back to reference Sears A, Batra RC (2004) Macroscopic properties of carbon nanotubes from molecular-mechanics simulations. Phys Rev B 69:235406ADSCrossRef Sears A, Batra RC (2004) Macroscopic properties of carbon nanotubes from molecular-mechanics simulations. Phys Rev B 69:235406ADSCrossRef
22.
go back to reference Wang Q (2005) Wave propagation in carbon nanotubes via nonlocal continuum mechanics. J Appl Phys 98:124301ADSCrossRef Wang Q (2005) Wave propagation in carbon nanotubes via nonlocal continuum mechanics. J Appl Phys 98:124301ADSCrossRef
23.
go back to reference Zhang YY, Tan VBC, Wang CM (2006) Effect of chirality on buckling behavior of single-walled carbon nanotubes. J Appl Phys 100:074304ADSCrossRef Zhang YY, Tan VBC, Wang CM (2006) Effect of chirality on buckling behavior of single-walled carbon nanotubes. J Appl Phys 100:074304ADSCrossRef
24.
go back to reference Xie GQ, Han X, Liu GR, Long SY (2006) Effect of small size-scale on the radial buckling pressure of a simply supported multiwalled carbon nanotube. Smart Mater Struct 15:1143–1149ADSCrossRef Xie GQ, Han X, Liu GR, Long SY (2006) Effect of small size-scale on the radial buckling pressure of a simply supported multiwalled carbon nanotube. Smart Mater Struct 15:1143–1149ADSCrossRef
25.
go back to reference Duan WH, Wang CM, Zhang YY (2007) Calibration of nonlocal scaling effect parameter for free vibration of carbon nanotubes by molecular dynamics. J Appl Phys 101:024305ADSCrossRef Duan WH, Wang CM, Zhang YY (2007) Calibration of nonlocal scaling effect parameter for free vibration of carbon nanotubes by molecular dynamics. J Appl Phys 101:024305ADSCrossRef
26.
go back to reference Zhang YY, Wang CM, Duan WH, Xiang Y, Zong Z (2009) Assessment of continuum mechanics models in predicting buckling strains of single-walled carbon nanotubes. Nanotechnology 20:395707ADSCrossRef Zhang YY, Wang CM, Duan WH, Xiang Y, Zong Z (2009) Assessment of continuum mechanics models in predicting buckling strains of single-walled carbon nanotubes. Nanotechnology 20:395707ADSCrossRef
27.
go back to reference Ansari R, Rouhi H, Sahmani S (2011) Calibration of the analytical nonlocal shell model for vibrations of double-walled carbon nanotubes with arbitrary boundary conditions using molecular dynamics. Int J Mech Sci 53:786–792CrossRef Ansari R, Rouhi H, Sahmani S (2011) Calibration of the analytical nonlocal shell model for vibrations of double-walled carbon nanotubes with arbitrary boundary conditions using molecular dynamics. Int J Mech Sci 53:786–792CrossRef
28.
go back to reference Narendar S, Mahapatra DR, Gopalakrishnan S (2011) Prediction of nonlocal scaling parameter for armchair and zigzag single-walled carbon nanotubes based on molecular structural mechanics, nonlocal elasticity and wave propagation. Int J Eng Sci 49:509–522MATHCrossRef Narendar S, Mahapatra DR, Gopalakrishnan S (2011) Prediction of nonlocal scaling parameter for armchair and zigzag single-walled carbon nanotubes based on molecular structural mechanics, nonlocal elasticity and wave propagation. Int J Eng Sci 49:509–522MATHCrossRef
29.
go back to reference dos Santos JVA, Mota Soares CM (2012) Nonlocal material properties of single-walled carbon nanotubes. Int J Smart Nano Mater 3(2):141–151CrossRef dos Santos JVA, Mota Soares CM (2012) Nonlocal material properties of single-walled carbon nanotubes. Int J Smart Nano Mater 3(2):141–151CrossRef
30.
go back to reference Liang YJ, Han Q (2012) Prediction of nonlocal scale parameter for carbon nanotubes. Sci China Phys Mech 55(9):1670–1678MathSciNetCrossRef Liang YJ, Han Q (2012) Prediction of nonlocal scale parameter for carbon nanotubes. Sci China Phys Mech 55(9):1670–1678MathSciNetCrossRef
31.
go back to reference Duan WH, Challamel N, Wang CM, Ding Z (2013) Development of analytical vibration solutions for microstructured beam model to calibrate length scale coefficient in nonlocal Timoshenko beams. J Appl Phys 114:104312ADSCrossRef Duan WH, Challamel N, Wang CM, Ding Z (2013) Development of analytical vibration solutions for microstructured beam model to calibrate length scale coefficient in nonlocal Timoshenko beams. J Appl Phys 114:104312ADSCrossRef
32.
go back to reference Dresselhaus MS, Dresselhaus G, Saito R (1995) Physics of carbon nanotubes. Carbon 33:883–891CrossRef Dresselhaus MS, Dresselhaus G, Saito R (1995) Physics of carbon nanotubes. Carbon 33:883–891CrossRef
33.
go back to reference White CT, Robertson DH, Mintmire JW (1993) Helical and rotational symmetries of nanoscale graphatic tubules. Phys Rev B 47:5485–5488ADSCrossRef White CT, Robertson DH, Mintmire JW (1993) Helical and rotational symmetries of nanoscale graphatic tubules. Phys Rev B 47:5485–5488ADSCrossRef
34.
go back to reference Povstenko YZ (1999) The nonlocal theory of elasticity and its applications to the description of defects in solid bodies. J Math Sci 97:3840–3845CrossRef Povstenko YZ (1999) The nonlocal theory of elasticity and its applications to the description of defects in solid bodies. J Math Sci 97:3840–3845CrossRef
35.
go back to reference Eringen AC (2002) Nonlocal continuum field theories. Springer, New YorkMATH Eringen AC (2002) Nonlocal continuum field theories. Springer, New YorkMATH
36.
go back to reference Schreiber E, Anderson OL, Soga N (1973) Elastic constants and their measurement. McGraw-Hill, New York Schreiber E, Anderson OL, Soga N (1973) Elastic constants and their measurement. McGraw-Hill, New York
37.
go back to reference Chang T, Gao H (2003) Size dependent elastic properties of a single-walled carbon nanotube via a molecular mechanics model. J Mech Phys Solids 51:1059–1074ADSMATHCrossRef Chang T, Gao H (2003) Size dependent elastic properties of a single-walled carbon nanotube via a molecular mechanics model. J Mech Phys Solids 51:1059–1074ADSMATHCrossRef
38.
39.
go back to reference Amabili M (2008) Nonlinear vibrations and stability of shells and plates. Cambridge University Press, New YorkMATHCrossRef Amabili M (2008) Nonlinear vibrations and stability of shells and plates. Cambridge University Press, New YorkMATHCrossRef
40.
go back to reference Yakobson BI, Brabec CJ, Bernholc J (1996) Nanomechanics of carbon tubes: instability beyond linear response. Phys Rev Lett 76:2511–2514ADSCrossRef Yakobson BI, Brabec CJ, Bernholc J (1996) Nanomechanics of carbon tubes: instability beyond linear response. Phys Rev Lett 76:2511–2514ADSCrossRef
41.
go back to reference Sanchez-Portal D, Artacho E, Soler JM, Rubio A, Ordejon P (1999) Ab-initio structural, elastic, and vibrational properties of carbon nanotubes. Phys Rev B 59:12678ADSCrossRef Sanchez-Portal D, Artacho E, Soler JM, Rubio A, Ordejon P (1999) Ab-initio structural, elastic, and vibrational properties of carbon nanotubes. Phys Rev B 59:12678ADSCrossRef
42.
go back to reference Wang CY, Zhang J, Fei YQ, Murmu T (2012) Circumferential nonlocal effect on vibrating nanotubules. Int J Mech Sci 58:86–90CrossRef Wang CY, Zhang J, Fei YQ, Murmu T (2012) Circumferential nonlocal effect on vibrating nanotubules. Int J Mech Sci 58:86–90CrossRef
Metadata
Title
Evaluation of nonlocal parameter for single-walled carbon nanotubes with arbitrary chirality
Authors
Esmaeal Ghavanloo
S. Ahmad Fazelzadeh
Publication date
07-05-2015
Publisher
Springer Netherlands
Published in
Meccanica / Issue 1/2016
Print ISSN: 0025-6455
Electronic ISSN: 1572-9648
DOI
https://doi.org/10.1007/s11012-015-0195-z

Other articles of this Issue 1/2016

Meccanica 1/2016 Go to the issue

Premium Partners