Skip to main content
Top
Published in: Journal of Electronic Materials 8/2023

23-05-2023 | Topical Collection: 19th Conference on Defects (DRIP XIX)

Evaluation of Strain-Relaxation of Carbon-Doped Silicon Nanowires and Its Crystal Orientation Dependence Using X-Ray Diffraction Reciprocal Space Mapping

Authors: Kazutoshi Yoshioka, Ichiro Hirosawa, Takeshi Watanabe, Ryo Yokogawa, Atsushi Ogura

Published in: Journal of Electronic Materials | Issue 8/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Carbon-doped silicon (Si:C) thin films with C concentrations of 0.60% and 0.83% were fabricated into nanowires, and the lattice strain relaxation with shrinking the nanowire width, W, was evaluated in detail by x-ray reciprocal lattice space mapping (RSM) measurements. The obtained RSM profiles showed a right-downward distribution. From the RSM profiles, we considered that the lattice relaxation of the Si:C nanowires progressed slowly from the nanowires/substrate interfaces to the nanowire top surfaces. Then, we assumed the lattice strain of the Si:C thin films to be 100% and derived the average lattice strain relaxation of the Si:C nanowires from the RSM profiles. To derive the lattice relaxation, we summed the RSM profiles in the qx or qz directions, respectively, and calculated the average in-plane and out-of-plane lattice parameters. The obtained average lattice strain relaxation became larger with shrinking W, and progressed rapidly at W = 200 nm. Thus, we considered that the large strain relaxation occurs in the region of approximately 100 nm from the edge of the nanowires. In addition, the lattice strain relaxation was smaller for Si:C nanowires fabricated with their long side along the [100] direction than for Si:C nanowires along the [110] direction. We considered this difference of strain relaxation might be due to the crystallographic orientation dependence of Young’s modulus.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference E. Ungersboeck, S. Dhar, G. Karlowatz, V. Sverdlov, H. Kosina, and S. Selberherr, The effect of general strain on the band structure and electron mobility of silicon. IEEE Trans. Electron Dev. 54(9), 2183 (2007).CrossRef E. Ungersboeck, S. Dhar, G. Karlowatz, V. Sverdlov, H. Kosina, and S. Selberherr, The effect of general strain on the band structure and electron mobility of silicon. IEEE Trans. Electron Dev. 54(9), 2183 (2007).CrossRef
2.
go back to reference J.M. Hinckley, and J. Singh, Monte Carlo studies of ohmic hole mobility in silicon and germanium: examination of the optical phonon deformation potential. J. Appl. Phys. 76(7), 4192 (1994).CrossRef J.M. Hinckley, and J. Singh, Monte Carlo studies of ohmic hole mobility in silicon and germanium: examination of the optical phonon deformation potential. J. Appl. Phys. 76(7), 4192 (1994).CrossRef
3.
go back to reference M.V. Fischetti, and S.E. Laux, Band structure, deformation potentials, and carrier mobility in strained Si, Ge, and SiGe alloys. J. Appl. Phys. 80(4), 2234 (1996).CrossRef M.V. Fischetti, and S.E. Laux, Band structure, deformation potentials, and carrier mobility in strained Si, Ge, and SiGe alloys. J. Appl. Phys. 80(4), 2234 (1996).CrossRef
4.
go back to reference S. Reggiani, M. Valdinoci, L. Colalongo, M. Rudan, G. Baccarani, A.D. Stricker, F. Illien, N. Felber, W. Fichtner, and L. Zullino, Electron and hole mobility in silicon at large operating temperatures. I. Bulk mobility. IEEE Trans. Electron Dev. 49(3), 490 (2002).CrossRef S. Reggiani, M. Valdinoci, L. Colalongo, M. Rudan, G. Baccarani, A.D. Stricker, F. Illien, N. Felber, W. Fichtner, and L. Zullino, Electron and hole mobility in silicon at large operating temperatures. I. Bulk mobility. IEEE Trans. Electron Dev. 49(3), 490 (2002).CrossRef
5.
go back to reference M.B. Prince, Drift mobilities in semiconductors. I. Germanium. Phys. Rev. 92(3), 681 (1953).CrossRef M.B. Prince, Drift mobilities in semiconductors. I. Germanium. Phys. Rev. 92(3), 681 (1953).CrossRef
6.
go back to reference M.B. Prince, Drift mobilities in semiconductors. II. Silicon. Phys. Rev. 93(6), 1204 (1954).CrossRef M.B. Prince, Drift mobilities in semiconductors. II. Silicon. Phys. Rev. 93(6), 1204 (1954).CrossRef
7.
go back to reference S.G. Volz, and G. Chen, Molecular-dynamics simulation of thermal conductivity of silicon crystals. Phys. Rev. B 61(4), 2651 (2000).CrossRef S.G. Volz, and G. Chen, Molecular-dynamics simulation of thermal conductivity of silicon crystals. Phys. Rev. B 61(4), 2651 (2000).CrossRef
8.
go back to reference R. Yokogawa, S. Hashimoto, K. Takahashi, S. Oba, M. Tomita, M. Kurosawa, T. Watanabe, and A. Ogura, Evaluation of laterally graded silicon germanium wires for thermoelectric devices fabricated by rapid melting growth. ECS Trans. 86(7), 87 (2018).CrossRef R. Yokogawa, S. Hashimoto, K. Takahashi, S. Oba, M. Tomita, M. Kurosawa, T. Watanabe, and A. Ogura, Evaluation of laterally graded silicon germanium wires for thermoelectric devices fabricated by rapid melting growth. ECS Trans. 86(7), 87 (2018).CrossRef
9.
go back to reference R. Yokogawa, H. Takeuchi, Y. Arai, I. Yonenaga, M. Tomita, H. Uchiyama, T. Watanabe, and A. Ogura, Anomalous low energy phonon dispersion in bulk silicon-germanium observed by inelastic x-ray scattering. Appl. Phys. Lett. 116, 242104 (2020).CrossRef R. Yokogawa, H. Takeuchi, Y. Arai, I. Yonenaga, M. Tomita, H. Uchiyama, T. Watanabe, and A. Ogura, Anomalous low energy phonon dispersion in bulk silicon-germanium observed by inelastic x-ray scattering. Appl. Phys. Lett. 116, 242104 (2020).CrossRef
10.
go back to reference J.P. Dismukes, L. Ekstrom, E.F. Steigmeier, I. Kudman, and D.S. Beers, Thermal and electrical properties of heavily doped Ge-Si alloys up to 1300°K. J. Appl. Phys. 35, 2899 (1964).CrossRef J.P. Dismukes, L. Ekstrom, E.F. Steigmeier, I. Kudman, and D.S. Beers, Thermal and electrical properties of heavily doped Ge-Si alloys up to 1300°K. J. Appl. Phys. 35, 2899 (1964).CrossRef
11.
go back to reference M.C. Steele, and F.D. Rosi, Thermal conductivity and thermoelectric power of germanium-silicon alloys. J. Appl. Phys. 29(11), 1517 (1958).CrossRef M.C. Steele, and F.D. Rosi, Thermal conductivity and thermoelectric power of germanium-silicon alloys. J. Appl. Phys. 29(11), 1517 (1958).CrossRef
12.
go back to reference Z. Wang, and N. Mingo, Diameter dependence of SiGe nanowire thermal conductivity. Appl. Phys. Lett. 97, 101903 (2010).CrossRef Z. Wang, and N. Mingo, Diameter dependence of SiGe nanowire thermal conductivity. Appl. Phys. Lett. 97, 101903 (2010).CrossRef
13.
go back to reference D. Fan, H. Sigg, R. Spolenak, and Y. Ekinci, Strain and thermal conductivity in ultrathin suspended silicon nanowires. Phys. Rev. B 96, 115307 (2017).CrossRef D. Fan, H. Sigg, R. Spolenak, and Y. Ekinci, Strain and thermal conductivity in ultrathin suspended silicon nanowires. Phys. Rev. B 96, 115307 (2017).CrossRef
14.
go back to reference S. Zaima, O. Nakatsuka, N. Taoka, M. Kurosawa, W. Takeuchi, and M. Sakashita, Growth and applications of GeSn-related group-IV semiconductor materials. Sci. Technol. Adv. Mater. 16, 043502 (2015).CrossRef S. Zaima, O. Nakatsuka, N. Taoka, M. Kurosawa, W. Takeuchi, and M. Sakashita, Growth and applications of GeSn-related group-IV semiconductor materials. Sci. Technol. Adv. Mater. 16, 043502 (2015).CrossRef
15.
go back to reference M. Oehme, E. Kasper, and J. Schulze, GeSn heterojunction diode: detector and emitter in one device. ECS J. Solid State Sci. Technol. 2, R76 (2013).CrossRef M. Oehme, E. Kasper, and J. Schulze, GeSn heterojunction diode: detector and emitter in one device. ECS J. Solid State Sci. Technol. 2, R76 (2013).CrossRef
16.
go back to reference S. Gupta, R. Chena, B. Vincent, D. Lin, B. Magyari-Köpea, M. Caymaxb, J. Dekosterb, J.S. Harrisa, Y. Nishia, and K.C. Saraswat, Evaluation of thermal expansion coefficient in Ge1-xSnx nanowire using reciprocal space mapping. ECS Trans. 50, 937 (2013).CrossRef S. Gupta, R. Chena, B. Vincent, D. Lin, B. Magyari-Köpea, M. Caymaxb, J. Dekosterb, J.S. Harrisa, Y. Nishia, and K.C. Saraswat, Evaluation of thermal expansion coefficient in Ge1-xSnx nanowire using reciprocal space mapping. ECS Trans. 50, 937 (2013).CrossRef
17.
go back to reference Y. Yang, S. Su, P. Guo, W. Wang, X. Gong, L. Wang, K.L. Low, G. Zhang, C. Xue, B. Cheng, G. Han, and Y.-C. Yeo, Towards direct band-to-band tunneling in P-channel tunneling field effect transistor (TFET): technology enablement by Germanium-tin (GeSn). IEDM Tech. Dig. 16(3), 1 (2013). Y. Yang, S. Su, P. Guo, W. Wang, X. Gong, L. Wang, K.L. Low, G. Zhang, C. Xue, B. Cheng, G. Han, and Y.-C. Yeo, Towards direct band-to-band tunneling in P-channel tunneling field effect transistor (TFET): technology enablement by Germanium-tin (GeSn). IEDM Tech. Dig. 16(3), 1 (2013).
18.
go back to reference Y.-C. Fang, K.-Y. Chen, C.-H. Hsieh, C.-C. Su, and Y.-H. Wu, N-MOSFETs formed on solid phase epitaxially grown GeSn film with passivation by oxygen plasma featuring high mobility. ACS Appl. Mater. Interfaces 7(48), 26374 (2015).CrossRef Y.-C. Fang, K.-Y. Chen, C.-H. Hsieh, C.-C. Su, and Y.-H. Wu, N-MOSFETs formed on solid phase epitaxially grown GeSn film with passivation by oxygen plasma featuring high mobility. ACS Appl. Mater. Interfaces 7(48), 26374 (2015).CrossRef
19.
go back to reference J.P. Dismukes, L. Ekstrom, and R.J. Paff, Lattice parameter and density in germanium-silicon alloys. J. Phys. Chem. 68(10), 3021 (1964).CrossRef J.P. Dismukes, L. Ekstrom, and R.J. Paff, Lattice parameter and density in germanium-silicon alloys. J. Phys. Chem. 68(10), 3021 (1964).CrossRef
20.
go back to reference G. Celotti, D. Nobili, and P. Ostoja, Lattice parameter study of silicon uniformly doped with boron and phosphorus. J. Mater. Sci. 9, 821 (1974).CrossRef G. Celotti, D. Nobili, and P. Ostoja, Lattice parameter study of silicon uniformly doped with boron and phosphorus. J. Mater. Sci. 9, 821 (1974).CrossRef
21.
go back to reference G. Murrieta, A. Tapia, and R. de Coss, Structural stability of carbon in the face-centered-cubic (Fm-3m) phase. Carbon 42(4), 771 (2004).CrossRef G. Murrieta, A. Tapia, and R. de Coss, Structural stability of carbon in the face-centered-cubic (Fm-3m) phase. Carbon 42(4), 771 (2004).CrossRef
22.
go back to reference M. Berti, D. De Salvador, A.V. Drigo, F. Romanato, J. Stangl, S. Zerlauth, F. Schäffler, and G. Bauer, Lattice parameter in Si1−yCy epilayers: deviation from Vegard’s rule. Appl. Phys. Lett. 72(13), 1602 (1998).CrossRef M. Berti, D. De Salvador, A.V. Drigo, F. Romanato, J. Stangl, S. Zerlauth, F. Schäffler, and G. Bauer, Lattice parameter in Si1−yCy epilayers: deviation from Vegard’s rule. Appl. Phys. Lett. 72(13), 1602 (1998).CrossRef
23.
go back to reference T.-Y. Liow, K.-M. Tan, D. Weeks, R.T.P. Lee, M. Zhu, K.-M. Hoe, C.-H. Tung, M. Bauer, J. Spear, S.G. Thomas, G. Samudra, N. Balasubramanian, and Y.-C. Yeo, Strained n-channel FinFETs featuring in situ doped silicon-carbon (Si1−yCy) source and drain stressors with high carbon content. IEEE Trans. Electron Dev. 55(9), 2475 (2008).CrossRef T.-Y. Liow, K.-M. Tan, D. Weeks, R.T.P. Lee, M. Zhu, K.-M. Hoe, C.-H. Tung, M. Bauer, J. Spear, S.G. Thomas, G. Samudra, N. Balasubramanian, and Y.-C. Yeo, Strained n-channel FinFETs featuring in situ doped silicon-carbon (Si1−yCy) source and drain stressors with high carbon content. IEEE Trans. Electron Dev. 55(9), 2475 (2008).CrossRef
24.
go back to reference S.-M. Koh, X. Wang, K. Sekar, W. Krull, G.S. Samudra, and Y.-C. Yeo, Silicon-carbon formed using cluster-carbon implant and laser-induced epitaxy for application as source/drain stressors in strained n-channel MOSFETs. J. Electrochem. Soc. 156(5), H361 (2009).CrossRef S.-M. Koh, X. Wang, K. Sekar, W. Krull, G.S. Samudra, and Y.-C. Yeo, Silicon-carbon formed using cluster-carbon implant and laser-induced epitaxy for application as source/drain stressors in strained n-channel MOSFETs. J. Electrochem. Soc. 156(5), H361 (2009).CrossRef
25.
go back to reference S. Yamamoto, K. Takeuchi, R. Yokogawa, M. Tomita, D. Kosemura, K. Usuda, and A. Ogura, Evaluation of anisotropic biaxial stress in Si1-XGex/Ge mesa-structure by oil-immersion Raman spectroscopy. ECS Trans. 66(4), 39 (2015).CrossRef S. Yamamoto, K. Takeuchi, R. Yokogawa, M. Tomita, D. Kosemura, K. Usuda, and A. Ogura, Evaluation of anisotropic biaxial stress in Si1-XGex/Ge mesa-structure by oil-immersion Raman spectroscopy. ECS Trans. 66(4), 39 (2015).CrossRef
26.
go back to reference Y. Takahashi, R. Yokogawa, T. Murakami, I. Hirosawa, K. Suda, and A. Ogura, Evaluation of anisotropic three-dimensional strain relaxation in stripe-shaped Ge1-xSnx mesa structure. ECS Trans. 86(7), 329 (2018).CrossRef Y. Takahashi, R. Yokogawa, T. Murakami, I. Hirosawa, K. Suda, and A. Ogura, Evaluation of anisotropic three-dimensional strain relaxation in stripe-shaped Ge1-xSnx mesa structure. ECS Trans. 86(7), 329 (2018).CrossRef
27.
go back to reference K. Yoshioka, R. Yokogawa, and A. Ogura, Anisotropic biaxial stress evaluation in metal-organic chemical vapor deposition grown Ge1-xSnx mesa structure by oil-immersion Raman spectroscopy. Thin Solid Films 697, 137797 (2020).CrossRef K. Yoshioka, R. Yokogawa, and A. Ogura, Anisotropic biaxial stress evaluation in metal-organic chemical vapor deposition grown Ge1-xSnx mesa structure by oil-immersion Raman spectroscopy. Thin Solid Films 697, 137797 (2020).CrossRef
28.
go back to reference H.-S.P. Wong, K. Akarvardar, D. Antoniadis, J. Bokor, C. Hu, T.-J.K. Liu, S. Mitra, J.D. Plummer, and S. Salahuddin, A density metric for semiconductor technology. Proc. IEEE 108(4), 478 (2020).CrossRef H.-S.P. Wong, K. Akarvardar, D. Antoniadis, J. Bokor, C. Hu, T.-J.K. Liu, S. Mitra, J.D. Plummer, and S. Salahuddin, A density metric for semiconductor technology. Proc. IEEE 108(4), 478 (2020).CrossRef
29.
go back to reference D.-M. Tang, C.-L. Ren, M.-S. Wang, X. Wei, N. Kawamoto, C. Liu, Y. Bando, M. Mitome, N. Fukata, and D. Golberg, Mechanical properties of Si nanowires as revealed by in situ transmission electron microscopy and molecular dynamics simulations. Nano Lett. 12(4), 1898 (2012).CrossRef D.-M. Tang, C.-L. Ren, M.-S. Wang, X. Wei, N. Kawamoto, C. Liu, Y. Bando, M. Mitome, N. Fukata, and D. Golberg, Mechanical properties of Si nanowires as revealed by in situ transmission electron microscopy and molecular dynamics simulations. Nano Lett. 12(4), 1898 (2012).CrossRef
30.
go back to reference C.-L. Hsin, W. Mai, Y. Gu, Y. Gao, C.-T. Huang, Y. Liu, L.-J. Chen, and Z.-L. Wang, Elastic properties and buckling of silicon nanowires. Adv. Mater. 20, 3919 (2008).CrossRef C.-L. Hsin, W. Mai, Y. Gu, Y. Gao, C.-T. Huang, Y. Liu, L.-J. Chen, and Z.-L. Wang, Elastic properties and buckling of silicon nanowires. Adv. Mater. 20, 3919 (2008).CrossRef
31.
go back to reference Y.-S. Sohn, J. Park, G. Yoon, J. Song, S.-W. Jee, J.-H. Lee, S. Na, T. Kwon, and K. Eom, Mechanical properties of silicon nanowires. Nanoscale Res. Lett. 5, 211 (2010).CrossRef Y.-S. Sohn, J. Park, G. Yoon, J. Song, S.-W. Jee, J.-H. Lee, S. Na, T. Kwon, and K. Eom, Mechanical properties of silicon nanowires. Nanoscale Res. Lett. 5, 211 (2010).CrossRef
32.
go back to reference K. Yoshioka, R. Yokogawa, N. Sawamoto, and A. Ogura, Anisotropic biaxial strain evaluation in carbon-doped silicon using water-immersion Raman spectroscopy. ECS Trans. 92(4), 33 (2019).CrossRef K. Yoshioka, R. Yokogawa, N. Sawamoto, and A. Ogura, Anisotropic biaxial strain evaluation in carbon-doped silicon using water-immersion Raman spectroscopy. ECS Trans. 92(4), 33 (2019).CrossRef
33.
go back to reference S. Takagi, A. Toriumi, M. Iwase, and H. Tango, On the universality of inversion layer mobility in Si MOSFET’s: part I-effects of substrate impurity concentration. IEEE Trans. Electron Dev. 41(12), 2357 (1994).CrossRef S. Takagi, A. Toriumi, M. Iwase, and H. Tango, On the universality of inversion layer mobility in Si MOSFET’s: part I-effects of substrate impurity concentration. IEEE Trans. Electron Dev. 41(12), 2357 (1994).CrossRef
34.
go back to reference H. Irie, K. Kita, K. Kyuno, and A. Toriumi, In-plane mobility anisotropy and universality under uni-axial strains in n- and p-MOS inversion layers on (loo), (110), and (111) Si. IEDM Tech. Dig. 2004, 225 (2004). H. Irie, K. Kita, K. Kyuno, and A. Toriumi, In-plane mobility anisotropy and universality under uni-axial strains in n- and p-MOS inversion layers on (loo), (110), and (111) Si. IEDM Tech. Dig. 2004, 225 (2004).
35.
go back to reference Y.M. Niquet, C. Delerue, and C. Krzeminski, Effects of strain on the carrier mobility in silicon nanowires. Nano Lett. 12, 3545 (2012).CrossRef Y.M. Niquet, C. Delerue, and C. Krzeminski, Effects of strain on the carrier mobility in silicon nanowires. Nano Lett. 12, 3545 (2012).CrossRef
36.
go back to reference I. Hirosawa, K. Yoshioka, R. Yokogawa, A. Ogura, and T. Watanabe, 19th International Conference on Defects-Recognition, Imaging and Physics in Semiconductors, WeP-08 (2022) I. Hirosawa, K. Yoshioka, R. Yokogawa, A. Ogura, and T. Watanabe, 19th International Conference on Defects-Recognition, Imaging and Physics in Semiconductors, WeP-08 (2022)
37.
go back to reference W.A. Brantley, Calculated elastic constants for stress problems associated with semiconductor devices. J. Appl. Phys. 44(1), 534 (1973).CrossRef W.A. Brantley, Calculated elastic constants for stress problems associated with semiconductor devices. J. Appl. Phys. 44(1), 534 (1973).CrossRef
38.
go back to reference J.O. Kim, J.D. Achenbach, P.B. Mirkarimi, M. Shinn, and S.A. Barnett, Elastic constants of single-crystal transition-metal nitride films measured by line-focus acoustic microscopy. J. Appl. Phys. 72(5), 1805 (1992).CrossRef J.O. Kim, J.D. Achenbach, P.B. Mirkarimi, M. Shinn, and S.A. Barnett, Elastic constants of single-crystal transition-metal nitride films measured by line-focus acoustic microscopy. J. Appl. Phys. 72(5), 1805 (1992).CrossRef
39.
go back to reference E. Anastassakis, A. Cantarero, and M. Cardona, Piezo-Raman measurements and anharmonic parameters in silicon and diamond. Phys. Rev. B 41(11), 7529 (1990).CrossRef E. Anastassakis, A. Cantarero, and M. Cardona, Piezo-Raman measurements and anharmonic parameters in silicon and diamond. Phys. Rev. B 41(11), 7529 (1990).CrossRef
40.
go back to reference M.A. Hopcroft, W.D. Nix, and T.W. Kenny, What is the Young’s modulus of silicon? J. Microelectromech. Syst. 19(2), 229 (2010).CrossRef M.A. Hopcroft, W.D. Nix, and T.W. Kenny, What is the Young’s modulus of silicon? J. Microelectromech. Syst. 19(2), 229 (2010).CrossRef
41.
go back to reference E.J. Boyd, and D. Uttamchandani, Measurement of the anisotropy of Young’s modulus in single-crystal silicon. J. Microelectromech. Syst. 21(1), 243 (2012).CrossRef E.J. Boyd, and D. Uttamchandani, Measurement of the anisotropy of Young’s modulus in single-crystal silicon. J. Microelectromech. Syst. 21(1), 243 (2012).CrossRef
42.
go back to reference J.J. Wortman, and R.A. Evans, Young’s modulus, shear modulus, and Poisson’s ratio in silicon and germanium. J. Appl. Phys. 36(1), 153 (1965).CrossRef J.J. Wortman, and R.A. Evans, Young’s modulus, shear modulus, and Poisson’s ratio in silicon and germanium. J. Appl. Phys. 36(1), 153 (1965).CrossRef
Metadata
Title
Evaluation of Strain-Relaxation of Carbon-Doped Silicon Nanowires and Its Crystal Orientation Dependence Using X-Ray Diffraction Reciprocal Space Mapping
Authors
Kazutoshi Yoshioka
Ichiro Hirosawa
Takeshi Watanabe
Ryo Yokogawa
Atsushi Ogura
Publication date
23-05-2023
Publisher
Springer US
Published in
Journal of Electronic Materials / Issue 8/2023
Print ISSN: 0361-5235
Electronic ISSN: 1543-186X
DOI
https://doi.org/10.1007/s11664-023-10497-5

Other articles of this Issue 8/2023

Journal of Electronic Materials 8/2023 Go to the issue