Skip to main content
Top
Published in: Continuum Mechanics and Thermodynamics 3/2023

22-06-2021 | Original Article

Evaluation of stress intensity factors under thermal effect employing domain integral method and ordinary state based peridynamic theory

Authors: Hanlin Wang, Satoyuki Tanaka, Selda Oterkus, Erkan Oterkus

Published in: Continuum Mechanics and Thermodynamics | Issue 3/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this article, several thermoelastic benchmark cases are studied within the framework of ordinary state based peridynamic theory (OSPD). By using OSPD, the limitations of geometrical discontinuity in fracture analysis can be overcome. Meanwhile, double nodes can also be avoided during crack definition. A domain integral method with thermal effect is applied in calculating the thermal stress intensity factors (TSIFs). Meanwhile, peridynamic differential operators are utilized to rewrite the spatial derivatives in the domain integral. Numerical investigations of TSIFs in the single and mixed-mode crack scenarios are provided respectively, and verified by the reference solutions. Good agreements between OSPD and the reference solutions show high performance and capability of the proposed method in thermoelastic fracture analysis.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Irwin, G.R.: Analysis of stress and strains near the end of a crack traversing a plate. ASME J. Appl. Mech. 24(3), 361–364 (1957)ADS Irwin, G.R.: Analysis of stress and strains near the end of a crack traversing a plate. ASME J. Appl. Mech. 24(3), 361–364 (1957)ADS
2.
go back to reference Rice, J.R.: A path independent integral and the approximate analysis of strain concentration by notches and cracks. ASME J. Appl. Mech. 35, 379–386 (1968)ADS Rice, J.R.: A path independent integral and the approximate analysis of strain concentration by notches and cracks. ASME J. Appl. Mech. 35, 379–386 (1968)ADS
3.
go back to reference Chen, Y.M.: Numerical computation of dynamic stress intensity factors by a Lagrangian finite-difference method (the HEMP code). Eng. Fract. Mech. 7(4), 653–660 (1975) Chen, Y.M.: Numerical computation of dynamic stress intensity factors by a Lagrangian finite-difference method (the HEMP code). Eng. Fract. Mech. 7(4), 653–660 (1975)
4.
go back to reference Stern, M., Becker, E.B., Dunham, R.S.: A contour integral computation of mixed-mode stress intensity factors. Int. J. Fract. 12(3), 359–368 (1976) Stern, M., Becker, E.B., Dunham, R.S.: A contour integral computation of mixed-mode stress intensity factors. Int. J. Fract. 12(3), 359–368 (1976)
5.
go back to reference Yau, J.F., Wang, S.S., Corten, H.T.: A mixed-mode crack analysis of isotropic solids using conservation laws of elasticity. ASME J. Appl. Mech. 47, 335–341 (1980)ADSMATH Yau, J.F., Wang, S.S., Corten, H.T.: A mixed-mode crack analysis of isotropic solids using conservation laws of elasticity. ASME J. Appl. Mech. 47, 335–341 (1980)ADSMATH
6.
go back to reference Yu, H., Wu, L., Guo, L., Du, S., He, Q.: Investigation of mixed-mode stress intensity factors for nonhomogeneous materials using an interaction integral method. Int. J. Solids Struct. 46(20), 3710–3724 (1980)MATH Yu, H., Wu, L., Guo, L., Du, S., He, Q.: Investigation of mixed-mode stress intensity factors for nonhomogeneous materials using an interaction integral method. Int. J. Solids Struct. 46(20), 3710–3724 (1980)MATH
7.
go back to reference Song, S.H., Paulino, G.H.: Dynamic stress intensity factors for homogeneous and smoothly heterogeneous materials using the interaction integral method. Int. J. Solids Struct. 43(12), 4830–4866 (1980)MATH Song, S.H., Paulino, G.H.: Dynamic stress intensity factors for homogeneous and smoothly heterogeneous materials using the interaction integral method. Int. J. Solids Struct. 43(12), 4830–4866 (1980)MATH
8.
go back to reference Kim, J.H., Paulino, G.H.: Consistent formulations of the interaction integral method for fracture of functionally graded materials. ASME J. Appl. Mech. 72(3), 351–364 (2005)ADSMATH Kim, J.H., Paulino, G.H.: Consistent formulations of the interaction integral method for fracture of functionally graded materials. ASME J. Appl. Mech. 72(3), 351–364 (2005)ADSMATH
9.
go back to reference Zamani, A., Eslami, M.R.: Implementation of the extended finite element method for dynamic thermoelastic fracture initiation. Int. J. Solids Struct. 47(6), 1392–1404 (2010)MATH Zamani, A., Eslami, M.R.: Implementation of the extended finite element method for dynamic thermoelastic fracture initiation. Int. J. Solids Struct. 47(6), 1392–1404 (2010)MATH
10.
go back to reference Duflot, M.: The extended finite element method in thermoelastic fracture mechanics. Int. J. Numer. Methods Eng. 74(5), 827–847 (2008)MathSciNetMATH Duflot, M.: The extended finite element method in thermoelastic fracture mechanics. Int. J. Numer. Methods Eng. 74(5), 827–847 (2008)MathSciNetMATH
11.
go back to reference Nguyen, M.N., Bui, T.Q., Nguyen, N.T., Truong, T.T.: Simulation of dynamic and static thermoelastic fracture problems by extended nodal gradient finite elements. Int. J. Mech. Sci. 134, 370–386 (2017) Nguyen, M.N., Bui, T.Q., Nguyen, N.T., Truong, T.T.: Simulation of dynamic and static thermoelastic fracture problems by extended nodal gradient finite elements. Int. J. Mech. Sci. 134, 370–386 (2017)
12.
go back to reference Hosseini-Tehrani, P., Hosseini-Godarzi, A.R., Tavangar, M.: Boundary element analysis of stress intensity factor K\(_{\rm I}\) in some two-dimensional dynamic thermoelastic problems. Eng. Anal. Bound. Elem. 29(3), 232–240 (2005)MATH Hosseini-Tehrani, P., Hosseini-Godarzi, A.R., Tavangar, M.: Boundary element analysis of stress intensity factor K\(_{\rm I}\) in some two-dimensional dynamic thermoelastic problems. Eng. Anal. Bound. Elem. 29(3), 232–240 (2005)MATH
13.
go back to reference Reddy, J.N.: An Introduction to Continuum Mechanics. Cambridge University Press, Cambridge (2013) Reddy, J.N.: An Introduction to Continuum Mechanics. Cambridge University Press, Cambridge (2013)
14.
go back to reference Hellan, K.: Introduction to Fracture Mechanics. McGraw-Hill, New York (1984) Hellan, K.: Introduction to Fracture Mechanics. McGraw-Hill, New York (1984)
15.
go back to reference Hillerborg, A., Modéer, M., Petersson, P.E.: Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements. Cem. Concr. Res. 6(6), 773–781 (1976) Hillerborg, A., Modéer, M., Petersson, P.E.: Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements. Cem. Concr. Res. 6(6), 773–781 (1976)
16.
go back to reference Xu, X.P., Needleman, A.: Numerical simulations of fast crack growth in brittle solids. J. Mech. Phys. Solids 42(5), 1397–1434 (1994)ADSMATH Xu, X.P., Needleman, A.: Numerical simulations of fast crack growth in brittle solids. J. Mech. Phys. Solids 42(5), 1397–1434 (1994)ADSMATH
17.
go back to reference Nguyen, T.T., Yvonnet, J., Bornert, M., Chateau, C., Sab, K., Romani, R., Le Roy, R.: On the choice of parameters in the phase field method for simulating crack initiation with experimental validation. Int. J. Fract. 197(2), 213–226 (2016) Nguyen, T.T., Yvonnet, J., Bornert, M., Chateau, C., Sab, K., Romani, R., Le Roy, R.: On the choice of parameters in the phase field method for simulating crack initiation with experimental validation. Int. J. Fract. 197(2), 213–226 (2016)
18.
go back to reference Gomez, H., van der Zee, K.G.: Computational Phase-field Modeling. Encyclopedia of Computational Mechanics, 2nd edn, pp. 1–35 (2018) Gomez, H., van der Zee, K.G.: Computational Phase-field Modeling. Encyclopedia of Computational Mechanics, 2nd edn, pp. 1–35 (2018)
19.
go back to reference Tanaka, S., Suzuki, H., Sadamoto, S., Sannomaru, S., Yu, T., Bui, T.Q.: J-integral evaluation for 2D mixed-mode crack problems employing a meshfree stabilized conforming nodal integration method. Comput. Mech. 58, 185–198 (2016)MathSciNetMATH Tanaka, S., Suzuki, H., Sadamoto, S., Sannomaru, S., Yu, T., Bui, T.Q.: J-integral evaluation for 2D mixed-mode crack problems employing a meshfree stabilized conforming nodal integration method. Comput. Mech. 58, 185–198 (2016)MathSciNetMATH
20.
go back to reference Tanaka, S., Suzuki, H., Sadamoto, S., Imachi, M., Bui, T.Q.: Analysis of cracked shear deformable plates by an effective meshfree plate formulation. Eng. Fract. Mech. 144, 142–157 (2015) Tanaka, S., Suzuki, H., Sadamoto, S., Imachi, M., Bui, T.Q.: Analysis of cracked shear deformable plates by an effective meshfree plate formulation. Eng. Fract. Mech. 144, 142–157 (2015)
21.
go back to reference Tanaka, S., Suzuki, H., Sadamoto, S., Okazawa, S., Yu, T.T., Bui, T.Q.: Accurate evaluation of mixed-mode intensity factors of cracked shear-deformable plates by an enriched meshfree Galerkin formulation. Arch. Appl. Mech. 87(2), 279–298 (2017)ADS Tanaka, S., Suzuki, H., Sadamoto, S., Okazawa, S., Yu, T.T., Bui, T.Q.: Accurate evaluation of mixed-mode intensity factors of cracked shear-deformable plates by an enriched meshfree Galerkin formulation. Arch. Appl. Mech. 87(2), 279–298 (2017)ADS
22.
go back to reference Pant, M., Singh, I.V., Mishra, B.K.: Numerical simulation of thermo-elastic fracture problems using element free Galerkin method. Int. J. Mech. Sci. 52(8), 1745–1755 (2010) Pant, M., Singh, I.V., Mishra, B.K.: Numerical simulation of thermo-elastic fracture problems using element free Galerkin method. Int. J. Mech. Sci. 52(8), 1745–1755 (2010)
23.
go back to reference Dell’Isola, F., Andreaus, U., Placidi, L.: At the origins and in the vanguard of peridynamics, non-local and higher-gradient continuum mechanics: an underestimated and still topical contribution of Gabrio Piola. Math. Mech. Solids 20(4), 887–928 (2015)MathSciNetMATH Dell’Isola, F., Andreaus, U., Placidi, L.: At the origins and in the vanguard of peridynamics, non-local and higher-gradient continuum mechanics: an underestimated and still topical contribution of Gabrio Piola. Math. Mech. Solids 20(4), 887–928 (2015)MathSciNetMATH
24.
go back to reference Silling, S.A.: Reformulation of elasticity theory for discontinuities and long-range forces. J. Mech. Phys. Solids 48(1), 175–209 (2000)MathSciNetADSMATH Silling, S.A.: Reformulation of elasticity theory for discontinuities and long-range forces. J. Mech. Phys. Solids 48(1), 175–209 (2000)MathSciNetADSMATH
25.
go back to reference Imachi, M., Tanaka, S., Bui, T.Q.: Mixed-mode dynamic stress intensity factors evaluation using ordinary state-based peridynamics. Theor. Appl. Fract. Mech. 93, 97–104 (2018) Imachi, M., Tanaka, S., Bui, T.Q.: Mixed-mode dynamic stress intensity factors evaluation using ordinary state-based peridynamics. Theor. Appl. Fract. Mech. 93, 97–104 (2018)
26.
go back to reference Dai, M.J., Tanaka, S., Oterkus, S., Oterkus, E.: Mixed-mode stress intensity factors evaluation of flat shells under in-plane loading employing ordinary state-based peridynamics. Theor. Appl. Fract. Mech. 102841 (2020) Dai, M.J., Tanaka, S., Oterkus, S., Oterkus, E.: Mixed-mode stress intensity factors evaluation of flat shells under in-plane loading employing ordinary state-based peridynamics. Theor. Appl. Fract. Mech. 102841 (2020)
27.
go back to reference Dai, M.J., Tanaka, S., Bui, T.Q., Oterkus, S., Oterkus, E.: Fracture parameter analysis of flat shells under out-of-plane loading using ordinary state-based peridynamics. Eng. Fract. Mech. 244, 107560 (2021) Dai, M.J., Tanaka, S., Bui, T.Q., Oterkus, S., Oterkus, E.: Fracture parameter analysis of flat shells under out-of-plane loading using ordinary state-based peridynamics. Eng. Fract. Mech. 244, 107560 (2021)
28.
go back to reference Oterkus, S., Madenci, E., Agwai, A.: Fully coupled peridynamic thermomechanics. J. Mech. Phys. Solids 64, 1–23 (2014)MathSciNetADSMATH Oterkus, S., Madenci, E., Agwai, A.: Fully coupled peridynamic thermomechanics. J. Mech. Phys. Solids 64, 1–23 (2014)MathSciNetADSMATH
29.
go back to reference Madenci, E., Oterkus, S.: Ordinary state-based peridynamics for thermoviscoelastic deformation. Eng. Fract. Mech. 175, 31–45 (2017) Madenci, E., Oterkus, S.: Ordinary state-based peridynamics for thermoviscoelastic deformation. Eng. Fract. Mech. 175, 31–45 (2017)
30.
go back to reference Nguyen, C.T., Oterkus, S.: Peridynamics for the thermomechanical behavior of shell structures. Eng. Fract. Mech. 219, 106623 (2019) Nguyen, C.T., Oterkus, S.: Peridynamics for the thermomechanical behavior of shell structures. Eng. Fract. Mech. 219, 106623 (2019)
31.
go back to reference Ren, H., Zhuang, X., Rabczuk, T.: Dual-horizon peridynamics: a stable solution to varying horizons. Comput. Methods Appl. Mech. Eng. 318, 762–782 (2017)MathSciNetADSMATH Ren, H., Zhuang, X., Rabczuk, T.: Dual-horizon peridynamics: a stable solution to varying horizons. Comput. Methods Appl. Mech. Eng. 318, 762–782 (2017)MathSciNetADSMATH
32.
go back to reference Dorduncu, M., Borut, A., Madenci, E.: Ordinary-state based peridynamic truss element. In: 56th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, 0465 (2015) Dorduncu, M., Borut, A., Madenci, E.: Ordinary-state based peridynamic truss element. In: 56th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, 0465 (2015)
33.
go back to reference Silling, S.A., Epton, M., Weckner, O., Xu, J., Askari, E.: Peridynamic states and constitutive modeling. J. Elast. 88(2), 151–184 (2007)MathSciNetMATH Silling, S.A., Epton, M., Weckner, O., Xu, J., Askari, E.: Peridynamic states and constitutive modeling. J. Elast. 88(2), 151–184 (2007)MathSciNetMATH
34.
go back to reference Madenci, E., Oterkus, E.: Peridynamic Theory. Peridynamic Theory and Its Applications. Springer, New York (2014)MATH Madenci, E., Oterkus, E.: Peridynamic Theory. Peridynamic Theory and Its Applications. Springer, New York (2014)MATH
35.
go back to reference Solín, P.: Partial Differential Equations and the Finite Element Method. Wiley, New York Solín, P.: Partial Differential Equations and the Finite Element Method. Wiley, New York
36.
go back to reference Causon, D.M., Mingham, C.G.: Introductory Finite Difference Methods for PDEs. Bookboon (2010) Causon, D.M., Mingham, C.G.: Introductory Finite Difference Methods for PDEs. Bookboon (2010)
37.
go back to reference Coleman, C.J., Tullock, D.L., Phan-Thien, N.: An effective boundary element method for inhomogeneous partial differential equations. Z. Angew. Math. Phys. ZAMP 42(5), 730–745 (1991)MathSciNetMATH Coleman, C.J., Tullock, D.L., Phan-Thien, N.: An effective boundary element method for inhomogeneous partial differential equations. Z. Angew. Math. Phys. ZAMP 42(5), 730–745 (1991)MathSciNetMATH
38.
go back to reference Cho, H.A., Golberg, M.A., Muleshkov, A.S., Li, X.: Trefftz methods for time dependent partial differential equations. CMC Comput. Mater. Continua 1, 1–38 (2004) Cho, H.A., Golberg, M.A., Muleshkov, A.S., Li, X.: Trefftz methods for time dependent partial differential equations. CMC Comput. Mater. Continua 1, 1–38 (2004)
39.
go back to reference Madenci, E., Barut, A., Futch, M.: Peridynamic differential operator and its applications. Comput. Methods Appl. Mech. Eng. 304, 408–451 (2016)MathSciNetADSMATH Madenci, E., Barut, A., Futch, M.: Peridynamic differential operator and its applications. Comput. Methods Appl. Mech. Eng. 304, 408–451 (2016)MathSciNetADSMATH
40.
go back to reference Madenci, E., Dorduncu, M., Barut, A., Futch, M.: Numerical solution of linear and nonlinear partial differential equations using the peridynamic differential operator. Numer. Methods Partial Differ. Equ. 33(5), 1726–1753 (2017)MathSciNetMATH Madenci, E., Dorduncu, M., Barut, A., Futch, M.: Numerical solution of linear and nonlinear partial differential equations using the peridynamic differential operator. Numer. Methods Partial Differ. Equ. 33(5), 1726–1753 (2017)MathSciNetMATH
41.
go back to reference Madenci, E., Barut, A., Dorduncu, M.: Peridynamic Differential Operator for Numerical Analysis. Springer, Berlin (2019)MATH Madenci, E., Barut, A., Dorduncu, M.: Peridynamic Differential Operator for Numerical Analysis. Springer, Berlin (2019)MATH
42.
go back to reference Wang, H.: Fracture Analysis in Marine Batteries by Peridynamic Theory. Doctoral dissertation, University of Strathclyde (2018) Wang, H.: Fracture Analysis in Marine Batteries by Peridynamic Theory. Doctoral dissertation, University of Strathclyde (2018)
43.
go back to reference Wang, H., Oterkus, E., Oterkus, S.: Three-dimensional peridynamic model for predicting fracture evolution during the lithiation process. Energies 11(6), 1461 (2018) Wang, H., Oterkus, E., Oterkus, S.: Three-dimensional peridynamic model for predicting fracture evolution during the lithiation process. Energies 11(6), 1461 (2018)
44.
go back to reference Wilson, W.K., Yu, I.W.: The use of the J-integral in thermal stress crack problems. Int. J. Fract. 15(4), 377–387 (1979) Wilson, W.K., Yu, I.W.: The use of the J-integral in thermal stress crack problems. Int. J. Fract. 15(4), 377–387 (1979)
45.
go back to reference Fung, Y.C.: Foundations of Solid Mechanics. Prentice-Hall Inc, New Jersey (1965) Fung, Y.C.: Foundations of Solid Mechanics. Prentice-Hall Inc, New Jersey (1965)
46.
go back to reference Anderson, T.L.: Fracture Mechanics: Fundamentals and Applications. CRC Press, Boca Raton (2017)MATH Anderson, T.L.: Fracture Mechanics: Fundamentals and Applications. CRC Press, Boca Raton (2017)MATH
47.
go back to reference Silling, S.A., Lehoucq, R.B.: Peridynamic theory of solid mechanics. Adv. Appl. Mech. 44, 73–168 (2010) Silling, S.A., Lehoucq, R.B.: Peridynamic theory of solid mechanics. Adv. Appl. Mech. 44, 73–168 (2010)
48.
go back to reference Narasimhan, T.N.: Fourier’s heat conduction equation: history, influence, and connections. Rev. Geophys. 37(1), 151–172 (1999)ADS Narasimhan, T.N.: Fourier’s heat conduction equation: history, influence, and connections. Rev. Geophys. 37(1), 151–172 (1999)ADS
49.
go back to reference Underwood, P.: Dynamic Relaxation Computational Methods for Transient Analysis, vol. 1, 245–265. Elsevier Science Publishers B.V. (1983) Underwood, P.: Dynamic Relaxation Computational Methods for Transient Analysis, vol. 1, 245–265. Elsevier Science Publishers B.V. (1983)
50.
go back to reference Kilic, B., Madenci, E.: An adaptive dynamic relaxation method for quasi-static simulations using the peridynamic theory. Theor. Appl. Fract. Mech. 53(3), 194–204 (2010) Kilic, B., Madenci, E.: An adaptive dynamic relaxation method for quasi-static simulations using the peridynamic theory. Theor. Appl. Fract. Mech. 53(3), 194–204 (2010)
51.
go back to reference Chen, H., Wang, Q., Liu, G.R., Wang, Y., Sun, J.: Simulation of thermoelastic crack problems using singular edge-based smoothed finite element method. Int. J. Mech. Sci. 115, 123–134 (2016) Chen, H., Wang, Q., Liu, G.R., Wang, Y., Sun, J.: Simulation of thermoelastic crack problems using singular edge-based smoothed finite element method. Int. J. Mech. Sci. 115, 123–134 (2016)
52.
go back to reference Prasad, N.N.V., Aliabadi, M.H., Rooke, D.P.: The dual boundary element method for thermoelastic crack problems. Int. J. Fract. 66(3), 255–272 (1994)ADS Prasad, N.N.V., Aliabadi, M.H., Rooke, D.P.: The dual boundary element method for thermoelastic crack problems. Int. J. Fract. 66(3), 255–272 (1994)ADS
53.
go back to reference Zhou, Z., Leung, A.Y.T., Xu, X., Luo, X.: Mixed-mode thermal stress intensity factors from the finite element discretized symplectic method. Int. J. Solids Struct. 51(21–22), 3798–3806 (2014) Zhou, Z., Leung, A.Y.T., Xu, X., Luo, X.: Mixed-mode thermal stress intensity factors from the finite element discretized symplectic method. Int. J. Solids Struct. 51(21–22), 3798–3806 (2014)
54.
go back to reference Murkami, Y.: Stress Intensity Factor Handbook. Pergamon Press, New York (1987) Murkami, Y.: Stress Intensity Factor Handbook. Pergamon Press, New York (1987)
Metadata
Title
Evaluation of stress intensity factors under thermal effect employing domain integral method and ordinary state based peridynamic theory
Authors
Hanlin Wang
Satoyuki Tanaka
Selda Oterkus
Erkan Oterkus
Publication date
22-06-2021
Publisher
Springer Berlin Heidelberg
Published in
Continuum Mechanics and Thermodynamics / Issue 3/2023
Print ISSN: 0935-1175
Electronic ISSN: 1432-0959
DOI
https://doi.org/10.1007/s00161-021-01033-z

Other articles of this Issue 3/2023

Continuum Mechanics and Thermodynamics 3/2023 Go to the issue

Premium Partners