Skip to main content
Top
Published in: Computing 9/2018

01-02-2018

Evaluation of the computational efficacy in GPU-accelerated simulations of spiking neurons

Authors: Kazuhisa Fujita, Shun Okuno, Yoshiki Kashimori

Published in: Computing | Issue 9/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

To understand the mechanism of information processing by a biological neural network, computer simulation of a large-scale spiking neural network is an important method. However, because of a high computation cost of the simulation of a large-scale spiking neural network, the simulation requires high performance computing implemented by a supercomputer or a computer cluster. Recently, hardware for parallel computing such as a multi-core CPU and a graphics card with a graphics processing unit (GPU) is built in a gaming computer and a workstation. Thus, parallel computing using this hardware is becoming widespread, allowing us to obtain powerful computing power for simulation of a large-scale spiking neural network. However, it is not clear how much increased performance the parallel computing method using a new GPU yields in the simulation of a large-scale spiking neural network. In this study, we compared computation time between the computing methods with CPUs and GPUs in a simulation of neuronal models. We developed computer programs of neuronal simulations for the computing systems that consist of a gaming graphics card with new architecture (the NVIDIA GTX 1080) and an accelerator board using a GPU (the NVIDIA Tesla K20C). Our results show that the computing systems can perform a simulation of a large number of neurons faster than CPU-based systems. Furthermore, we investigated the accuracy of a simulation using single precision floating point. We show that the simulation results of single precision were accurate enough compared with those of double precision, but chaotic neuronal response calculated by a GPU using single precision is prominently different from that calculated by a CPU using double precision. Furthermore, the difference in chaotic dynamics appeared even if we used double precision of a GPU. In conclusion, the GPU-based computing system exhibits a higher computing performance than the CPU-based system, even if the GPU system includes data transfer from a graphics card to host memory.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Aihara K, Matsumoto G, Ikegaya Y (1984) Periodic and non-periodic responses of a periodically forced Hodgkin–Huxley oscillator. J Theor Biol 109(2):249–269CrossRef Aihara K, Matsumoto G, Ikegaya Y (1984) Periodic and non-periodic responses of a periodically forced Hodgkin–Huxley oscillator. J Theor Biol 109(2):249–269CrossRef
2.
go back to reference Ananthanarayanan R, Esser SK, Simon HD, Modha DS (2009) The cat is out of the bag: cortical simulations with \(10^9\) neurons, \(10^{13}\) synapses. In: IEEE computer society, pp. 1–12 Ananthanarayanan R, Esser SK, Simon HD, Modha DS (2009) The cat is out of the bag: cortical simulations with \(10^9\) neurons, \(10^{13}\) synapses. In: IEEE computer society, pp. 1–12
3.
go back to reference Baladron J, Fasoli D, Faugeras O (2012) Three applications of GPU computing in neuroscience. Comput Sci Eng 14(3):40–47CrossRef Baladron J, Fasoli D, Faugeras O (2012) Three applications of GPU computing in neuroscience. Comput Sci Eng 14(3):40–47CrossRef
4.
go back to reference Bernhard F, Keriven R (2006) Spiking neurons on GPUs. In computational science ICCS 2006. Springer, Berlin, pp 236–243CrossRef Bernhard F, Keriven R (2006) Spiking neurons on GPUs. In computational science ICCS 2006. Springer, Berlin, pp 236–243CrossRef
5.
go back to reference Beyeler M, Dutt ND, Krichmar JL (2013) Categorization and decision-making in a neurobiologically plausible spiking network using a STDP-like learning rule. Neural Netw 48:109–124CrossRef Beyeler M, Dutt ND, Krichmar JL (2013) Categorization and decision-making in a neurobiologically plausible spiking network using a STDP-like learning rule. Neural Netw 48:109–124CrossRef
6.
go back to reference Beyeler M, Oros N, Dutt N, Krichmar JL (2015) A GPU-accelerated cortical neural network model for visually guided robot navigation. Neural Netw 72:75–87CrossRef Beyeler M, Oros N, Dutt N, Krichmar JL (2015) A GPU-accelerated cortical neural network model for visually guided robot navigation. Neural Netw 72:75–87CrossRef
7.
go back to reference Beyeler M, Richert M, Dutt ND, Krichmar JL (2014) Efficient spiking neural network model of pattern motion selectivity in visual cortex. Neuroinform 12(3):435–454CrossRef Beyeler M, Richert M, Dutt ND, Krichmar JL (2014) Efficient spiking neural network model of pattern motion selectivity in visual cortex. Neuroinform 12(3):435–454CrossRef
8.
go back to reference Bray LCJ, Anumandla SR, Thibeault CM, Hoang RV, Goodman PH, Dascalu SM, Bryant BD, Harris FC (2012) Real-time human–robot interaction underlying neurorobotic trust and intent recognition. Neural Netw 32:130–137CrossRef Bray LCJ, Anumandla SR, Thibeault CM, Hoang RV, Goodman PH, Dascalu SM, Bryant BD, Harris FC (2012) Real-time human–robot interaction underlying neurorobotic trust and intent recognition. Neural Netw 32:130–137CrossRef
9.
go back to reference Brette R (2015) Philosophy of the spike: rate-based vs. spike-based theories of the brain. Front Syst Neurosci 9:151CrossRef Brette R (2015) Philosophy of the spike: rate-based vs. spike-based theories of the brain. Front Syst Neurosci 9:151CrossRef
10.
go back to reference Carlson KD, Nageswaran JM, Dutt N, Krichmar JL (2014) An efficient automated parameter tuning framework for spiking neural networks. Front Neurosci 8:10CrossRef Carlson KD, Nageswaran JM, Dutt N, Krichmar JL (2014) An efficient automated parameter tuning framework for spiking neural networks. Front Neurosci 8:10CrossRef
11.
go back to reference Cheng J, Grossman M, McKercher T (2014) Professional CUDA C programming. Wrox, Birmingham Cheng J, Grossman M, McKercher T (2014) Professional CUDA C programming. Wrox, Birmingham
12.
go back to reference de Camargo RY, Rozante L, Song SW (2011) A multi-GPU algorithm for large-scale neuronal networks. Concurr Comput Pract Exp 23(6):556–572CrossRef de Camargo RY, Rozante L, Song SW (2011) A multi-GPU algorithm for large-scale neuronal networks. Concurr Comput Pract Exp 23(6):556–572CrossRef
13.
go back to reference Dinkelbach HU, Vitay J, Beuth F, Hamker FH (2012) Comparison of GPU- and CPU-implementations of mean-firing rate neural networks on parallel hardware. Network 23(4):212–236CrossRef Dinkelbach HU, Vitay J, Beuth F, Hamker FH (2012) Comparison of GPU- and CPU-implementations of mean-firing rate neural networks on parallel hardware. Network 23(4):212–236CrossRef
14.
go back to reference Fidjeland AK, Shanahan MP (2010) Accelerated simulation of spiking neural networks using GPUs. In 2010 International joint conference on Neural networks (IJCNN), pp 1–8 Fidjeland AK, Shanahan MP (2010) Accelerated simulation of spiking neural networks using GPUs. In 2010 International joint conference on Neural networks (IJCNN), pp 1–8
15.
go back to reference Gangal H, Dar G (2014) Mode locking, chaos and bifurcations in Hodgkin–Huxley neuron forced by sinusoidal current. Chaot Simul Model 3:287–294 Gangal H, Dar G (2014) Mode locking, chaos and bifurcations in Hodgkin–Huxley neuron forced by sinusoidal current. Chaot Simul Model 3:287–294
16.
go back to reference Gerstner W, Kistler WM (2002) Spiking neuron model, chapter noise in spiking neuron models. Cambridge University Press, New York, pp 157–209CrossRefMATH Gerstner W, Kistler WM (2002) Spiking neuron model, chapter noise in spiking neuron models. Cambridge University Press, New York, pp 157–209CrossRefMATH
17.
go back to reference Goodman DFM (2010) Code generation: a strategy for neural network simulators. Neuroinformatics 8(3):183–196CrossRef Goodman DFM (2010) Code generation: a strategy for neural network simulators. Neuroinformatics 8(3):183–196CrossRef
18.
go back to reference Hoang RV, Tanna D, Bray JCL, Dascalu SM, Harris FCJ (2013) A novel CPU/GPU simulation environment for large-scale biologically realistic neural modeling. Front Neuroinform 7:19CrossRef Hoang RV, Tanna D, Bray JCL, Dascalu SM, Harris FCJ (2013) A novel CPU/GPU simulation environment for large-scale biologically realistic neural modeling. Front Neuroinform 7:19CrossRef
19.
go back to reference Hodgkin AL, Huxley AF (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol 117(4):500–544CrossRef Hodgkin AL, Huxley AF (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol 117(4):500–544CrossRef
20.
go back to reference Igarashi J, Shouno O, Fukai T, Tsujino H (2011) Real-time simulation of a spiking neural network model of the basal ganglia circuitry using general purpose computing on graphics processing units. Neural Netw 24(9):950–960CrossRef Igarashi J, Shouno O, Fukai T, Tsujino H (2011) Real-time simulation of a spiking neural network model of the basal ganglia circuitry using general purpose computing on graphics processing units. Neural Netw 24(9):950–960CrossRef
22.
go back to reference Izhikevich EM (2004) Which model to use for cortical spiking neurons? IEEE Trans Neural Netw 15(5):1063–1070CrossRef Izhikevich EM (2004) Which model to use for cortical spiking neurons? IEEE Trans Neural Netw 15(5):1063–1070CrossRef
23.
go back to reference Izhikevich EM, Edelman GM (2008) Large-scale model of mammalian thalamocortical systems. Proc Nat Acad Sci USA 105(9):3593–3598CrossRef Izhikevich EM, Edelman GM (2008) Large-scale model of mammalian thalamocortical systems. Proc Nat Acad Sci USA 105(9):3593–3598CrossRef
24.
go back to reference Liao S, Wang P (2014) On the mathematically reliable long-term simulation of chaotic solutions of Lorenz equation in the interval [0 10000]. Sci China Phys Mech Astron 57:330–335CrossRef Liao S, Wang P (2014) On the mathematically reliable long-term simulation of chaotic solutions of Lorenz equation in the interval [0 10000]. Sci China Phys Mech Astron 57:330–335CrossRef
25.
go back to reference Morris C, Lecar H (1981) Voltage oscillations in the barnacle giant muscle fiber. Biophys J 35:193–213CrossRef Morris C, Lecar H (1981) Voltage oscillations in the barnacle giant muscle fiber. Biophys J 35:193–213CrossRef
26.
go back to reference Nageswaran JM, Dutt N, Krichmar JL, Nicolau A, Veidenbaum A (2009) Efficient simulation of large-scale spiking neural networks using CUDA graphics processors. In: 2009 Proceedings of international joint conference on neural networks, pp 2145–2152 Nageswaran JM, Dutt N, Krichmar JL, Nicolau A, Veidenbaum A (2009) Efficient simulation of large-scale spiking neural networks using CUDA graphics processors. In: 2009 Proceedings of international joint conference on neural networks, pp 2145–2152
27.
go back to reference Nageswaran JM, Dutt N, Krichmar JL, Nicolau A, Veidenbaum AV (2009) A configurable simulation environment for the efficient simulation of large-scale spiking neural networks on graphics processors. Neural Netw 22(5–6):791–800CrossRef Nageswaran JM, Dutt N, Krichmar JL, Nicolau A, Veidenbaum AV (2009) A configurable simulation environment for the efficient simulation of large-scale spiking neural networks on graphics processors. Neural Netw 22(5–6):791–800CrossRef
28.
go back to reference Pallipuram VK, Bhuiyan MA, Smith MC (2011) Evaluation of GPU architectures using spiking neural networks. In: 2011 Symposium application accelerators in high-performance computing, pp. 93–102 Pallipuram VK, Bhuiyan MA, Smith MC (2011) Evaluation of GPU architectures using spiking neural networks. In: 2011 Symposium application accelerators in high-performance computing, pp. 93–102
29.
go back to reference Pallipuram VK, Bhuiyan M, Smith MC (2012) A comparative study of GPU programming models and architectures using neural networks. J Supercomput 61(3):673–718CrossRef Pallipuram VK, Bhuiyan M, Smith MC (2012) A comparative study of GPU programming models and architectures using neural networks. J Supercomput 61(3):673–718CrossRef
30.
go back to reference Pallipuram VK, Smith MC, Sarma N, Anand R, Weill E, Sapra K (2015) Subjective versus objective: classifying analytical models for productive heterogeneous performance prediction. J Supercomput 71:162–201CrossRef Pallipuram VK, Smith MC, Sarma N, Anand R, Weill E, Sapra K (2015) Subjective versus objective: classifying analytical models for productive heterogeneous performance prediction. J Supercomput 71:162–201CrossRef
31.
go back to reference Richert M, Nageswaran JM, Dutt N, Krichmar JL (2011) An efficient simulation environment for modeling large-scale cortical processing. Front Neuroinform 5:19CrossRef Richert M, Nageswaran JM, Dutt N, Krichmar JL (2011) An efficient simulation environment for modeling large-scale cortical processing. Front Neuroinform 5:19CrossRef
32.
go back to reference Trappenberg T (2010) Fundamentals of computational neuroscience. OUP, OxfordMATH Trappenberg T (2010) Fundamentals of computational neuroscience. OUP, OxfordMATH
33.
go back to reference Wang F (2015) Simulation tool for asynchronous cortical streams (STACS): interfacing with spiking neural networks. Proc Comput Sci 61:322–327CrossRef Wang F (2015) Simulation tool for asynchronous cortical streams (STACS): interfacing with spiking neural networks. Proc Comput Sci 61:322–327CrossRef
34.
go back to reference Yamazaki T, Igarashi J (2013) Realtime cerebellum: a large-scale spiking network model of the cerebellum that runs in realtime using a graphics processing unit. Neural Netw 47:103–111CrossRef Yamazaki T, Igarashi J (2013) Realtime cerebellum: a large-scale spiking network model of the cerebellum that runs in realtime using a graphics processing unit. Neural Netw 47:103–111CrossRef
35.
go back to reference Yavuz E, Turner J, Nowotny T (2016) GeNN: a code generation framework for accelerated brain simulations. Sci Rep 6:18854CrossRef Yavuz E, Turner J, Nowotny T (2016) GeNN: a code generation framework for accelerated brain simulations. Sci Rep 6:18854CrossRef
Metadata
Title
Evaluation of the computational efficacy in GPU-accelerated simulations of spiking neurons
Authors
Kazuhisa Fujita
Shun Okuno
Yoshiki Kashimori
Publication date
01-02-2018
Publisher
Springer Vienna
Published in
Computing / Issue 9/2018
Print ISSN: 0010-485X
Electronic ISSN: 1436-5057
DOI
https://doi.org/10.1007/s00607-018-0590-0

Premium Partner