Skip to main content
Top
Published in: Quantum Information Processing 8/2023

01-08-2023

Exact performance of the five-qubit code with coherent errors

Author: Chaobin Liu

Published in: Quantum Information Processing | Issue 8/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

We derive explicit process matrices (effective logical channels) for five-qubit code under any unital error channel imposed on each physical qubit of the code, which would enable us to gain a lot of insight about the performance of the code. To our best knowledge, this is the first explicit effective logical channel that has been derived for a quantum correction code under a broad class of noise models. The process matrix allows us to rigorously prove that the concatenated code with a symmetric decoder can take an open set of any type error channels to the identity channel. This result extends the theorem that is confined to an open set of diagonal error channels proved by previous authors. For some commonly considered coherent error models, using the process matrices, we conduct precise analysis of the code’s performances in terms of average gate infidelity and diamond distance measures for both the physical error channels and the resulting effective logical channels after error correction. These outcomes sharpen the related results shown in recent publications. Finally, we show that an optimal (non-symmetric) decoder of the code achieves substantially improved performance of error correction against a specified noise model, but it no longer corrects an open set of general errors. The results confirm some findings of previous authors who arrived at similar conclusions through different approaches.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)MATH Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)MATH
2.
go back to reference Shor, P.W.: Scheme for reducing decoherence in quantum computer memory. Phys. Rev. A. 52, R2493 (1995)ADSCrossRef Shor, P.W.: Scheme for reducing decoherence in quantum computer memory. Phys. Rev. A. 52, R2493 (1995)ADSCrossRef
4.
go back to reference Bennett, C.H., DiVincenzo, D.P., Smolin, J.A., Wootters, W.K.: Mixed state entanglement and quantum error correction. Phys. Rev. A 54, 3824–3851 (1996)ADSMathSciNetCrossRefMATH Bennett, C.H., DiVincenzo, D.P., Smolin, J.A., Wootters, W.K.: Mixed state entanglement and quantum error correction. Phys. Rev. A 54, 3824–3851 (1996)ADSMathSciNetCrossRefMATH
5.
go back to reference Laflamme, R., Miquel, C., Paz, J.-P., Zurek, W.H.: Perfect quantum error correction code. Phys. Rev. Lett. 77(1), 198–201 (1996)ADSCrossRef Laflamme, R., Miquel, C., Paz, J.-P., Zurek, W.H.: Perfect quantum error correction code. Phys. Rev. Lett. 77(1), 198–201 (1996)ADSCrossRef
7.
go back to reference Fowler, A.G., Mariantoni, M., Martinis, J.M., Cleland, A.N.: Surface codes: towards practical large-scale quantum computation. Phys. Rev. A 86, 032324 (2012)ADSCrossRef Fowler, A.G., Mariantoni, M., Martinis, J.M., Cleland, A.N.: Surface codes: towards practical large-scale quantum computation. Phys. Rev. A 86, 032324 (2012)ADSCrossRef
8.
go back to reference Devitt, S.J., Nemoto, K., Munro, W.J.: Quantum error correction for beginners. Rep. Prog. Phys. 76, 076001 (2013)ADSCrossRef Devitt, S.J., Nemoto, K., Munro, W.J.: Quantum error correction for beginners. Rep. Prog. Phys. 76, 076001 (2013)ADSCrossRef
11.
go back to reference Roffe, J.: Quantum error correction: an introductory guide. Contemp. Phys. 60(3), 226–245 (2019)ADSCrossRef Roffe, J.: Quantum error correction: an introductory guide. Contemp. Phys. 60(3), 226–245 (2019)ADSCrossRef
12.
go back to reference Georgescu, I.: 25 years of quantum error correction. Nat. Rev. Phys. 2, 519 (2020)CrossRef Georgescu, I.: 25 years of quantum error correction. Nat. Rev. Phys. 2, 519 (2020)CrossRef
13.
go back to reference Chao, R., Reichardt, B.W.: Quantum error correction with only two extra qubits. Phys. Rev. Lett. 121, 050502 (2018)ADSCrossRef Chao, R., Reichardt, B.W.: Quantum error correction with only two extra qubits. Phys. Rev. Lett. 121, 050502 (2018)ADSCrossRef
14.
go back to reference Gong, M., Yuan, X., et al.: Experimental exploration of five-qubit quantum error-correcting code with superconducting qubits. Natl. Sci. Rev. 9(1), nwab011 (2022)CrossRef Gong, M., Yuan, X., et al.: Experimental exploration of five-qubit quantum error-correcting code with superconducting qubits. Natl. Sci. Rev. 9(1), nwab011 (2022)CrossRef
15.
go back to reference Simakov, I.A., Besedin, I.S., Ustinov, A.V.: Simulation of the five-qubit quantum error correction code on superconducting qubits. Phys. Rev. A 105, 032409 (2022)ADSCrossRef Simakov, I.A., Besedin, I.S., Ustinov, A.V.: Simulation of the five-qubit quantum error correction code on superconducting qubits. Phys. Rev. A 105, 032409 (2022)ADSCrossRef
16.
go back to reference Ryan-Anderson, C., Brown, N.C., Allman, M.S. et al.: Implementing fault-tolerant entangling gates on the five-qubit code and the color code. Preprint at arXiv:2208.01863 Ryan-Anderson, C., Brown, N.C., Allman, M.S. et al.: Implementing fault-tolerant entangling gates on the five-qubit code and the color code. Preprint at arXiv:​2208.​01863
18.
go back to reference Albert, V. V., Faist, P. (eds.): Five-qubit perfect code. The Error Correction Zoo (2022) Albert, V. V., Faist, P. (eds.): Five-qubit perfect code. The Error Correction Zoo (2022)
19.
go back to reference Rahn, B., Doherty, A.C., Mabuchi, H.: Exact perfomance of concatenated quantum codes. Phys. Rev. A 66(032), 304 (2002) Rahn, B., Doherty, A.C., Mabuchi, H.: Exact perfomance of concatenated quantum codes. Phys. Rev. A 66(032), 304 (2002)
21.
go back to reference Chamberland, C., Wallman, J., Beale, S., Laflamme, R.: Hard decoding algorithm for optimizing thresholds under general Markovian noise. Phys. Rev. A 95, 042332 (2017). arXiv:1612.02830ADSCrossRef Chamberland, C., Wallman, J., Beale, S., Laflamme, R.: Hard decoding algorithm for optimizing thresholds under general Markovian noise. Phys. Rev. A 95, 042332 (2017). arXiv:​1612.​02830ADSCrossRef
22.
go back to reference Huang, E., Doherty, A.C., Flammia, S.: Performance of quantum error correction with coherent errors. Phys. Rev. A 99, 022313 (2019)ADSCrossRef Huang, E., Doherty, A.C., Flammia, S.: Performance of quantum error correction with coherent errors. Phys. Rev. A 99, 022313 (2019)ADSCrossRef
24.
go back to reference Knill, E., Leibfried, D., Reichle, R., Britton, J., Blakestad, R.B., Jost, J.D., Langer, C., Ozeri, R., Seidelin, S., Wineland, D.J.: Randomized benchmarking of quantum gates. Phys. Rev. A 77, 012307 (2008). arXiv:0707.0963ADSCrossRefMATH Knill, E., Leibfried, D., Reichle, R., Britton, J., Blakestad, R.B., Jost, J.D., Langer, C., Ozeri, R., Seidelin, S., Wineland, D.J.: Randomized benchmarking of quantum gates. Phys. Rev. A 77, 012307 (2008). arXiv:​0707.​0963ADSCrossRefMATH
25.
go back to reference Magesan, E., Gambetta, J.M., Emerson, J.: Scalable and robust randomized benchmarking of quantum processes. Phys. Rev. Lett. 106, 180504 (2011)ADSCrossRef Magesan, E., Gambetta, J.M., Emerson, J.: Scalable and robust randomized benchmarking of quantum processes. Phys. Rev. Lett. 106, 180504 (2011)ADSCrossRef
28.
go back to reference Kueng, R., Long, D.M., Doherty, A.C., Flammia, S.T.: Comparing experiments to the fault-tolerance threshold. Phys. Rev. Lett. 117, 170502 (2016)ADSCrossRef Kueng, R., Long, D.M., Doherty, A.C., Flammia, S.T.: Comparing experiments to the fault-tolerance threshold. Phys. Rev. Lett. 117, 170502 (2016)ADSCrossRef
31.
go back to reference Ben-Aroya, A., Ta-Shma, A.: On the complexity of approximating the diamond norm. Quant. Inf. Comp. 10, 77 (2010)MathSciNetMATH Ben-Aroya, A., Ta-Shma, A.: On the complexity of approximating the diamond norm. Quant. Inf. Comp. 10, 77 (2010)MathSciNetMATH
32.
go back to reference Watrous, J.: Simpler semidefinite programs for completely bounded norms. Chic. J. Theo. Comp. Sci. 2013, 1 (2013)MathSciNetMATH Watrous, J.: Simpler semidefinite programs for completely bounded norms. Chic. J. Theo. Comp. Sci. 2013, 1 (2013)MathSciNetMATH
34.
go back to reference Beale, S.J., Wallman, J.J.: Efficiently computing logical noise in quantum error correcting codes. Phys. Rev. A 103, 062404 (2021)ADSMathSciNetCrossRef Beale, S.J., Wallman, J.J.: Efficiently computing logical noise in quantum error correcting codes. Phys. Rev. A 103, 062404 (2021)ADSMathSciNetCrossRef
Metadata
Title
Exact performance of the five-qubit code with coherent errors
Author
Chaobin Liu
Publication date
01-08-2023
Publisher
Springer US
Published in
Quantum Information Processing / Issue 8/2023
Print ISSN: 1570-0755
Electronic ISSN: 1573-1332
DOI
https://doi.org/10.1007/s11128-023-04070-6

Other articles of this Issue 8/2023

Quantum Information Processing 8/2023 Go to the issue