Skip to main content
Top

2020 | OriginalPaper | Chapter

Exact Traveling Wave Solutions and Bifurcation Analysis for Time Fractional Dual Power Zakharov-Kuznetsov-Burgers Equation

Author : Amiya Das

Published in: Mathematical Modelling and Scientific Computing with Applications

Publisher: Springer Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this paper, we introduce the time fractional dual power Zakharov-Kuznetsov-Burgers equation in the sense of modified Riemann-Liouville derivative. We briefly describe one direct ansatz method namely \((G'/G)\)-expansion method in adherence of fractional complex transformation and applying this method exploit miscellaneous exact traveling wave solutions including solitary wave, kink-type wave, breaking wave and periodic wave solutions of the equation. Next we investigate the dynamical behavior, bifurcations and phase portrait analysis of the exact traveling wave solutions of the system in presence and absence of damping effect. Moreover, we demonstrate the exceptional features of the traveling wave solutions and phase portraits of planar dynamical system via interesting figures.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Oldham, K., Spanier, J.: The Fractional Calculus. Academic Press, New York (1974)MATH Oldham, K., Spanier, J.: The Fractional Calculus. Academic Press, New York (1974)MATH
2.
go back to reference Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999)MATH Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999)MATH
3.
go back to reference Kilbas, A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam (2006)MATH Kilbas, A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam (2006)MATH
5.
go back to reference Metzler, R., Klafter, J.: The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics. J. Phys. A 37, 161–208 (2004)MathSciNetMATHCrossRef Metzler, R., Klafter, J.: The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics. J. Phys. A 37, 161–208 (2004)MathSciNetMATHCrossRef
6.
go back to reference Saadatmandi, A., Dehghan, M.: A new operational matrix for solving fractional-order differential equations. Comput. Math. Appl. 59, 1326–1336 (2010)MathSciNetMATHCrossRef Saadatmandi, A., Dehghan, M.: A new operational matrix for solving fractional-order differential equations. Comput. Math. Appl. 59, 1326–1336 (2010)MathSciNetMATHCrossRef
7.
go back to reference Zhou, Y., Jiao, F., Li, J.: Existence and uniqueness for p-type fractional neutral differential equations. Nonlinear Anal. 71, 2724–2733 (2009)MathSciNetMATHCrossRef Zhou, Y., Jiao, F., Li, J.: Existence and uniqueness for p-type fractional neutral differential equations. Nonlinear Anal. 71, 2724–2733 (2009)MathSciNetMATHCrossRef
8.
go back to reference Galeone, L., Garrappa, R.: Explicit methods for fractional differential equations and their stability properties. J. Comput. Appl. Math. 228, 548–560 (2009)MathSciNetMATHCrossRef Galeone, L., Garrappa, R.: Explicit methods for fractional differential equations and their stability properties. J. Comput. Appl. Math. 228, 548–560 (2009)MathSciNetMATHCrossRef
9.
go back to reference Trigeassou, J.C., Maamri, N., Sabatier, J., Oustaloup, A.: A Lyapunov approach to the stability of fractional differential equations. Signal Process. 91, 437–445 (2011)MATHCrossRef Trigeassou, J.C., Maamri, N., Sabatier, J., Oustaloup, A.: A Lyapunov approach to the stability of fractional differential equations. Signal Process. 91, 437–445 (2011)MATHCrossRef
10.
go back to reference Jumarie, G.: Modified Riemann-Liouville derivative and fractional Taylor series of nondifferentiable functions further results. Comput. Math. Appl. 51, 1367–1376 (2006)MathSciNetMATHCrossRef Jumarie, G.: Modified Riemann-Liouville derivative and fractional Taylor series of nondifferentiable functions further results. Comput. Math. Appl. 51, 1367–1376 (2006)MathSciNetMATHCrossRef
11.
go back to reference Wang, M.L., Li, X.Z., Zheng, J.L.: The \((G^{\prime }/G)\)-expansion method and travelling wave solutions of nonlinear evolution equations in mathematical physics. Phys. Lett. A 372, 417–423 (2008)MathSciNetCrossRef Wang, M.L., Li, X.Z., Zheng, J.L.: The \((G^{\prime }/G)\)-expansion method and travelling wave solutions of nonlinear evolution equations in mathematical physics. Phys. Lett. A 372, 417–423 (2008)MathSciNetCrossRef
12.
go back to reference Zheng, B.: \((G^{\prime }/G)\)-Expansion method for solving fractional partial differential equations in the theory of mathematical physics. Commun. Theor. Phys. (Beijing, China) 58, 623–630 (2012)MathSciNetMATHCrossRef Zheng, B.: \((G^{\prime }/G)\)-Expansion method for solving fractional partial differential equations in the theory of mathematical physics. Commun. Theor. Phys. (Beijing, China) 58, 623–630 (2012)MathSciNetMATHCrossRef
13.
go back to reference Hosseini, K., Ayati, Z.: Exact solutions of space-time fractional EW and modified EW equations using Kudryashov method. Nonlinear Sci. Lett. A 7(2), 58–66 (2016) Hosseini, K., Ayati, Z.: Exact solutions of space-time fractional EW and modified EW equations using Kudryashov method. Nonlinear Sci. Lett. A 7(2), 58–66 (2016)
14.
go back to reference Zheng, B.: Exp-function method for solving fractional partial differential equations. Sci. World J. 2013, 465723 (2013) Zheng, B.: Exp-function method for solving fractional partial differential equations. Sci. World J. 2013, 465723 (2013)
15.
go back to reference Bekir, A., Guner, Ö., Ünsal, Ö.: The first integral method for exact solutions of nonlinear fractional differential equations. J. Comput. Nonlinear Dyn. 10(2), 021020 (2015)CrossRef Bekir, A., Guner, Ö., Ünsal, Ö.: The first integral method for exact solutions of nonlinear fractional differential equations. J. Comput. Nonlinear Dyn. 10(2), 021020 (2015)CrossRef
16.
go back to reference Zhou, Y., Wang, M., Wang, Y.: Periodic wave solutions to a coupled KdV equations with variable coefficients. Phys. Lett. A 308, 31–36 (2003)MathSciNetMATHCrossRef Zhou, Y., Wang, M., Wang, Y.: Periodic wave solutions to a coupled KdV equations with variable coefficients. Phys. Lett. A 308, 31–36 (2003)MathSciNetMATHCrossRef
17.
18.
go back to reference Rizvi, S.T.R., Ali, K.: Jacobian elliptic periodic traveling wave solutions in the negative-index materials. Nonlinear Dyn. 87, 1967–1972 (2017)CrossRef Rizvi, S.T.R., Ali, K.: Jacobian elliptic periodic traveling wave solutions in the negative-index materials. Nonlinear Dyn. 87, 1967–1972 (2017)CrossRef
19.
go back to reference Hasegawa, A.: Plasma Instabilities and Nonlinear Effects. Springer, Berlin (1975)CrossRef Hasegawa, A.: Plasma Instabilities and Nonlinear Effects. Springer, Berlin (1975)CrossRef
20.
go back to reference Gedalin, M., Scott, T.C., Band, Y.B.: Optical solitary waves in the higher order nonlinear Schrödinger equation. Phys. Rev. Lett 78, 448–451 (1997)CrossRef Gedalin, M., Scott, T.C., Band, Y.B.: Optical solitary waves in the higher order nonlinear Schrödinger equation. Phys. Rev. Lett 78, 448–451 (1997)CrossRef
21.
go back to reference Gray, P., Scott, S.: Chemical Oscillations and Instabilities. Clarendon, Oxford (1990) Gray, P., Scott, S.: Chemical Oscillations and Instabilities. Clarendon, Oxford (1990)
22.
go back to reference Ablowitz, M.J., Clarkson, P.A.: Solitons, Nonlinear Evolution Equations and Inverse Scattering Transform. Cambridge University Press, Cambridge (1991)MATHCrossRef Ablowitz, M.J., Clarkson, P.A.: Solitons, Nonlinear Evolution Equations and Inverse Scattering Transform. Cambridge University Press, Cambridge (1991)MATHCrossRef
23.
go back to reference Adomian, G.: Solving Frontier Problems of Physics: The Decomposition Method. Kluwer Academic Publishers, Dordrecht (1994)MATHCrossRef Adomian, G.: Solving Frontier Problems of Physics: The Decomposition Method. Kluwer Academic Publishers, Dordrecht (1994)MATHCrossRef
24.
go back to reference Agrawal, G.P.: Nonlinear Fiber Optics. Academic Press, New York (1995)MATH Agrawal, G.P.: Nonlinear Fiber Optics. Academic Press, New York (1995)MATH
25.
go back to reference Gardner, C.S., Greene, J.M., Kruskal, M.D., Miura, R.M.: Method for solving the Korteweg-deVries equation. Phys. Rev. Lett. 19, 1095–1097 (1967)MATHCrossRef Gardner, C.S., Greene, J.M., Kruskal, M.D., Miura, R.M.: Method for solving the Korteweg-deVries equation. Phys. Rev. Lett. 19, 1095–1097 (1967)MATHCrossRef
27.
go back to reference Lou, S.Y.: Searching for higher dimensional integrable models from lower ones via Painlev\(\acute{e}\) analysis. Phys. Rev. Lett. 80, 5027–5031 (1998)MathSciNetMATHCrossRef Lou, S.Y.: Searching for higher dimensional integrable models from lower ones via Painlev\(\acute{e}\) analysis. Phys. Rev. Lett. 80, 5027–5031 (1998)MathSciNetMATHCrossRef
28.
go back to reference El-Wakil, S.A., Abdou, M.A., Elhanbaly, A.: New solitons and periodic wave solutions for nonlinear evolution equations. Phys. Lett. A 353, 40–7 (2006)CrossRef El-Wakil, S.A., Abdou, M.A., Elhanbaly, A.: New solitons and periodic wave solutions for nonlinear evolution equations. Phys. Lett. A 353, 40–7 (2006)CrossRef
29.
go back to reference Jiang, B., Liu, Y., Zhang, J., et al.: Bifurcations and some new traveling wave solutions for the CH-\(\gamma \) equation. Appl. Math. Comput. 228(1), 220–233 (2014)MathSciNetMATH Jiang, B., Liu, Y., Zhang, J., et al.: Bifurcations and some new traveling wave solutions for the CH-\(\gamma \) equation. Appl. Math. Comput. 228(1), 220–233 (2014)MathSciNetMATH
30.
go back to reference Ganguly, A., Das, A.: Explicit solutions and stability analysis of the \((2 + 1)\) dimensional KP-BBM equation with dispersion effect. Commun. Nonlin. Sci. Numer. Simulat 25, 102–117 (2015)MathSciNetCrossRef Ganguly, A., Das, A.: Explicit solutions and stability analysis of the \((2 + 1)\) dimensional KP-BBM equation with dispersion effect. Commun. Nonlin. Sci. Numer. Simulat 25, 102–117 (2015)MathSciNetCrossRef
31.
go back to reference Das, A., Ganguly, A.: Existence and stability of dispersive solutions to the Kadomtsev-Petviashvili equation in the presence of dispersion effect. Commun. Nonlin. Sci. Numer. Simulat 48, 326–339 (2017)MathSciNetCrossRef Das, A., Ganguly, A.: Existence and stability of dispersive solutions to the Kadomtsev-Petviashvili equation in the presence of dispersion effect. Commun. Nonlin. Sci. Numer. Simulat 48, 326–339 (2017)MathSciNetCrossRef
32.
go back to reference Zhou, Y., Peng, L.: Weak solutions of the time-fractional Navier-Stokes equations and optimal control. Comput. Math. Appl. 73, 1016–1027 (2017)MathSciNetMATHCrossRef Zhou, Y., Peng, L.: Weak solutions of the time-fractional Navier-Stokes equations and optimal control. Comput. Math. Appl. 73, 1016–1027 (2017)MathSciNetMATHCrossRef
33.
go back to reference Unsal, O., Guner, O., Bekir, A.: Analytical approach for space-time fractional Klein-Gordon equation. Optik 135, 337–345 (2017)CrossRef Unsal, O., Guner, O., Bekir, A.: Analytical approach for space-time fractional Klein-Gordon equation. Optik 135, 337–345 (2017)CrossRef
34.
go back to reference Hongsit, N., Allen, M.A., Rowlands, G.: Growth rate of transverse instabilities of solitary pulse solutions to a family of modified Zakharov-Kuznetsov equations. Phys. Lett. A 372(14), 2420 (2008)MATHCrossRef Hongsit, N., Allen, M.A., Rowlands, G.: Growth rate of transverse instabilities of solitary pulse solutions to a family of modified Zakharov-Kuznetsov equations. Phys. Lett. A 372(14), 2420 (2008)MATHCrossRef
35.
go back to reference Wazwaz, A.M.: The extended tanh method for the Zakharov-Kuznetsov (ZK) equation, the modified ZK equation, and its generalized forms. Commun. Nonlinear Sci. Numer. Simul. 13(6), 1039–47 (2008)MathSciNetMATHCrossRef Wazwaz, A.M.: The extended tanh method for the Zakharov-Kuznetsov (ZK) equation, the modified ZK equation, and its generalized forms. Commun. Nonlinear Sci. Numer. Simul. 13(6), 1039–47 (2008)MathSciNetMATHCrossRef
36.
go back to reference Biswas, A., Zerrad, E.: \(1\)-soliton solution of the Zakharov-Kuznetsov equation with dual-power law nonlinearity. Commun. Nonlinear Sci. Numer. Simul. 14, 3574–3577 (2009)MATHCrossRef Biswas, A., Zerrad, E.: \(1\)-soliton solution of the Zakharov-Kuznetsov equation with dual-power law nonlinearity. Commun. Nonlinear Sci. Numer. Simul. 14, 3574–3577 (2009)MATHCrossRef
37.
go back to reference Yan, Z.L., Liu, X.Q.: Symmetry reductions and explicit solutions for a generalized Zakharov-Kuznetsov equation. Commun. Theor. Phys. (Beijing, China) 45, 29–32 (2006)MathSciNetMATHCrossRef Yan, Z.L., Liu, X.Q.: Symmetry reductions and explicit solutions for a generalized Zakharov-Kuznetsov equation. Commun. Theor. Phys. (Beijing, China) 45, 29–32 (2006)MathSciNetMATHCrossRef
38.
go back to reference Ferdousi, M., Miah, M.R., Sultana, S., Mamun, A.A.: Dust-acoustic shock waves in an electron depleted nonextensive dusty plasmas. Astrophys. Space Sci. 360, 43 (2015)CrossRef Ferdousi, M., Miah, M.R., Sultana, S., Mamun, A.A.: Dust-acoustic shock waves in an electron depleted nonextensive dusty plasmas. Astrophys. Space Sci. 360, 43 (2015)CrossRef
39.
go back to reference Jannat, N., Ferdousi, M., Mamun, A.A.: Ion-acoustic shock waves in nonextensive multi-ion plasmas. Commun. Theor. Phys. 64, 479–484 (2015)MathSciNetMATHCrossRef Jannat, N., Ferdousi, M., Mamun, A.A.: Ion-acoustic shock waves in nonextensive multi-ion plasmas. Commun. Theor. Phys. 64, 479–484 (2015)MathSciNetMATHCrossRef
40.
go back to reference Ema, S.A., Ferdousi, M., Sultana, S., Mamun, A.A.: Dust-ion-acoustic shock waves in nonextensive dusty multi-ion plasmas. Eur. Phys. J. Plus 130, 46 (2015)CrossRef Ema, S.A., Ferdousi, M., Sultana, S., Mamun, A.A.: Dust-ion-acoustic shock waves in nonextensive dusty multi-ion plasmas. Eur. Phys. J. Plus 130, 46 (2015)CrossRef
41.
go back to reference Uddin, M.J., Alam, M.S., Mamun, A.A.: Positron-acoustic shock waves associated with cold viscous positron fluid in superthermal electron-positron-ion plasmas. Phys. Plasmas 22, 062111 (2015)MATHCrossRef Uddin, M.J., Alam, M.S., Mamun, A.A.: Positron-acoustic shock waves associated with cold viscous positron fluid in superthermal electron-positron-ion plasmas. Phys. Plasmas 22, 062111 (2015)MATHCrossRef
42.
go back to reference Li, J., Chen, G.: Bifurcations of travelling wave solutions for four classes of nonlinear wave equations. Int. J. Bifurcation Chaos 15, 3973 (2005)MATHCrossRef Li, J., Chen, G.: Bifurcations of travelling wave solutions for four classes of nonlinear wave equations. Int. J. Bifurcation Chaos 15, 3973 (2005)MATHCrossRef
43.
go back to reference Guckenheimer, J., Holmes, P.J.: Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields. Springer, New York (1983)MATHCrossRef Guckenheimer, J., Holmes, P.J.: Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields. Springer, New York (1983)MATHCrossRef
Metadata
Title
Exact Traveling Wave Solutions and Bifurcation Analysis for Time Fractional Dual Power Zakharov-Kuznetsov-Burgers Equation
Author
Amiya Das
Copyright Year
2020
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-15-1338-1_3

Premium Partners