Skip to main content

2020 | OriginalPaper | Buchkapitel

Exact Traveling Wave Solutions and Bifurcation Analysis for Time Fractional Dual Power Zakharov-Kuznetsov-Burgers Equation

verfasst von : Amiya Das

Erschienen in: Mathematical Modelling and Scientific Computing with Applications

Verlag: Springer Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this paper, we introduce the time fractional dual power Zakharov-Kuznetsov-Burgers equation in the sense of modified Riemann-Liouville derivative. We briefly describe one direct ansatz method namely \((G'/G)\)-expansion method in adherence of fractional complex transformation and applying this method exploit miscellaneous exact traveling wave solutions including solitary wave, kink-type wave, breaking wave and periodic wave solutions of the equation. Next we investigate the dynamical behavior, bifurcations and phase portrait analysis of the exact traveling wave solutions of the system in presence and absence of damping effect. Moreover, we demonstrate the exceptional features of the traveling wave solutions and phase portraits of planar dynamical system via interesting figures.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Oldham, K., Spanier, J.: The Fractional Calculus. Academic Press, New York (1974)MATH Oldham, K., Spanier, J.: The Fractional Calculus. Academic Press, New York (1974)MATH
2.
Zurück zum Zitat Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999)MATH Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999)MATH
3.
Zurück zum Zitat Kilbas, A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam (2006)MATH Kilbas, A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam (2006)MATH
5.
Zurück zum Zitat Metzler, R., Klafter, J.: The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics. J. Phys. A 37, 161–208 (2004)MathSciNetMATHCrossRef Metzler, R., Klafter, J.: The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics. J. Phys. A 37, 161–208 (2004)MathSciNetMATHCrossRef
6.
Zurück zum Zitat Saadatmandi, A., Dehghan, M.: A new operational matrix for solving fractional-order differential equations. Comput. Math. Appl. 59, 1326–1336 (2010)MathSciNetMATHCrossRef Saadatmandi, A., Dehghan, M.: A new operational matrix for solving fractional-order differential equations. Comput. Math. Appl. 59, 1326–1336 (2010)MathSciNetMATHCrossRef
7.
Zurück zum Zitat Zhou, Y., Jiao, F., Li, J.: Existence and uniqueness for p-type fractional neutral differential equations. Nonlinear Anal. 71, 2724–2733 (2009)MathSciNetMATHCrossRef Zhou, Y., Jiao, F., Li, J.: Existence and uniqueness for p-type fractional neutral differential equations. Nonlinear Anal. 71, 2724–2733 (2009)MathSciNetMATHCrossRef
8.
Zurück zum Zitat Galeone, L., Garrappa, R.: Explicit methods for fractional differential equations and their stability properties. J. Comput. Appl. Math. 228, 548–560 (2009)MathSciNetMATHCrossRef Galeone, L., Garrappa, R.: Explicit methods for fractional differential equations and their stability properties. J. Comput. Appl. Math. 228, 548–560 (2009)MathSciNetMATHCrossRef
9.
Zurück zum Zitat Trigeassou, J.C., Maamri, N., Sabatier, J., Oustaloup, A.: A Lyapunov approach to the stability of fractional differential equations. Signal Process. 91, 437–445 (2011)MATHCrossRef Trigeassou, J.C., Maamri, N., Sabatier, J., Oustaloup, A.: A Lyapunov approach to the stability of fractional differential equations. Signal Process. 91, 437–445 (2011)MATHCrossRef
10.
Zurück zum Zitat Jumarie, G.: Modified Riemann-Liouville derivative and fractional Taylor series of nondifferentiable functions further results. Comput. Math. Appl. 51, 1367–1376 (2006)MathSciNetMATHCrossRef Jumarie, G.: Modified Riemann-Liouville derivative and fractional Taylor series of nondifferentiable functions further results. Comput. Math. Appl. 51, 1367–1376 (2006)MathSciNetMATHCrossRef
11.
Zurück zum Zitat Wang, M.L., Li, X.Z., Zheng, J.L.: The \((G^{\prime }/G)\)-expansion method and travelling wave solutions of nonlinear evolution equations in mathematical physics. Phys. Lett. A 372, 417–423 (2008)MathSciNetCrossRef Wang, M.L., Li, X.Z., Zheng, J.L.: The \((G^{\prime }/G)\)-expansion method and travelling wave solutions of nonlinear evolution equations in mathematical physics. Phys. Lett. A 372, 417–423 (2008)MathSciNetCrossRef
12.
Zurück zum Zitat Zheng, B.: \((G^{\prime }/G)\)-Expansion method for solving fractional partial differential equations in the theory of mathematical physics. Commun. Theor. Phys. (Beijing, China) 58, 623–630 (2012)MathSciNetMATHCrossRef Zheng, B.: \((G^{\prime }/G)\)-Expansion method for solving fractional partial differential equations in the theory of mathematical physics. Commun. Theor. Phys. (Beijing, China) 58, 623–630 (2012)MathSciNetMATHCrossRef
13.
Zurück zum Zitat Hosseini, K., Ayati, Z.: Exact solutions of space-time fractional EW and modified EW equations using Kudryashov method. Nonlinear Sci. Lett. A 7(2), 58–66 (2016) Hosseini, K., Ayati, Z.: Exact solutions of space-time fractional EW and modified EW equations using Kudryashov method. Nonlinear Sci. Lett. A 7(2), 58–66 (2016)
14.
Zurück zum Zitat Zheng, B.: Exp-function method for solving fractional partial differential equations. Sci. World J. 2013, 465723 (2013) Zheng, B.: Exp-function method for solving fractional partial differential equations. Sci. World J. 2013, 465723 (2013)
15.
Zurück zum Zitat Bekir, A., Guner, Ö., Ünsal, Ö.: The first integral method for exact solutions of nonlinear fractional differential equations. J. Comput. Nonlinear Dyn. 10(2), 021020 (2015)CrossRef Bekir, A., Guner, Ö., Ünsal, Ö.: The first integral method for exact solutions of nonlinear fractional differential equations. J. Comput. Nonlinear Dyn. 10(2), 021020 (2015)CrossRef
16.
Zurück zum Zitat Zhou, Y., Wang, M., Wang, Y.: Periodic wave solutions to a coupled KdV equations with variable coefficients. Phys. Lett. A 308, 31–36 (2003)MathSciNetMATHCrossRef Zhou, Y., Wang, M., Wang, Y.: Periodic wave solutions to a coupled KdV equations with variable coefficients. Phys. Lett. A 308, 31–36 (2003)MathSciNetMATHCrossRef
17.
Zurück zum Zitat Wang, M., Zhou, Y.: The periodic wave solutions for the Klein-Gordon-Schrödinger equations. Phys. Lett. A 318, 84–92 (2003)MathSciNetMATHCrossRef Wang, M., Zhou, Y.: The periodic wave solutions for the Klein-Gordon-Schrödinger equations. Phys. Lett. A 318, 84–92 (2003)MathSciNetMATHCrossRef
18.
Zurück zum Zitat Rizvi, S.T.R., Ali, K.: Jacobian elliptic periodic traveling wave solutions in the negative-index materials. Nonlinear Dyn. 87, 1967–1972 (2017)CrossRef Rizvi, S.T.R., Ali, K.: Jacobian elliptic periodic traveling wave solutions in the negative-index materials. Nonlinear Dyn. 87, 1967–1972 (2017)CrossRef
19.
Zurück zum Zitat Hasegawa, A.: Plasma Instabilities and Nonlinear Effects. Springer, Berlin (1975)CrossRef Hasegawa, A.: Plasma Instabilities and Nonlinear Effects. Springer, Berlin (1975)CrossRef
20.
Zurück zum Zitat Gedalin, M., Scott, T.C., Band, Y.B.: Optical solitary waves in the higher order nonlinear Schrödinger equation. Phys. Rev. Lett 78, 448–451 (1997)CrossRef Gedalin, M., Scott, T.C., Band, Y.B.: Optical solitary waves in the higher order nonlinear Schrödinger equation. Phys. Rev. Lett 78, 448–451 (1997)CrossRef
21.
Zurück zum Zitat Gray, P., Scott, S.: Chemical Oscillations and Instabilities. Clarendon, Oxford (1990) Gray, P., Scott, S.: Chemical Oscillations and Instabilities. Clarendon, Oxford (1990)
22.
Zurück zum Zitat Ablowitz, M.J., Clarkson, P.A.: Solitons, Nonlinear Evolution Equations and Inverse Scattering Transform. Cambridge University Press, Cambridge (1991)MATHCrossRef Ablowitz, M.J., Clarkson, P.A.: Solitons, Nonlinear Evolution Equations and Inverse Scattering Transform. Cambridge University Press, Cambridge (1991)MATHCrossRef
23.
Zurück zum Zitat Adomian, G.: Solving Frontier Problems of Physics: The Decomposition Method. Kluwer Academic Publishers, Dordrecht (1994)MATHCrossRef Adomian, G.: Solving Frontier Problems of Physics: The Decomposition Method. Kluwer Academic Publishers, Dordrecht (1994)MATHCrossRef
24.
Zurück zum Zitat Agrawal, G.P.: Nonlinear Fiber Optics. Academic Press, New York (1995)MATH Agrawal, G.P.: Nonlinear Fiber Optics. Academic Press, New York (1995)MATH
25.
Zurück zum Zitat Gardner, C.S., Greene, J.M., Kruskal, M.D., Miura, R.M.: Method for solving the Korteweg-deVries equation. Phys. Rev. Lett. 19, 1095–1097 (1967)MATHCrossRef Gardner, C.S., Greene, J.M., Kruskal, M.D., Miura, R.M.: Method for solving the Korteweg-deVries equation. Phys. Rev. Lett. 19, 1095–1097 (1967)MATHCrossRef
26.
27.
Zurück zum Zitat Lou, S.Y.: Searching for higher dimensional integrable models from lower ones via Painlev\(\acute{e}\) analysis. Phys. Rev. Lett. 80, 5027–5031 (1998)MathSciNetMATHCrossRef Lou, S.Y.: Searching for higher dimensional integrable models from lower ones via Painlev\(\acute{e}\) analysis. Phys. Rev. Lett. 80, 5027–5031 (1998)MathSciNetMATHCrossRef
28.
Zurück zum Zitat El-Wakil, S.A., Abdou, M.A., Elhanbaly, A.: New solitons and periodic wave solutions for nonlinear evolution equations. Phys. Lett. A 353, 40–7 (2006)CrossRef El-Wakil, S.A., Abdou, M.A., Elhanbaly, A.: New solitons and periodic wave solutions for nonlinear evolution equations. Phys. Lett. A 353, 40–7 (2006)CrossRef
29.
Zurück zum Zitat Jiang, B., Liu, Y., Zhang, J., et al.: Bifurcations and some new traveling wave solutions for the CH-\(\gamma \) equation. Appl. Math. Comput. 228(1), 220–233 (2014)MathSciNetMATH Jiang, B., Liu, Y., Zhang, J., et al.: Bifurcations and some new traveling wave solutions for the CH-\(\gamma \) equation. Appl. Math. Comput. 228(1), 220–233 (2014)MathSciNetMATH
30.
Zurück zum Zitat Ganguly, A., Das, A.: Explicit solutions and stability analysis of the \((2 + 1)\) dimensional KP-BBM equation with dispersion effect. Commun. Nonlin. Sci. Numer. Simulat 25, 102–117 (2015)MathSciNetCrossRef Ganguly, A., Das, A.: Explicit solutions and stability analysis of the \((2 + 1)\) dimensional KP-BBM equation with dispersion effect. Commun. Nonlin. Sci. Numer. Simulat 25, 102–117 (2015)MathSciNetCrossRef
31.
Zurück zum Zitat Das, A., Ganguly, A.: Existence and stability of dispersive solutions to the Kadomtsev-Petviashvili equation in the presence of dispersion effect. Commun. Nonlin. Sci. Numer. Simulat 48, 326–339 (2017)MathSciNetCrossRef Das, A., Ganguly, A.: Existence and stability of dispersive solutions to the Kadomtsev-Petviashvili equation in the presence of dispersion effect. Commun. Nonlin. Sci. Numer. Simulat 48, 326–339 (2017)MathSciNetCrossRef
32.
Zurück zum Zitat Zhou, Y., Peng, L.: Weak solutions of the time-fractional Navier-Stokes equations and optimal control. Comput. Math. Appl. 73, 1016–1027 (2017)MathSciNetMATHCrossRef Zhou, Y., Peng, L.: Weak solutions of the time-fractional Navier-Stokes equations and optimal control. Comput. Math. Appl. 73, 1016–1027 (2017)MathSciNetMATHCrossRef
33.
Zurück zum Zitat Unsal, O., Guner, O., Bekir, A.: Analytical approach for space-time fractional Klein-Gordon equation. Optik 135, 337–345 (2017)CrossRef Unsal, O., Guner, O., Bekir, A.: Analytical approach for space-time fractional Klein-Gordon equation. Optik 135, 337–345 (2017)CrossRef
34.
Zurück zum Zitat Hongsit, N., Allen, M.A., Rowlands, G.: Growth rate of transverse instabilities of solitary pulse solutions to a family of modified Zakharov-Kuznetsov equations. Phys. Lett. A 372(14), 2420 (2008)MATHCrossRef Hongsit, N., Allen, M.A., Rowlands, G.: Growth rate of transverse instabilities of solitary pulse solutions to a family of modified Zakharov-Kuznetsov equations. Phys. Lett. A 372(14), 2420 (2008)MATHCrossRef
35.
Zurück zum Zitat Wazwaz, A.M.: The extended tanh method for the Zakharov-Kuznetsov (ZK) equation, the modified ZK equation, and its generalized forms. Commun. Nonlinear Sci. Numer. Simul. 13(6), 1039–47 (2008)MathSciNetMATHCrossRef Wazwaz, A.M.: The extended tanh method for the Zakharov-Kuznetsov (ZK) equation, the modified ZK equation, and its generalized forms. Commun. Nonlinear Sci. Numer. Simul. 13(6), 1039–47 (2008)MathSciNetMATHCrossRef
36.
Zurück zum Zitat Biswas, A., Zerrad, E.: \(1\)-soliton solution of the Zakharov-Kuznetsov equation with dual-power law nonlinearity. Commun. Nonlinear Sci. Numer. Simul. 14, 3574–3577 (2009)MATHCrossRef Biswas, A., Zerrad, E.: \(1\)-soliton solution of the Zakharov-Kuznetsov equation with dual-power law nonlinearity. Commun. Nonlinear Sci. Numer. Simul. 14, 3574–3577 (2009)MATHCrossRef
37.
Zurück zum Zitat Yan, Z.L., Liu, X.Q.: Symmetry reductions and explicit solutions for a generalized Zakharov-Kuznetsov equation. Commun. Theor. Phys. (Beijing, China) 45, 29–32 (2006)MathSciNetMATHCrossRef Yan, Z.L., Liu, X.Q.: Symmetry reductions and explicit solutions for a generalized Zakharov-Kuznetsov equation. Commun. Theor. Phys. (Beijing, China) 45, 29–32 (2006)MathSciNetMATHCrossRef
38.
Zurück zum Zitat Ferdousi, M., Miah, M.R., Sultana, S., Mamun, A.A.: Dust-acoustic shock waves in an electron depleted nonextensive dusty plasmas. Astrophys. Space Sci. 360, 43 (2015)CrossRef Ferdousi, M., Miah, M.R., Sultana, S., Mamun, A.A.: Dust-acoustic shock waves in an electron depleted nonextensive dusty plasmas. Astrophys. Space Sci. 360, 43 (2015)CrossRef
39.
Zurück zum Zitat Jannat, N., Ferdousi, M., Mamun, A.A.: Ion-acoustic shock waves in nonextensive multi-ion plasmas. Commun. Theor. Phys. 64, 479–484 (2015)MathSciNetMATHCrossRef Jannat, N., Ferdousi, M., Mamun, A.A.: Ion-acoustic shock waves in nonextensive multi-ion plasmas. Commun. Theor. Phys. 64, 479–484 (2015)MathSciNetMATHCrossRef
40.
Zurück zum Zitat Ema, S.A., Ferdousi, M., Sultana, S., Mamun, A.A.: Dust-ion-acoustic shock waves in nonextensive dusty multi-ion plasmas. Eur. Phys. J. Plus 130, 46 (2015)CrossRef Ema, S.A., Ferdousi, M., Sultana, S., Mamun, A.A.: Dust-ion-acoustic shock waves in nonextensive dusty multi-ion plasmas. Eur. Phys. J. Plus 130, 46 (2015)CrossRef
41.
Zurück zum Zitat Uddin, M.J., Alam, M.S., Mamun, A.A.: Positron-acoustic shock waves associated with cold viscous positron fluid in superthermal electron-positron-ion plasmas. Phys. Plasmas 22, 062111 (2015)MATHCrossRef Uddin, M.J., Alam, M.S., Mamun, A.A.: Positron-acoustic shock waves associated with cold viscous positron fluid in superthermal electron-positron-ion plasmas. Phys. Plasmas 22, 062111 (2015)MATHCrossRef
42.
Zurück zum Zitat Li, J., Chen, G.: Bifurcations of travelling wave solutions for four classes of nonlinear wave equations. Int. J. Bifurcation Chaos 15, 3973 (2005)MATHCrossRef Li, J., Chen, G.: Bifurcations of travelling wave solutions for four classes of nonlinear wave equations. Int. J. Bifurcation Chaos 15, 3973 (2005)MATHCrossRef
43.
Zurück zum Zitat Guckenheimer, J., Holmes, P.J.: Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields. Springer, New York (1983)MATHCrossRef Guckenheimer, J., Holmes, P.J.: Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields. Springer, New York (1983)MATHCrossRef
Metadaten
Titel
Exact Traveling Wave Solutions and Bifurcation Analysis for Time Fractional Dual Power Zakharov-Kuznetsov-Burgers Equation
verfasst von
Amiya Das
Copyright-Jahr
2020
Verlag
Springer Singapore
DOI
https://doi.org/10.1007/978-981-15-1338-1_3

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.