Skip to main content
Top
Published in: Journal of Applied and Industrial Mathematics 3/2023

01-09-2023

Exact Traveling Wave Solutions of One-Dimensional Models of Cancer Invasion

Author: M. V. Shubina

Published in: Journal of Applied and Industrial Mathematics | Issue 3/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this paper, we obtain exact analytical solutions of equations of continuous mathematical models of tumor growth and invasion based on the model introduced by Chaplain and Lolas for the case of one spatial dimension. The models consist of a system of three nonlinear reaction–diffusion–taxis partial differential equations describing the interactions between cancer cells, the matrix degrading enzyme and the tissue. The obtained solutions are smooth nonnegative functions depending on the traveling wave variable with certain conditions imposed on model parameters.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference J. Folkman and M. Klagsbrun, “Angiogenic factors,” Science 235 (4787), 442–447 (1987).CrossRef J. Folkman and M. Klagsbrun, “Angiogenic factors,” Science 235 (4787), 442–447 (1987).CrossRef
2.
go back to reference A. R. A. Anderson and M. A. J. Chaplain, “Continuous and discrete mathematical models of tumor-induced angiogenesis,” Bull. Math. Biol. 60, 857–899 (1998).CrossRefMATH A. R. A. Anderson and M. A. J. Chaplain, “Continuous and discrete mathematical models of tumor-induced angiogenesis,” Bull. Math. Biol. 60, 857–899 (1998).CrossRefMATH
3.
go back to reference A. R. A. Anderson, M. A. J. Chaplain, E. L. Newman, R. J. C. Steele, and A. M. Thompson, “Mathematical modelling of tumour invasion and metastasis,” J. Theor. Med. 2 (2), 129–154 (2000).CrossRefMATH A. R. A. Anderson, M. A. J. Chaplain, E. L. Newman, R. J. C. Steele, and A. M. Thompson, “Mathematical modelling of tumour invasion and metastasis,” J. Theor. Med. 2 (2), 129–154 (2000).CrossRefMATH
4.
go back to reference M. A. J. Chaplain and G. Lolas, “Mathematical modelling of cancer invasion of tissue: Dynamic heterogeneity,” Am. Inst. Math. Sci. 1 (3), 399–439 (2006).MathSciNetMATH M. A. J. Chaplain and G. Lolas, “Mathematical modelling of cancer invasion of tissue: Dynamic heterogeneity,” Am. Inst. Math. Sci. 1 (3), 399–439 (2006).MathSciNetMATH
5.
go back to reference H. Enderling and M. A. J. Chaplain, “Mathematical modeling of tumor growth and treatment,” Curr. Pharm. Des. 20 (30), 4934–4940 (2014).CrossRef H. Enderling and M. A. J. Chaplain, “Mathematical modeling of tumor growth and treatment,” Curr. Pharm. Des. 20 (30), 4934–4940 (2014).CrossRef
6.
go back to reference J. A. Adam and N. Bellomo, A Survey of Models for Tumour-Immune System Dynamics (Birkhäuser, Boston, 1996). J. A. Adam and N. Bellomo, A Survey of Models for Tumour-Immune System Dynamics (Birkhäuser, Boston, 1996).
7.
8.
go back to reference N. Bellomo, M. A. J. Chaplain, and E. De Angelis, Selected Topics in Cancer Modeling: Genesis, Evolution, Immune Competition, and Therapy (Birkhäuser, Boston, 2008) (Modeling and Simulation in Science, Engineering and Technology). N. Bellomo, M. A. J. Chaplain, and E. De Angelis, Selected Topics in Cancer Modeling: Genesis, Evolution, Immune Competition, and Therapy (Birkhäuser, Boston, 2008) (Modeling and Simulation in Science, Engineering and Technology).
9.
go back to reference R. P. Araujo and D. L. S. McElwain, “A history of the study of solid tumour growth: The contribution of mathematical modelling,” Bull. Math. Biol. 66 (5), 1039–1091 (2004).MathSciNetCrossRefMATH R. P. Araujo and D. L. S. McElwain, “A history of the study of solid tumour growth: The contribution of mathematical modelling,” Bull. Math. Biol. 66 (5), 1039–1091 (2004).MathSciNetCrossRefMATH
10.
go back to reference J. S. Lowengrub, H. B. Frieboes, F. Jin, Y.-L. Chuang, X. Li, P. Macklin, S. M. Wise, and V. Cristini, “Nonlinear modelling of cancer: Bridging the gap between cells and tumours,” Nonlinearity 23, R1–R91 (2010).MathSciNetCrossRefMATH J. S. Lowengrub, H. B. Frieboes, F. Jin, Y.-L. Chuang, X. Li, P. Macklin, S. M. Wise, and V. Cristini, “Nonlinear modelling of cancer: Bridging the gap between cells and tumours,” Nonlinearity 23, R1–R91 (2010).MathSciNetCrossRefMATH
11.
go back to reference R. A. Gatenby and E. T. Gawlinski, “A reaction–diffusion model of cancer invasion,” Cancer Res. 56 (24), 5745–5753 (1996). R. A. Gatenby and E. T. Gawlinski, “A reaction–diffusion model of cancer invasion,” Cancer Res. 56 (24), 5745–5753 (1996).
12.
go back to reference A. J. Perumpanani, J. A. Sherratt, J. Norbury, and H. M. Byrne, “Biological inferences from a mathematical model for malignant invasion,” Invasion Metastasis 16 (4–5), 209–221 (1996). A. J. Perumpanani, J. A. Sherratt, J. Norbury, and H. M. Byrne, “Biological inferences from a mathematical model for malignant invasion,” Invasion Metastasis 16 (4–5), 209–221 (1996).
14.
go back to reference E. F. Keller and L. A. Segel, “Initiation of slime mold aggregation viewed as an instability,” J. Theor. Biol. 26 (3), 399–415 (1970).MathSciNetCrossRefMATH E. F. Keller and L. A. Segel, “Initiation of slime mold aggregation viewed as an instability,” J. Theor. Biol. 26 (3), 399–415 (1970).MathSciNetCrossRefMATH
15.
go back to reference E. F. Keller and L. A. Segel, “Model for chemotaxis,” J. Theor. Biol. 30 (2), 225–234 (1971).CrossRefMATH E. F. Keller and L. A. Segel, “Model for chemotaxis,” J. Theor. Biol. 30 (2), 225–234 (1971).CrossRefMATH
16.
go back to reference E. F. Keller and L. A. Segel, “Traveling bands of chemotactic bacteria: A theoretical analysis,” J. Theor. Biol. 30 (2), 235–248 (1971).CrossRefMATH E. F. Keller and L. A. Segel, “Traveling bands of chemotactic bacteria: A theoretical analysis,” J. Theor. Biol. 30 (2), 235–248 (1971).CrossRefMATH
17.
go back to reference K. J. Painter, “Mathematical models for chemotaxis and their applications in self-organisation phenomena,” J. Theor. Biol. 481, 162–182 (2019).MathSciNetCrossRefMATH K. J. Painter, “Mathematical models for chemotaxis and their applications in self-organisation phenomena,” J. Theor. Biol. 481, 162–182 (2019).MathSciNetCrossRefMATH
18.
go back to reference A. R. A. Anderson, “A hybrid mathematical model of solid tumour invasion: The importance of cell adhesion,” Math. Med. Biol. 22 (2), 163–186 (2005).CrossRefMATH A. R. A. Anderson, “A hybrid mathematical model of solid tumour invasion: The importance of cell adhesion,” Math. Med. Biol. 22 (2), 163–186 (2005).CrossRefMATH
19.
go back to reference M. A. J. Chaplain and G. Lolas, “Mathematical modelling of cancer cell invasion of tissue: The role of the urokinase plasminogen activation system,” Math. Models Methods Appl. Sci. 15, 1685–1734 (2005).MathSciNetCrossRefMATH M. A. J. Chaplain and G. Lolas, “Mathematical modelling of cancer cell invasion of tissue: The role of the urokinase plasminogen activation system,” Math. Models Methods Appl. Sci. 15, 1685–1734 (2005).MathSciNetCrossRefMATH
20.
go back to reference H. Enderling, A. R. A. Anderson, M. A. J. Chaplain, A. J. Munro, and J. S. Vaidya, “Mathematical modelling of radiotherapy strategies for early breast cancer,” J. Theor. Biol. 241 (1), 158–171 (2006).MathSciNetCrossRefMATH H. Enderling, A. R. A. Anderson, M. A. J. Chaplain, A. J. Munro, and J. S. Vaidya, “Mathematical modelling of radiotherapy strategies for early breast cancer,” J. Theor. Biol. 241 (1), 158–171 (2006).MathSciNetCrossRefMATH
21.
go back to reference V. Andasari, A. Gerisch, G. Lolas, A. P. South, and M. A. J. Chaplain, “Mathematical modeling of cancer cell invasion of tissue: Biological insight from mathematical analysis and computational simulation,” J. Math. Biol. 63 (1), 141–171 (2010).MathSciNetCrossRefMATH V. Andasari, A. Gerisch, G. Lolas, A. P. South, and M. A. J. Chaplain, “Mathematical modeling of cancer cell invasion of tissue: Biological insight from mathematical analysis and computational simulation,” J. Math. Biol. 63 (1), 141–171 (2010).MathSciNetCrossRefMATH
22.
go back to reference A. Gerisch and M. A. J. Chaplain, “Mathematical modelling of cancer cell invasion of tissue: Local and non-local models and the effect of adhesion,” J. Theor. Biol. 250 (4), 684–704 (2008).MathSciNetCrossRefMATH A. Gerisch and M. A. J. Chaplain, “Mathematical modelling of cancer cell invasion of tissue: Local and non-local models and the effect of adhesion,” J. Theor. Biol. 250 (4), 684–704 (2008).MathSciNetCrossRefMATH
23.
go back to reference H. B. Frieboes, X. Zheng, C. H. Sun, B. Tromberg, R. Gatenby, and V. Cristini, “An integrated computational/experimental model of tumor invasion,” Cancer Res. 66, 1597–1604 (2006).CrossRef H. B. Frieboes, X. Zheng, C. H. Sun, B. Tromberg, R. Gatenby, and V. Cristini, “An integrated computational/experimental model of tumor invasion,” Cancer Res. 66, 1597–1604 (2006).CrossRef
24.
25.
go back to reference I. Ramis-Conde, M. A. J. Chaplain, and A. R. A. Anderson, “Mathematical modelling of cancer cell invasion of tissue,” Math. Comput. Model. 47 (5–6), 533–545 (2008).MathSciNetCrossRefMATH I. Ramis-Conde, M. A. J. Chaplain, and A. R. A. Anderson, “Mathematical modelling of cancer cell invasion of tissue,” Math. Comput. Model. 47 (5–6), 533–545 (2008).MathSciNetCrossRefMATH
26.
go back to reference K. J. Painter, N. A. Armstrong, and J. A. Sherratt, “The impact of adhesion on cellular invasion processes in cancer and development,” J. Theor. Biol. 264, 1057–1067 (2010).MathSciNetCrossRefMATH K. J. Painter, N. A. Armstrong, and J. A. Sherratt, “The impact of adhesion on cellular invasion processes in cancer and development,” J. Theor. Biol. 264, 1057–1067 (2010).MathSciNetCrossRefMATH
27.
go back to reference L. Peng, D. Trucu, P. Lin, A. Thompson, and M. A. J. Chaplain, “A multiscale mathematical model of tumour invasive growth,” Bull. Math. Biol. 79 (3), 389–429 (2017).MathSciNetCrossRefMATH L. Peng, D. Trucu, P. Lin, A. Thompson, and M. A. J. Chaplain, “A multiscale mathematical model of tumour invasive growth,” Bull. Math. Biol. 79 (3), 389–429 (2017).MathSciNetCrossRefMATH
28.
go back to reference P. Domschke, D. Trucu, A. Gerisch, and M. A. J. Chaplain, “Structured models of cell migration incorporating molecular binding processes,” J. Math. Biol. 75 (5–6), 1517–1561 (2017).MathSciNetCrossRefMATH P. Domschke, D. Trucu, A. Gerisch, and M. A. J. Chaplain, “Structured models of cell migration incorporating molecular binding processes,” J. Math. Biol. 75 (5–6), 1517–1561 (2017).MathSciNetCrossRefMATH
29.
go back to reference V. Bitsouni, M. A. J. Chaplain, and R. Eftimie, “Mathematical modelling of cancer invasion: The multiple roles of TGF- \( \beta \) pathway on tumour proliferation and cell adhesion,” Math. Models Methods Appl. Sci. 27 (10), 1929 (2017).MathSciNetCrossRefMATH V. Bitsouni, M. A. J. Chaplain, and R. Eftimie, “Mathematical modelling of cancer invasion: The multiple roles of TGF- \( \beta \) pathway on tumour proliferation and cell adhesion,” Math. Models Methods Appl. Sci. 27 (10), 1929 (2017).MathSciNetCrossRefMATH
30.
go back to reference V. Bitsouni, D. Trucu, M. A. J. Chaplain, and R. Eftimie, “Aggregation and travelling wave dynamics in a two-population model of cancer cell growth and invasion,” Math. Med. Biol. 35 (4), 541–577 (2018).MathSciNetMATH V. Bitsouni, D. Trucu, M. A. J. Chaplain, and R. Eftimie, “Aggregation and travelling wave dynamics in a two-population model of cancer cell growth and invasion,” Math. Med. Biol. 35 (4), 541–577 (2018).MathSciNetMATH
31.
go back to reference Z. Szymanska, M. Cytowski, E. Mitchell, C. K. Macnamara, and M. A. J. Chaplain, “Computational modelling of cancer development and growth: Modelling at multiple scales and multiscale modelling,” Bull. Math. Biol. 80 (5), 1366–1403 (2017).MathSciNetCrossRefMATH Z. Szymanska, M. Cytowski, E. Mitchell, C. K. Macnamara, and M. A. J. Chaplain, “Computational modelling of cancer development and growth: Modelling at multiple scales and multiscale modelling,” Bull. Math. Biol. 80 (5), 1366–1403 (2017).MathSciNetCrossRefMATH
32.
go back to reference P. Y. H. Pang and Y. Wang, “Global existence of a two-dimensional chemotaxis-haptotaxis model with remodeling of non-diffusible attractant,” J. Differ. Equat. 263, 1269–1292 (2017).MathSciNetCrossRefMATH P. Y. H. Pang and Y. Wang, “Global existence of a two-dimensional chemotaxis-haptotaxis model with remodeling of non-diffusible attractant,” J. Differ. Equat. 263, 1269–1292 (2017).MathSciNetCrossRefMATH
33.
go back to reference Y. Ke and J. Zheng, “A note for global existence of a two-dimensional chemotaxis–haptotaxis model with remodeling of non-diffusible attractant,” Nonlinearity 31 (10), 4602 (2018).MathSciNetCrossRefMATH Y. Ke and J. Zheng, “A note for global existence of a two-dimensional chemotaxis–haptotaxis model with remodeling of non-diffusible attractant,” Nonlinearity 31 (10), 4602 (2018).MathSciNetCrossRefMATH
34.
go back to reference F. Bubba, C. Pouchol, N. Ferrand, G. Vidal, L. Almeida, B. Perthame, and M. Sabbah, “A chemotaxis-based explanation of spheroid formation in 3d cultures of breast cancer cells,” J. Theor. Biol. 479, 73–80 (2019).MathSciNetCrossRef F. Bubba, C. Pouchol, N. Ferrand, G. Vidal, L. Almeida, B. Perthame, and M. Sabbah, “A chemotaxis-based explanation of spheroid formation in 3d cultures of breast cancer cells,” J. Theor. Biol. 479, 73–80 (2019).MathSciNetCrossRef
35.
go back to reference T. Xiang and J. Zheng, “A new result for 2D boundedness of solutions to a chemotaxis–haptotaxis model with/without sub-logistic source,” Nonlinearity 32, 4890 (2019).MathSciNetCrossRefMATH T. Xiang and J. Zheng, “A new result for 2D boundedness of solutions to a chemotaxis–haptotaxis model with/without sub-logistic source,” Nonlinearity 32, 4890 (2019).MathSciNetCrossRefMATH
36.
go back to reference Y. Tao and M. Winkler, “Global classical solutions to a doubly haptotactic cross-diffusion system modeling oncolytic virotherapy,” J. Differ. Equat. 268 (9), 4973 (2020).MathSciNetCrossRefMATH Y. Tao and M. Winkler, “Global classical solutions to a doubly haptotactic cross-diffusion system modeling oncolytic virotherapy,” J. Differ. Equat. 268 (9), 4973 (2020).MathSciNetCrossRefMATH
37.
go back to reference A. J. Perumpanani, J. A. Sherratt, J. Norbury, and H. Byrne, “A two parameter family of travelling waves with a singular barrier arising from the modelling of matrix mediated malignant invasion,” Physica. Ser. D: Nonlinear Phenom. 126, 145–159 (1999).CrossRefMATH A. J. Perumpanani, J. A. Sherratt, J. Norbury, and H. Byrne, “A two parameter family of travelling waves with a singular barrier arising from the modelling of matrix mediated malignant invasion,” Physica. Ser. D: Nonlinear Phenom. 126, 145–159 (1999).CrossRefMATH
38.
go back to reference B. P. Marchant, J. Norbury, and J. A. Sherratt, “Travelling wave solutions to a haptotaxis-dominated model of malignant invasion,” Nonlinearity 14 (6), 1653–1671 (2001).MathSciNetCrossRefMATH B. P. Marchant, J. Norbury, and J. A. Sherratt, “Travelling wave solutions to a haptotaxis-dominated model of malignant invasion,” Nonlinearity 14 (6), 1653–1671 (2001).MathSciNetCrossRefMATH
39.
go back to reference J. Sherratt, “On the form of smooth-front travelling waves in a reaction–diffusion equation with degenerate nonlinear diffusion,” Math. Model. Nat. Phenom. 5 (5), 64–79 (2010).MathSciNetCrossRefMATH J. Sherratt, “On the form of smooth-front travelling waves in a reaction–diffusion equation with degenerate nonlinear diffusion,” Math. Model. Nat. Phenom. 5 (5), 64–79 (2010).MathSciNetCrossRefMATH
40.
go back to reference K. Harley, P. Van Heijster, R. Marangell, G. J. Pettet, and M. Wechselberger, “Existence of traveling wave solutions for a model of tumor invasion,” J. Appl. Dyn. Syst. 13 (1), 366–396 (2014).MathSciNetCrossRefMATH K. Harley, P. Van Heijster, R. Marangell, G. J. Pettet, and M. Wechselberger, “Existence of traveling wave solutions for a model of tumor invasion,” J. Appl. Dyn. Syst. 13 (1), 366–396 (2014).MathSciNetCrossRefMATH
41.
go back to reference P. J. Olver, Applications of Lie Groups to Differential Equations (Springer-Verlag, 1986). P. J. Olver, Applications of Lie Groups to Differential Equations (Springer-Verlag, 1986).
42.
go back to reference H. Bateman and A. Erdélyi, Higher Transcendental Functions. Vol. 2 (McGraw-Hill, New York–Toronto–London, 1953).MATH H. Bateman and A. Erdélyi, Higher Transcendental Functions. Vol. 2 (McGraw-Hill, New York–Toronto–London, 1953).MATH
Metadata
Title
Exact Traveling Wave Solutions of One-Dimensional Models of Cancer Invasion
Author
M. V. Shubina
Publication date
01-09-2023
Publisher
Pleiades Publishing
Published in
Journal of Applied and Industrial Mathematics / Issue 3/2023
Print ISSN: 1990-4789
Electronic ISSN: 1990-4797
DOI
https://doi.org/10.1134/S1990478923030158

Other articles of this Issue 3/2023

Journal of Applied and Industrial Mathematics 3/2023 Go to the issue

Premium Partners