Skip to main content
Top
Published in: Journal of Materials Science: Materials in Electronics 23/2020

20-10-2020

Excellent energy storage performance for P(VDF-TrFE-CFE) composites by filling core–shell structured inorganic fibers

Authors: Jinpeng Xue, Tiandong Zhang, Changhai Zhang, Yue Zhang, Yu Feng, Yongquan Zhang, Qingguo Chi

Published in: Journal of Materials Science: Materials in Electronics | Issue 23/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Polymer-based nanocomposites have been attracted much attention due to their great potential application in the fields of electrical engineering and power electronics. It is still one of the most hottest topics to further enhance the capacitive performances of dielectric films. The most common way to increase the energy density of dielectrics is to construct nanocomposites by filling inorganic fillers into polymer matrix. In this study, strontium titanate nanofibers (ST NFs) and P(VDF-TrFE-CFE) (PVTC) are chosen as fillers and polymer matrix, respectively., More importantly, the core–shell structured fillers of ST NFs wrapped with SiO2 (ST@SiO2) have been constructed for improving the interfacial compatibility. The microstructures and electrical energy storage performances of the nanocomposites have been systematically investigated, comparing the impact of fillers with or without SiO2 shell layer. The results show that ST@SiO2/PVTC nanocomposites possess a discharged energy storage density of 7.2 J/cm3 and an efficiency of 70.9% at an ultra-low content of ST@SiO2 (1 vol%) and low electric field of 330 kV/mm. Meanwhile, the maximum recoverable energy storage densities of ST NFs/PVTC (5.5 J/cm3) and pure PVTC (4.7 J/cm3) are inferior to that of ST@SiO2/PVTC nanocomposites. This work provides an effective strategy to enhance the energy storage performances of PVTC polymer films, further confirming the design of core–shell structured fillers is beneficial to obtain excellent capacitive performances at a relative low electric field.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference H. Pan, F. Li, Y. Liu et al., Ultrahigh-energy density lead-free dielectric films via polymorphic nanodomain design. Science 365(6453), 578–582 (2019) H. Pan, F. Li, Y. Liu et al., Ultrahigh-energy density lead-free dielectric films via polymorphic nanodomain design. Science 365(6453), 578–582 (2019)
2.
go back to reference Q. Li, F.Z. Yao, Y. Liu et al., High-temperature dielectric materials for electrical energy storage. Annu. Rev. Mater. Res. 48, 219–243 (2018) Q. Li, F.Z. Yao, Y. Liu et al., High-temperature dielectric materials for electrical energy storage. Annu. Rev. Mater. Res. 48, 219–243 (2018)
3.
go back to reference B. Chu, X. Zhou, K. Ren et al., A dielectric polymer with high electric energy density and fast discharge speed. Science 313(5785), 334–336 (2006) B. Chu, X. Zhou, K. Ren et al., A dielectric polymer with high electric energy density and fast discharge speed. Science 313(5785), 334–336 (2006)
4.
go back to reference Q. Li, L. Chen, M.R. Gadinski et al., Flexible high-temperature dielectric materials from polymer nanocomposites. Nature 523(7562), 576–579 (2015) Q. Li, L. Chen, M.R. Gadinski et al., Flexible high-temperature dielectric materials from polymer nanocomposites. Nature 523(7562), 576–579 (2015)
5.
go back to reference M. Guo, J. Jiang, Z. Shen et al., High-energy-density ferroelectric polymer nanocomposites for capacitive energy storage: enhanced breakdown strength and improved discharge efficiency. Mater. Today 29, 49–67 (2019) M. Guo, J. Jiang, Z. Shen et al., High-energy-density ferroelectric polymer nanocomposites for capacitive energy storage: enhanced breakdown strength and improved discharge efficiency. Mater. Today 29, 49–67 (2019)
6.
go back to reference V.K. Thakur, R.K. Gupta, Recent progress on ferroelectric polymer-based nanocomposites for high energy density capacitors: synthesis, dielectric properties, and future aspects. Chem. Rev. 116(7), 4260–4317 (2016) V.K. Thakur, R.K. Gupta, Recent progress on ferroelectric polymer-based nanocomposites for high energy density capacitors: synthesis, dielectric properties, and future aspects. Chem. Rev. 116(7), 4260–4317 (2016)
7.
go back to reference X. Hao, A review on the dielectric materials for high energy-storage application. J. Adv. Dielectr. 3(01), 1330001 (2013) X. Hao, A review on the dielectric materials for high energy-storage application. J. Adv. Dielectr. 3(01), 1330001 (2013)
8.
go back to reference F. Liu, Q. Li, J. Cui et al., High-energy-density dielectric polymer nanocomposites with trilayered architecture. Adv. Funct. Mater. 27(20), 1606292 (2017) F. Liu, Q. Li, J. Cui et al., High-energy-density dielectric polymer nanocomposites with trilayered architecture. Adv. Funct. Mater. 27(20), 1606292 (2017)
9.
go back to reference T.R. Jow, F.W. MacDougall, J.B. Ennis et al., Pulsed Power Capacitor Development and Outlook[C]//2015 IEEE Pulsed Power Conference (PPC) (IEEE, Piscataway, 2015), pp. 1–7 T.R. Jow, F.W. MacDougall, J.B. Ennis et al., Pulsed Power Capacitor Development and Outlook[C]//2015 IEEE Pulsed Power Conference (PPC) (IEEE, Piscataway, 2015), pp. 1–7
10.
go back to reference X. Zhang, B.W. Li, L. Dong et al., Superior energy storage performances of polymer nanocomposites via modification of filler/polymer interfaces. Adv. Mater. Interfaces 5(11), 1800096 (2018) X. Zhang, B.W. Li, L. Dong et al., Superior energy storage performances of polymer nanocomposites via modification of filler/polymer interfaces. Adv. Mater. Interfaces 5(11), 1800096 (2018)
11.
go back to reference Q. Chi, Y. Zhou, C. Yin et al., A blended binary composite of poly(vinylidene fluoride) and poly(methyl methacrylate) exhibiting excellent energy storage performances. J. Mater. Chem. C 7(45), 14148–14158 (2019) Q. Chi, Y. Zhou, C. Yin et al., A blended binary composite of poly(vinylidene fluoride) and poly(methyl methacrylate) exhibiting excellent energy storage performances. J. Mater. Chem. C 7(45), 14148–14158 (2019)
12.
go back to reference Y. Fan, X. Huang, G. Wang et al., Core-shell structured biopolymer@BaTiO3 nanoparticles for biopolymer nanocomposites with significantly enhanced dielectric properties and energy storage capability. J. Phys. Chem. C 119(49), 27330–27339 (2015) Y. Fan, X. Huang, G. Wang et al., Core-shell structured biopolymer@BaTiO3 nanoparticles for biopolymer nanocomposites with significantly enhanced dielectric properties and energy storage capability. J. Phys. Chem. C 119(49), 27330–27339 (2015)
13.
go back to reference Y. Cui, T. Zhang, Y. Feng et al., Excellent energy storage density and efficiency in blend polymer-based composites by design of core-shell structured inorganic fibers and sandwich structured films. Composites B 177, 107429 (2019) Y. Cui, T. Zhang, Y. Feng et al., Excellent energy storage density and efficiency in blend polymer-based composites by design of core-shell structured inorganic fibers and sandwich structured films. Composites B 177, 107429 (2019)
14.
go back to reference Q. Chi, T. Ma, Y. Zhang et al., Significantly enhanced energy storage density for poly(vinylidene fluoride) composites by induceds PDA-coated 0.5Ba(Zr0.2Ti0.8)O3–.5(Ba0.7Ca0.3)TiO3 nanofibers. J. Mater. Chem. A 5(32), 16757–16766 (2017) Q. Chi, T. Ma, Y. Zhang et al., Significantly enhanced energy storage density for poly(vinylidene fluoride) composites by induceds PDA-coated 0.5Ba(Zr0.2Ti0.8)O3–.5(Ba0.7Ca0.3)TiO3 nanofibers. J. Mater. Chem. A 5(32), 16757–16766 (2017)
15.
go back to reference Y. Zhu, Y. Zhu, X. Huang et al., High energy density polymer dielectrics interlayered by assembled boron nitride nanosheets. Adv. Energy Mater. 9(36), 1901826 (2019) Y. Zhu, Y. Zhu, X. Huang et al., High energy density polymer dielectrics interlayered by assembled boron nitride nanosheets. Adv. Energy Mater. 9(36), 1901826 (2019)
16.
go back to reference S. Luo, Y. Shen, S. Yu et al., Construction of a 3D-BaTiO3 network leading to significantly enhanced dielectric permittivity and energy storage density of polymer composites. Energy Environ. Sci. 10(1), 137–144 (2017) S. Luo, Y. Shen, S. Yu et al., Construction of a 3D-BaTiO3 network leading to significantly enhanced dielectric permittivity and energy storage density of polymer composites. Energy Environ. Sci. 10(1), 137–144 (2017)
17.
go back to reference K. Bi, M. Bi, Y. Hao et al., Ultrafine core-shell BaTiO3@SiO2 structures for nanocomposite capacitors with high energy density. Nano Energy 51, 513–523 (2018) K. Bi, M. Bi, Y. Hao et al., Ultrafine core-shell BaTiO3@SiO2 structures for nanocomposite capacitors with high energy density. Nano Energy 51, 513–523 (2018)
18.
go back to reference H. Tang, H.A. Sodano, Ultra high energy density nanocomposite capacitors with fast discharge using Ba0.2Sr0.8TiO3 nanowires. Nano Lett. 13(4), 1373–1379 (2013) H. Tang, H.A. Sodano, Ultra high energy density nanocomposite capacitors with fast discharge using Ba0.2Sr0.8TiO3 nanowires. Nano Lett. 13(4), 1373–1379 (2013)
19.
go back to reference J. Jiang, Z. Shen, X. Cai et al., Polymer nanocomposites with interpenetrating gradient structure exhibiting ultrahigh discharge efficiency and energy density. Adv. Energy Mater. 9(15), 1803411 (2019) J. Jiang, Z. Shen, X. Cai et al., Polymer nanocomposites with interpenetrating gradient structure exhibiting ultrahigh discharge efficiency and energy density. Adv. Energy Mater. 9(15), 1803411 (2019)
21.
go back to reference Y. Zhu, P. Jiang, X. Huang, Poly(vinylidene fluoride)terpolymer and poly(methyl methacrylate) composite films with superior energy storage performance for electrostatic capacitor application. Compos. Sci. Technol. 179, 115–124 (2019) Y. Zhu, P. Jiang, X. Huang, Poly(vinylidene fluoride)terpolymer and poly(methyl methacrylate) composite films with superior energy storage performance for electrostatic capacitor application. Compos. Sci. Technol. 179, 115–124 (2019)
22.
go back to reference X. Zhang, Y. Shen, Z. Shen et al., Achieving high energy density in PVDF-based polymer blends: suppression of early polarization saturation and enhancement of breakdown strength. ACS Appl. Mater. Interfaces 8(40), 27236–27242 (2016) X. Zhang, Y. Shen, Z. Shen et al., Achieving high energy density in PVDF-based polymer blends: suppression of early polarization saturation and enhancement of breakdown strength. ACS Appl. Mater. Interfaces 8(40), 27236–27242 (2016)
23.
go back to reference P. Kim, N.M. Doss, J.P. Tillotson et al., High energy density nanocomposites based on surface-modified BaTiO3 and a ferroelectric polymer. ACS Nano 3(9), 2581–2592 (2009) P. Kim, N.M. Doss, J.P. Tillotson et al., High energy density nanocomposites based on surface-modified BaTiO3 and a ferroelectric polymer. ACS Nano 3(9), 2581–2592 (2009)
24.
go back to reference Y. Feng, Y. Zhou, T. Zhang et al., Ultrahigh discharge efficiency and excellent energy density in oriented core-shell nanofiber-polyetherimide composites. Energy Storage Mater. 25, 180–192 (2020) Y. Feng, Y. Zhou, T. Zhang et al., Ultrahigh discharge efficiency and excellent energy density in oriented core-shell nanofiber-polyetherimide composites. Energy Storage Mater. 25, 180–192 (2020)
25.
go back to reference T. Yamada, T. Ueda, T. Kitayama, Piezoelectricity of a high-content lead zirconate titanate/polymer composite. J. Appl. Phys. 53(6), 4328–4332 (1982) T. Yamada, T. Ueda, T. Kitayama, Piezoelectricity of a high-content lead zirconate titanate/polymer composite. J. Appl. Phys. 53(6), 4328–4332 (1982)
26.
go back to reference Z. Wang, J.K. Nelson, J. Miao et al., Effect of high aspect ratio filler on dielectric properties of polymer composites: a study on barium titanate fibers and graphene platelets. IEEE Trans. Dielectr. Electr. Insul. 19(3), 960–967 (2012) Z. Wang, J.K. Nelson, J. Miao et al., Effect of high aspect ratio filler on dielectric properties of polymer composites: a study on barium titanate fibers and graphene platelets. IEEE Trans. Dielectr. Electr. Insul. 19(3), 960–967 (2012)
27.
go back to reference Z. Wang, J.K. Nelson, H. Hillborg et al., Dielectric constant and breakdown strength of polymer composites with high aspect ratio fillers studied by finite element models. Compos. Sci. Technol. 76, 29–36 (2013) Z. Wang, J.K. Nelson, H. Hillborg et al., Dielectric constant and breakdown strength of polymer composites with high aspect ratio fillers studied by finite element models. Compos. Sci. Technol. 76, 29–36 (2013)
28.
go back to reference Y. Zhang, C. Zhang, Y. Feng et al., Energy storage enhancement of P(VDF-TrFE-CFE)-based composites with double-shell structured BZCT nanofibers of parallel and orthogonal configurations. Nano Energy 66, 104195 (2019) Y. Zhang, C. Zhang, Y. Feng et al., Energy storage enhancement of P(VDF-TrFE-CFE)-based composites with double-shell structured BZCT nanofibers of parallel and orthogonal configurations. Nano Energy 66, 104195 (2019)
29.
go back to reference Z. Pan, L. Yao, J. Zhai et al., Excellent energy density of polymer nanocomposites containing BaTiO3@Al2O3 nanofibers induced by moderate interfacial area. J. Mater. Chem. A 4(34), 13259–13264 (2016) Z. Pan, L. Yao, J. Zhai et al., Excellent energy density of polymer nanocomposites containing BaTiO3@Al2O3 nanofibers induced by moderate interfacial area. J. Mater. Chem. A 4(34), 13259–13264 (2016)
30.
go back to reference D. Kang, G. Wang, Y. Huang et al., Decorating TiO2 nanowires with BaTiO3 nanoparticles: a new approach leading to substantially enhanced energy storage capability of high-k polymer nanocomposites. ACS Appl. Mater. Interfaces 10(4), 4077–4085 (2018) D. Kang, G. Wang, Y. Huang et al., Decorating TiO2 nanowires with BaTiO3 nanoparticles: a new approach leading to substantially enhanced energy storage capability of high-k polymer nanocomposites. ACS Appl. Mater. Interfaces 10(4), 4077–4085 (2018)
31.
go back to reference Y. Zhang, C. Zhang, Y. Feng et al., Excellent energy storage performance and thermal property of polymer-based composite induced by multifunctional one-dimensional nanofibers oriented in-plane direction. Nano Energy 56, 138–150 (2019) Y. Zhang, C. Zhang, Y. Feng et al., Excellent energy storage performance and thermal property of polymer-based composite induced by multifunctional one-dimensional nanofibers oriented in-plane direction. Nano Energy 56, 138–150 (2019)
32.
go back to reference Z. Pan, L. Yao, J. Zhai et al., Ultrafast discharge and enhanced energy density of polymer nanocomposites loaded with 0.5(Ba0.7Ca0.3)TiO3–0.5Ba(Zr0.2Ti0.8)O3 one-dimensional nanofibers. ACS Appl. Mater. Interfaces 9(16), 14337–14346 (2017) Z. Pan, L. Yao, J. Zhai et al., Ultrafast discharge and enhanced energy density of polymer nanocomposites loaded with 0.5(Ba0.7Ca0.3)TiO3–0.5Ba(Zr0.2Ti0.8)O3 one-dimensional nanofibers. ACS Appl. Mater. Interfaces 9(16), 14337–14346 (2017)
33.
go back to reference S. Patel, A. Bandyopadhyay, V. Vijayabaskar et al., Effect of acrylic copolymer and terpolymer composition on the properties of in-situ polymer/silica hybrid nanocomposites. J. Mater. Sci. 41(3), 927–936 (2006) S. Patel, A. Bandyopadhyay, V. Vijayabaskar et al., Effect of acrylic copolymer and terpolymer composition on the properties of in-situ polymer/silica hybrid nanocomposites. J. Mater. Sci. 41(3), 927–936 (2006)
34.
go back to reference L. Shaohui, Z. Jiwei, W. Jinwen et al., Enhanced energy storage density in poly(vinylidene fluoride) nanocomposites by a small loading of suface-hydroxylated Ba0.6Sr0.4TiO3 nanofibers. ACS Appl. Mater. Interfaces 6(3), 1533–1540 (2014) L. Shaohui, Z. Jiwei, W. Jinwen et al., Enhanced energy storage density in poly(vinylidene fluoride) nanocomposites by a small loading of suface-hydroxylated Ba0.6Sr0.4TiO3 nanofibers. ACS Appl. Mater. Interfaces 6(3), 1533–1540 (2014)
35.
go back to reference Y. Feng, W.L. Li, Y.F. Hou et al., Enhanced dielectric properties of PVDF-HFP/BaTiO3-nanowire composites induced by interfacial polarization and wire-shape. J. Mater. Chem. C 3(6), 1250–1260 (2015) Y. Feng, W.L. Li, Y.F. Hou et al., Enhanced dielectric properties of PVDF-HFP/BaTiO3-nanowire composites induced by interfacial polarization and wire-shape. J. Mater. Chem. C 3(6), 1250–1260 (2015)
36.
go back to reference D. He, Y. Wang, S. Song et al., Significantly enhanced dielectric performances and high thermal conductivity in poly(vinylidene fluoride)-based composites enabled by SiC@SiO2 core-shell whiskers alignment. ACS Appl. Mater. Interfaces 9(51), 44839–44846 (2017) D. He, Y. Wang, S. Song et al., Significantly enhanced dielectric performances and high thermal conductivity in poly(vinylidene fluoride)-based composites enabled by SiC@SiO2 core-shell whiskers alignment. ACS Appl. Mater. Interfaces 9(51), 44839–44846 (2017)
37.
go back to reference X. Wei, R. Xing, B. Zhang et al., Preparation and dielectric properties of PATP-coated nano-BaTiO3/epoxy resin composites. Ceram. Int. 41, S492–S497 (2015) X. Wei, R. Xing, B. Zhang et al., Preparation and dielectric properties of PATP-coated nano-BaTiO3/epoxy resin composites. Ceram. Int. 41, S492–S497 (2015)
38.
go back to reference L. Xie, X. Huang, C. Wu et al., Core-shell structured poly(methyl methacrylate)/BaTiO3 nanocomposites prepared by in situ atom transfer radical polymerization: a route to high dielectric constant materials with the inherent low loss of the base polymer. J. Mater. Chem. 21(16), 5897–5906 (2011) L. Xie, X. Huang, C. Wu et al., Core-shell structured poly(methyl methacrylate)/BaTiO3 nanocomposites prepared by in situ atom transfer radical polymerization: a route to high dielectric constant materials with the inherent low loss of the base polymer. J. Mater. Chem. 21(16), 5897–5906 (2011)
39.
go back to reference W. Li, Q. Meng, Y. Zheng et al., Electric energy storage properties of poly(vinylidene fluoride). Appl. Phys. Lett. 96(19), 192905 (2010) W. Li, Q. Meng, Y. Zheng et al., Electric energy storage properties of poly(vinylidene fluoride). Appl. Phys. Lett. 96(19), 192905 (2010)
40.
go back to reference Y. Zhang, Q. Chi, L. Liu et al., Enhanced electric polarization and breakdown strength in the all-organic sandwich-structured poly(vinylidene fluoride)-based dielectric film for high energy density capacitor. APL Mater. 5(7), 076109 (2017) Y. Zhang, Q. Chi, L. Liu et al., Enhanced electric polarization and breakdown strength in the all-organic sandwich-structured poly(vinylidene fluoride)-based dielectric film for high energy density capacitor. APL Mater. 5(7), 076109 (2017)
41.
go back to reference M.P. Silva, V. Sencadas, A.G. Rolo et al., Influence of the crystallization kinetics on the microstructural properties of γ-PVDF, in Materials science forum, vol. 587, (Trans Tech Publications Ltd, Freienbach, 2008), pp. 534–537 M.P. Silva, V. Sencadas, A.G. Rolo et al., Influence of the crystallization kinetics on the microstructural properties of γ-PVDF, in Materials science forum, vol. 587, (Trans Tech Publications Ltd, Freienbach, 2008), pp. 534–537
42.
go back to reference T. Furukawa, Ferroelectric properties of vinylidene fluoride copolymers. Phase Transit A 18(3–4), 143–211 (1989) T. Furukawa, Ferroelectric properties of vinylidene fluoride copolymers. Phase Transit A 18(3–4), 143–211 (1989)
43.
go back to reference S. Ramesh, S.C. Lu, Effect of nanosized silica in poly(methyl methacrylate)-lithium bis (trifluoromethanesulfonyl) imide based polymer electrolytes. J. Power Sources 185(2), 1439–1443 (2008) S. Ramesh, S.C. Lu, Effect of nanosized silica in poly(methyl methacrylate)-lithium bis (trifluoromethanesulfonyl) imide based polymer electrolytes. J. Power Sources 185(2), 1439–1443 (2008)
44.
go back to reference S. Mohamadi, N. Sharifi-Sanjani, A. Foyouhi, Evaluation of graphene nanosheets influence on the physical properties of PVDF/PMMA blend. J. Polym. Res. 20(1), 46 (2013) S. Mohamadi, N. Sharifi-Sanjani, A. Foyouhi, Evaluation of graphene nanosheets influence on the physical properties of PVDF/PMMA blend. J. Polym. Res. 20(1), 46 (2013)
45.
go back to reference Z.M. Dang, T. Zhou, S.H. Yao et al., Advanced calcium copper titanate/polyimide functional hybrid films with high dielectric permittivity. Adv. Mater. 21(20), 2077–2082 (2009) Z.M. Dang, T. Zhou, S.H. Yao et al., Advanced calcium copper titanate/polyimide functional hybrid films with high dielectric permittivity. Adv. Mater. 21(20), 2077–2082 (2009)
46.
go back to reference X. Huang, B. Sun, Y. Zhu et al., High-k polymer nanocomposites with 1D filler for dielectric and energy storage applications. Prog. Mater. Sci. 100, 187–225 (2019) X. Huang, B. Sun, Y. Zhu et al., High-k polymer nanocomposites with 1D filler for dielectric and energy storage applications. Prog. Mater. Sci. 100, 187–225 (2019)
47.
go back to reference Z. Pan, J. Zhai, B. Shen, Multilayer hierarchical interfaces with high energy density in polymer nanocomposites composed of BaTiO3@TiO2@Al2O3 nanofibers. J. Mater. Chem. A 5(29), 15217–15226 (2017) Z. Pan, J. Zhai, B. Shen, Multilayer hierarchical interfaces with high energy density in polymer nanocomposites composed of BaTiO3@TiO2@Al2O3 nanofibers. J. Mater. Chem. A 5(29), 15217–15226 (2017)
48.
go back to reference S. Liu, S. Xue, B. Shen et al., Reduced energy loss in poly(vinylidene fluoride) nanocomposites by filling with a small loading of core-shell structured BaTiO3/SiO2 nanofibers. Appl. Phys. Lett. 107(3), 032907 (2015) S. Liu, S. Xue, B. Shen et al., Reduced energy loss in poly(vinylidene fluoride) nanocomposites by filling with a small loading of core-shell structured BaTiO3/SiO2 nanofibers. Appl. Phys. Lett. 107(3), 032907 (2015)
49.
go back to reference G. Wang, Y. Huang, Y. Wang et al., Substantial enhancement of energy storage capability in polymer nanocomposites by encapsulation of BaTiO3 NWs with variable shell thickness. Phys. Chem. Chem. Phys. 19(31), 21058–21068 (2017) G. Wang, Y. Huang, Y. Wang et al., Substantial enhancement of energy storage capability in polymer nanocomposites by encapsulation of BaTiO3 NWs with variable shell thickness. Phys. Chem. Chem. Phys. 19(31), 21058–21068 (2017)
50.
go back to reference X. Zhang, J. Jiang, Z. Shen et al., Polymer nanocomposites with ultrahigh energy density and high discharge efficiency by modulating their nanostructures in three dimensions. Adv. Mater. 30(16), 1707269 (2018) X. Zhang, J. Jiang, Z. Shen et al., Polymer nanocomposites with ultrahigh energy density and high discharge efficiency by modulating their nanostructures in three dimensions. Adv. Mater. 30(16), 1707269 (2018)
51.
go back to reference X. Zhang, Y. Shen, Q. Zhang et al., Ultrahigh energy density of polymer nanocomposites containing BaTiO3@TiO2 nanofibers by atomic-scale interface engineering. Adv. Mater. 27(5), 819–824 (2015) X. Zhang, Y. Shen, Q. Zhang et al., Ultrahigh energy density of polymer nanocomposites containing BaTiO3@TiO2 nanofibers by atomic-scale interface engineering. Adv. Mater. 27(5), 819–824 (2015)
52.
go back to reference Y. Wang, Y. Li, L. Wang et al., Gradient-layered polymer nanocomposites with significantly improved insulation performance for dielectric energy storage. Energy Storage Mater. 24, 626–634 (2020) Y. Wang, Y. Li, L. Wang et al., Gradient-layered polymer nanocomposites with significantly improved insulation performance for dielectric energy storage. Energy Storage Mater. 24, 626–634 (2020)
53.
go back to reference M. Feng, Q. Chi, Y. Feng et al., High energy storage density and efficiency in aligned nanofiber filled nanocomposites with multilayer structure. Compos. B. Eng. 108206 (2020) M. Feng, Q. Chi, Y. Feng et al., High energy storage density and efficiency in aligned nanofiber filled nanocomposites with multilayer structure. Compos. B. Eng. 108206 (2020)
54.
go back to reference Q. Chi, X. Wang, C. Zhang et al., High energy storage density for poly(vinylidene fluoride) composites by introduced core-shell CaCu3Ti4O12@Al2O3 nanofibers. ACS Sustain. Chem. Eng. 6(7), 8641–8649 (2018) Q. Chi, X. Wang, C. Zhang et al., High energy storage density for poly(vinylidene fluoride) composites by introduced core-shell CaCu3Ti4O12@Al2O3 nanofibers. ACS Sustain. Chem. Eng. 6(7), 8641–8649 (2018)
55.
go back to reference J. Jiang, Z. Shen, J. Qian et al., Ultrahigh discharge efficiency in multilayered polymer nanocomposites of high energy density. Energy Storage Mater. 18, 213–221 (2019) J. Jiang, Z. Shen, J. Qian et al., Ultrahigh discharge efficiency in multilayered polymer nanocomposites of high energy density. Energy Storage Mater. 18, 213–221 (2019)
56.
go back to reference Z.H. Shen, J.J. Wang, Y. Lin et al., High-throughput phase-field design of high-energy-density polymer nanocomposites. Adv. Mater. 30(2), 1704380 (2018) Z.H. Shen, J.J. Wang, Y. Lin et al., High-throughput phase-field design of high-energy-density polymer nanocomposites. Adv. Mater. 30(2), 1704380 (2018)
57.
go back to reference J. Liu, Y. Zhao, C. Chen et al., Study on the polarization and relaxation processes of ferroelectric polymer films using the sawyer-tower circuit with square voltage waveform. J. Phys. Chem. C 121(23), 12531–12539 (2017) J. Liu, Y. Zhao, C. Chen et al., Study on the polarization and relaxation processes of ferroelectric polymer films using the sawyer-tower circuit with square voltage waveform. J. Phys. Chem. C 121(23), 12531–12539 (2017)
58.
go back to reference E. Baer, L. Zhu, 50th anniversary perspective: Dielectric phenomena in polymers and multilayered dielectric films. Macromolecules 50(6), 2239–2256 (2017) E. Baer, L. Zhu, 50th anniversary perspective: Dielectric phenomena in polymers and multilayered dielectric films. Macromolecules 50(6), 2239–2256 (2017)
59.
go back to reference D. Zhang, C. Ma, X. Zhou et al., High performance capacitors using BaTiO3 nanowires engineered by rigid liquid-crystalline polymers. J. Phys. Chem. C 121(37), 20075–20083 (2017) D. Zhang, C. Ma, X. Zhou et al., High performance capacitors using BaTiO3 nanowires engineered by rigid liquid-crystalline polymers. J. Phys. Chem. C 121(37), 20075–20083 (2017)
60.
go back to reference Z. Pan, L. Yao, J. Zhai et al., High-energy-density polymer nanocomposites composed of newly structured one-dimensional BaTiO3@Al2O3 nanofibers. ACS Appl. Mater. Interfaces 9(4), 4024–4033 (2017) Z. Pan, L. Yao, J. Zhai et al., High-energy-density polymer nanocomposites composed of newly structured one-dimensional BaTiO3@Al2O3 nanofibers. ACS Appl. Mater. Interfaces 9(4), 4024–4033 (2017)
61.
go back to reference L. Wang, X. Huang, Y. Zhu et al., Enhancing electrical energy storage capability of dielectric polymer nanocomposites via the room temperature coulomb blockade effect of ultra-small platinum nanoparticles. Phys. Chem. Chem. Phys. 20(7), 5001–5011 (2018) L. Wang, X. Huang, Y. Zhu et al., Enhancing electrical energy storage capability of dielectric polymer nanocomposites via the room temperature coulomb blockade effect of ultra-small platinum nanoparticles. Phys. Chem. Chem. Phys. 20(7), 5001–5011 (2018)
62.
go back to reference S. Liu, S. Xue, S. Xiu et al., Surface-modified Ba(Zr0.3Ti0.7)O3 nanofibers by polyvinylpyrrolidone filler for poly(vinylidene fluoride) composites with enhanced dielectric constant and energy storage density. Sci. Rep. 6, 26198 (2016) S. Liu, S. Xue, S. Xiu et al., Surface-modified Ba(Zr0.3Ti0.7)O3 nanofibers by polyvinylpyrrolidone filler for poly(vinylidene fluoride) composites with enhanced dielectric constant and energy storage density. Sci. Rep. 6, 26198 (2016)
Metadata
Title
Excellent energy storage performance for P(VDF-TrFE-CFE) composites by filling core–shell structured inorganic fibers
Authors
Jinpeng Xue
Tiandong Zhang
Changhai Zhang
Yue Zhang
Yu Feng
Yongquan Zhang
Qingguo Chi
Publication date
20-10-2020
Publisher
Springer US
Published in
Journal of Materials Science: Materials in Electronics / Issue 23/2020
Print ISSN: 0957-4522
Electronic ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-020-04625-8

Other articles of this Issue 23/2020

Journal of Materials Science: Materials in Electronics 23/2020 Go to the issue