Skip to main content
Top
Published in: Biomass Conversion and Biorefinery 4/2013

01-12-2013 | Original Article

Exergy-based comparison of indirect and direct biomass gasification technologies within the framework of bio-SNG production

Authors: Stefan Heyne, Henrik Thunman, Simon Harvey

Published in: Biomass Conversion and Biorefinery | Issue 4/2013

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Atmospheric indirect steam-blown and pressurised direct oxygen-blown gasification are the two major technologies discussed for large-scale production of synthetic natural gas from biomass (bio-SNG) by thermochemical conversion. Published system studies of bio-SNG production concepts draw different conclusions about which gasification technology performs best. In this paper, an exergy-based comparison of the two gasification technologies is performed using a simplified gasification reactor model. This approach aims at comparing the two technologies on a common basis without possible bias due to model regression on specific reactor data. The system boundaries include the gasification and gas cleaning step to generate a product gas ready for subsequent synthesis. The major parameter investigated is the delivery pressure of the product gas. Other model parameters include the air-to-fuel ratio for gasification as well as the H2/CO ratio in the product gas. In order to illustrate the thermodynamic limits and sources of efficiency loss, an ideal modelling approach is contrasted with a model accounting for losses in, e.g. the heat recovery and compression operations. The resulting cold-gas efficiencies of the processes are in the range of 0.66–0.84 on a lower heating value basis. Exergy efficiencies for the ideal systems are from 0.79 to 0.84 and in the range of 0.7 to 0.79 for the systems including losses. Pressurised direct gasification benefits from higher delivery pressure of the finished gas product and results in the highest exergy efficiency values. Regarding bio-SNG synthesis however, a higher energetic and exergetic penalty for CO2 removal results in direct gasification exergy efficiency values that are below values for indirect gasification. No significant difference in performance between the technologies can be observed based on the model results, but a challenge identified for process design is efficient heat recovery and cogeneration of electricity for both technologies. Furthermore, direct gasification performance is penalised by incomplete carbon conversion in contrast to performance of indirect gasification concepts.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Gunnarsson I (2011) The GoBiGas Project. In: International Seminar on Gasification 2011—Gas Quality, CHP and New Concepts, Malmö, Sweden, 6–7 October 2011 Gunnarsson I (2011) The GoBiGas Project. In: International Seminar on Gasification 2011—Gas Quality, CHP and New Concepts, Malmö, Sweden, 6–7 October 2011
2.
go back to reference Fredriksson Möller B (2011) The E.ON Bio2G Project. In: International Seminar on Gasification 2011—Gas Quality, CHP and New Concepts, Malmö, Sweden, 6–7 October 2011 Fredriksson Möller B (2011) The E.ON Bio2G Project. In: International Seminar on Gasification 2011—Gas Quality, CHP and New Concepts, Malmö, Sweden, 6–7 October 2011
3.
go back to reference Adelt M, Vogel A (2010) Bio-SNG—prospective renewable energy carrier in the E.ON gas grid (in German: bio-SNG zukünftiger regenerativer Energiträger im E.ON Gasnetz). Erdöl Erdgas Kohle 126(10):338–341 Adelt M, Vogel A (2010) Bio-SNG—prospective renewable energy carrier in the E.ON gas grid (in German: bio-SNG zukünftiger regenerativer Energiträger im E.ON Gasnetz). Erdöl Erdgas Kohle 126(10):338–341
4.
go back to reference Hennius M (2012) E.ON delays large-scale biogas project in Scania (In Swedish: E.ON avvaktar med storskaligt biogasprojekt i Skåne). Press release. E.ON Sverige AB, Malmö Hennius M (2012) E.ON delays large-scale biogas project in Scania (In Swedish: E.ON avvaktar med storskaligt biogasprojekt i Skåne). Press release. E.ON Sverige AB, Malmö
6.
7.
go back to reference Gassner M, Maréchal F (2012) Thermo-economic optimisation of the polygeneration of synthetic natural gas (SNG), power and heat from lignocellulosic biomass by gasification and methanation. Energy and Environmental Science 5(2):5768–5789. doi:10.1039/c1ee02867g CrossRef Gassner M, Maréchal F (2012) Thermo-economic optimisation of the polygeneration of synthetic natural gas (SNG), power and heat from lignocellulosic biomass by gasification and methanation. Energy and Environmental Science 5(2):5768–5789. doi:10.​1039/​c1ee02867g CrossRef
10.
12.
go back to reference Szargut J, Morris DR, Steward FR (1988) Exergy analysis of thermal, chemical, and metallurgical processes. Hemisphere, New York Szargut J, Morris DR, Steward FR (1988) Exergy analysis of thermal, chemical, and metallurgical processes. Hemisphere, New York
15.
go back to reference Friedrichs G, Proplesch P, Lommerzheim W (1982) Comflux pilot plant for converting coal conversion gas into SNG. Gaswärme International 31(6):261–264 Friedrichs G, Proplesch P, Lommerzheim W (1982) Comflux pilot plant for converting coal conversion gas into SNG. Gaswärme International 31(6):261–264
16.
go back to reference Seemann M (2006) Methanation of biosyngas in a fluidized bed reactor. Ph.D. thesis, Swiss Federal Institute of Technology, Zürich, Switzerland Seemann M (2006) Methanation of biosyngas in a fluidized bed reactor. Ph.D. thesis, Swiss Federal Institute of Technology, Zürich, Switzerland
18.
go back to reference Siedlecki M, de Jong W (2011) Biomass gasification as the first hot step in clean syngas production process—gas quality optimization and primary tar reduction measures in a 100 kW thermal input steam-oxygen blown CFB gasifier. Biomass Bioenergy 35(suppl 1):S40–S62. doi:10.1016/j.biombioe.2011.05.033 Siedlecki M, de Jong W (2011) Biomass gasification as the first hot step in clean syngas production process—gas quality optimization and primary tar reduction measures in a 100 kW thermal input steam-oxygen blown CFB gasifier. Biomass Bioenergy 35(suppl 1):S40–S62. doi:10.​1016/​j.​biombioe.​2011.​05.​033
20.
go back to reference Puchner B, Pfeifer C, Hofbauer H (2009) Bed material and parameter variation for a pressurized biomass fluidized bed process. In: Yue G, Zhang H, Zhao C, Luo Z (eds) Proceedings of the 20th International Conference on Fluidized Bed Combustion, Xian, China, 18–21 May 2009. Tsinghua University Press, Beijing, pp 700–705. doi:10.1007/978-3-642-02682-9_108 Puchner B, Pfeifer C, Hofbauer H (2009) Bed material and parameter variation for a pressurized biomass fluidized bed process. In: Yue G, Zhang H, Zhao C, Luo Z (eds) Proceedings of the 20th International Conference on Fluidized Bed Combustion, Xian, China, 18–21 May 2009. Tsinghua University Press, Beijing, pp 700–705. doi:10.​1007/​978-3-642-02682-9_​108
21.
22.
23.
go back to reference Zwart RWR, Van Der Drift A, Bos A, Visser HJM, Cieplik MK, Könemann HWJ (2009) Oil-based gas washing-flexible tar removal for high-efficient production of clean heat and power as well as sustainable fuels and chemicals. Environmental Progress and Sustainable Energy 28(3):324–335. doi:10.1002/ep.10383 CrossRef Zwart RWR, Van Der Drift A, Bos A, Visser HJM, Cieplik MK, Könemann HWJ (2009) Oil-based gas washing-flexible tar removal for high-efficient production of clean heat and power as well as sustainable fuels and chemicals. Environmental Progress and Sustainable Energy 28(3):324–335. doi:10.​1002/​ep.​10383 CrossRef
24.
go back to reference Pröll T, Aichernig C, Rauch R, Hofbauer H (2007) Fluidized bed steam gasification of solid biomass—performance characteristics of an 8 MWth combined heat and power plant. Int J Chem React Eng 5:54. doi:10.2202/1542-6580.1398 Pröll T, Aichernig C, Rauch R, Hofbauer H (2007) Fluidized bed steam gasification of solid biomass—performance characteristics of an 8 MWth combined heat and power plant. Int J Chem React Eng 5:54. doi:10.​2202/​1542-6580.​1398
25.
go back to reference Lind F, Seemann M, Thunman H (2011) Continuous catalytic tar reforming of biomass derived raw gas with simultaneous catalyst regeneration. Ind Eng Chem Res 50(20):11553–11562. doi:10.1021/ie200645s CrossRef Lind F, Seemann M, Thunman H (2011) Continuous catalytic tar reforming of biomass derived raw gas with simultaneous catalyst regeneration. Ind Eng Chem Res 50(20):11553–11562. doi:10.​1021/​ie200645s CrossRef
27.
go back to reference Brodén H, Nyström O, Jönsson M (2012) Optimum power yield for bio fuel fired combined heat and power plants (In Swedish: optimal elverkningsgrad för biobränsleeldade kraftvärmeverk). Värmeforsk, Stockholm Brodén H, Nyström O, Jönsson M (2012) Optimum power yield for bio fuel fired combined heat and power plants (In Swedish: optimal elverkningsgrad för biobränsleeldade kraftvärmeverk). Värmeforsk, Stockholm
30.
go back to reference Swanson ML, Musich MA, Schmidt DD, Schultz JK (2003) Feed system innovation for gasification locally economical alternative fuels (FIGLEAF). U.S. Department of Energy, National Energy Technology Laboratory, PittsburghCrossRef Swanson ML, Musich MA, Schmidt DD, Schultz JK (2003) Feed system innovation for gasification locally economical alternative fuels (FIGLEAF). U.S. Department of Energy, National Energy Technology Laboratory, PittsburghCrossRef
31.
go back to reference Jones D, Bhattacharyya D, Turton R, Zitney SE (2011) Optimal design and integration of an air separation unit (ASU) for an integrated gasification combined cycle (IGCC) power plant with CO2 capture. Fuel Process Technol 92(9):1685–1695. doi:10.1016/j.fuproc.2011.04.018 CrossRef Jones D, Bhattacharyya D, Turton R, Zitney SE (2011) Optimal design and integration of an air separation unit (ASU) for an integrated gasification combined cycle (IGCC) power plant with CO2 capture. Fuel Process Technol 92(9):1685–1695. doi:10.​1016/​j.​fuproc.​2011.​04.​018 CrossRef
32.
go back to reference Beysel G (2009) Enhanced cryogenic air separation—a proven process applied to oxyfuel: future prospects. In: 1st International Oxyfuel Combustion Conference, Cottbus, Germany, 8–11 September 2009 Beysel G (2009) Enhanced cryogenic air separation—a proven process applied to oxyfuel: future prospects. In: 1st International Oxyfuel Combustion Conference, Cottbus, Germany, 8–11 September 2009
33.
go back to reference Tranier J-P, Dubettier R, Perrin N (2009) Air separation unit for oxy-coal combustion systems. Paper presented at the 1st International Oxyfuel Combustion Conference, Cottbus, Germany Tranier J-P, Dubettier R, Perrin N (2009) Air separation unit for oxy-coal combustion systems. Paper presented at the 1st International Oxyfuel Combustion Conference, Cottbus, Germany
34.
go back to reference Aspen Engineering Suite V7.2 (2010). Aspen Technology Inc. Aspen Engineering Suite V7.2 (2010). Aspen Technology Inc.
35.
go back to reference Edberg U, Engstrom L, Hartler N (1973) The influence of chip dimensions on chip bulk density. Svensk Papperstidning 14:529–533 Edberg U, Engstrom L, Hartler N (1973) The influence of chip dimensions on chip bulk density. Svensk Papperstidning 14:529–533
36.
go back to reference Plötze M, Niemz P (2011) Porosity and pore size distribution of different wood types as determined by mercury intrusion porosimetry. European Journal of Wood and Wood Products 69(4):649–657. doi:10.1007/s00107-010-0504-0 CrossRef Plötze M, Niemz P (2011) Porosity and pore size distribution of different wood types as determined by mercury intrusion porosimetry. European Journal of Wood and Wood Products 69(4):649–657. doi:10.​1007/​s00107-010-0504-0 CrossRef
38.
go back to reference Rautalin A, Wilén C (1992) Feeding biomass into pressure and related safety engineering. VTT Research Notes 1428. VTT—Technical Research Centre of Finland, Espoo Rautalin A, Wilén C (1992) Feeding biomass into pressure and related safety engineering. VTT Research Notes 1428. VTT—Technical Research Centre of Finland, Espoo
39.
go back to reference Götz M, Köppel W, Reimert R, Graf F (2012) Potential to optimize scrubbers for biogas cleaning. Part 2. Chemical Scrubbers (in German; Optimierungspotenzial von Wäschen zur Biogasaufbereitung Teil 2. Chemische Wäschen). Chemie Ingenieur Technik 84(1–2):81–87. doi:10.1002/cite.201100129 CrossRef Götz M, Köppel W, Reimert R, Graf F (2012) Potential to optimize scrubbers for biogas cleaning. Part 2. Chemical Scrubbers (in German; Optimierungspotenzial von Wäschen zur Biogasaufbereitung Teil 2. Chemische Wäschen). Chemie Ingenieur Technik 84(1–2):81–87. doi:10.​1002/​cite.​201100129 CrossRef
41.
go back to reference Tock L, Gassner M, Maréchal F (2010) Thermochemical production of liquid fuels from biomass: thermo-economic modeling, process design and process integration analysis. Biomass Bioenergy 34(12):1838–1854CrossRef Tock L, Gassner M, Maréchal F (2010) Thermochemical production of liquid fuels from biomass: thermo-economic modeling, process design and process integration analysis. Biomass Bioenergy 34(12):1838–1854CrossRef
43.
go back to reference Heyne S, Thunman H, Harvey S (2012) Extending existing combined heat and power plants for synthetic natural gas production. International Journal of Energy Research 36(5):670–681. doi:10.1002/er.1828 CrossRef Heyne S, Thunman H, Harvey S (2012) Extending existing combined heat and power plants for synthetic natural gas production. International Journal of Energy Research 36(5):670–681. doi:10.​1002/​er.​1828 CrossRef
44.
go back to reference Panek JM, Grasser J (2006) Practical experience gained during the first twenty years of operation of the great plains gasification plant and implications for future projects. US Department of Energy-Office of Fossil Energy, Washington Panek JM, Grasser J (2006) Practical experience gained during the first twenty years of operation of the great plains gasification plant and implications for future projects. US Department of Energy-Office of Fossil Energy, Washington
46.
go back to reference Hofbauer H, Rauch R, Loeffler G, Kaiser S, Fercher E, Tremmel H (2002) Six years experience with the FICFB-gasification process. In: 12th European Conference and Technology Exhibition on Biomass for Energy, Industry and Climate Protection, Amsterdam, Netherlands, 17–21 June 2002 Hofbauer H, Rauch R, Loeffler G, Kaiser S, Fercher E, Tremmel H (2002) Six years experience with the FICFB-gasification process. In: 12th European Conference and Technology Exhibition on Biomass for Energy, Industry and Climate Protection, Amsterdam, Netherlands, 17–21 June 2002
47.
go back to reference Dutta A, Talmadge M, Hensley J, Worley M, Dudgeon D, Barton D, Gronendijk P, Ferrari D, Stears B, Searcy EM, Wright CT, Hess JR (2011) Process design and economics for conversion of lignocellulosic biomass to ethanol. National Renewable Energy Laboratory, Golden Dutta A, Talmadge M, Hensley J, Worley M, Dudgeon D, Barton D, Gronendijk P, Ferrari D, Stears B, Searcy EM, Wright CT, Hess JR (2011) Process design and economics for conversion of lignocellulosic biomass to ethanol. National Renewable Energy Laboratory, Golden
Metadata
Title
Exergy-based comparison of indirect and direct biomass gasification technologies within the framework of bio-SNG production
Authors
Stefan Heyne
Henrik Thunman
Simon Harvey
Publication date
01-12-2013
Publisher
Springer Berlin Heidelberg
Published in
Biomass Conversion and Biorefinery / Issue 4/2013
Print ISSN: 2190-6815
Electronic ISSN: 2190-6823
DOI
https://doi.org/10.1007/s13399-013-0079-1

Other articles of this Issue 4/2013

Biomass Conversion and Biorefinery 4/2013 Go to the issue