Skip to main content
Top

2017 | OriginalPaper | Chapter

2. Expanding the Synthetic Protein Universe by Guided Evolutionary Concepts

Authors : Krishna Mohan Poluri, Khushboo Gulati

Published in: Protein Engineering Techniques

Publisher: Springer Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The genetic information content of a cell is maintained by the sequence composition of the DNA. The changes in the nucleotide content will potentially alter its transcriptional and translational events thus influencing the characteristics of the newly synthesized proteins. These nature’s alterations can be helpful in the evolution of proteins with novel/improved functionalities or they can contribute to the pathogenesis with loss of native functionalities. Unraveling the logistics of such a molecular evolutionary process is resourceful to strategically implement it for the benefit of the mankind through laboratory techniques. The laboratory process of synthesizing novel proteins in a constructive way through evolutionary guided principles is called “directed evolution”. This chapter will discuss various techniques, their strengths and pitfalls that are developed under the umbrella of directed evolution scheme.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Cobb, R.E., Si, T., Zhao, H.: Directed evolution: an evolving and enabling synthetic biology tool. Curr. Opin. Chem. Biol. 16, 285–291 (2012)CrossRef Cobb, R.E., Si, T., Zhao, H.: Directed evolution: an evolving and enabling synthetic biology tool. Curr. Opin. Chem. Biol. 16, 285–291 (2012)CrossRef
2.
go back to reference Zaccolo, M., Gherardi, E.: The effect of high-frequency random mutagenesis on in vitro protein evolution: a study on TEM-1 beta-lactamase. J. Mol. Biol. 285, 775–783 (1999)CrossRef Zaccolo, M., Gherardi, E.: The effect of high-frequency random mutagenesis on in vitro protein evolution: a study on TEM-1 beta-lactamase. J. Mol. Biol. 285, 775–783 (1999)CrossRef
3.
go back to reference Zhao, H.: Directed evolution of novel protein functions. Biotechnol. Bioeng. 98, 313–317 (2007)CrossRef Zhao, H.: Directed evolution of novel protein functions. Biotechnol. Bioeng. 98, 313–317 (2007)CrossRef
4.
go back to reference Cobb, R.E., Sun, N., Zhao, H.: Directed evolution as a powerful synthetic biology tool. Methods 60, 81–90 (2013)CrossRef Cobb, R.E., Sun, N., Zhao, H.: Directed evolution as a powerful synthetic biology tool. Methods 60, 81–90 (2013)CrossRef
5.
go back to reference Molina-Espeja, P., Vina-Gonzalez, J., Gomez-Fernandez, B.J., Martin-Diaz, J., Garcia-Ruiz, E., Alcalde, M.: Beyond the outer limits of nature by directed evolution. Biotechnol. Adv. (2016) Molina-Espeja, P., Vina-Gonzalez, J., Gomez-Fernandez, B.J., Martin-Diaz, J., Garcia-Ruiz, E., Alcalde, M.: Beyond the outer limits of nature by directed evolution. Biotechnol. Adv. (2016)
6.
go back to reference Bloom, J.D., Arnold, F.H.: In the light of directed evolution: pathways of adaptive protein evolution. Proc. Natl. Acad. Sci. USA 106(Suppl 1), 9995–10000 (2009)CrossRef Bloom, J.D., Arnold, F.H.: In the light of directed evolution: pathways of adaptive protein evolution. Proc. Natl. Acad. Sci. USA 106(Suppl 1), 9995–10000 (2009)CrossRef
7.
go back to reference Arnold, F.H.: Design by directed evolution. Acc. Chem. Res. 31, 125–131 (1998)CrossRef Arnold, F.H.: Design by directed evolution. Acc. Chem. Res. 31, 125–131 (1998)CrossRef
8.
go back to reference Chen, K., Arnold, F.H.: Tuning the activity of an enzyme for unusual environments: sequential random mutagenesis of subtilisin E for catalysis in dimethylformamide. Proc. Natl. Acad. Sci. USA 90, 5618–5622 (1993)CrossRef Chen, K., Arnold, F.H.: Tuning the activity of an enzyme for unusual environments: sequential random mutagenesis of subtilisin E for catalysis in dimethylformamide. Proc. Natl. Acad. Sci. USA 90, 5618–5622 (1993)CrossRef
9.
go back to reference Moore, J.C., Arnold, F.H.: Directed evolution of a para-nitrobenzyl esterase for aqueous-organic solvents. Nat. Biotechnol. 14, 458–467 (1996)CrossRef Moore, J.C., Arnold, F.H.: Directed evolution of a para-nitrobenzyl esterase for aqueous-organic solvents. Nat. Biotechnol. 14, 458–467 (1996)CrossRef
10.
go back to reference You, L., Arnold, F.H.: Directed evolution of subtilisin E in Bacillus subtilis to enhance total activity in aqueous dimethylformamide. Protein Eng. 9, 77–83 (1996)CrossRef You, L., Arnold, F.H.: Directed evolution of subtilisin E in Bacillus subtilis to enhance total activity in aqueous dimethylformamide. Protein Eng. 9, 77–83 (1996)CrossRef
11.
go back to reference Stemmer, W.P.: DNA shuffling by random fragmentation and reassembly: in vitro recombination for molecular evolution. Proc. Natl. Acad. Sci. USA 91, 10747–10751 (1994)CrossRef Stemmer, W.P.: DNA shuffling by random fragmentation and reassembly: in vitro recombination for molecular evolution. Proc. Natl. Acad. Sci. USA 91, 10747–10751 (1994)CrossRef
12.
go back to reference Stemmer, W.P.: Rapid evolution of a protein in vitro by DNA shuffling. Nature 370, 389–391 (1994)CrossRef Stemmer, W.P.: Rapid evolution of a protein in vitro by DNA shuffling. Nature 370, 389–391 (1994)CrossRef
13.
go back to reference Dalby, P.A.: Strategy and success for the directed evolution of enzymes. Curr. Opin. Struct. Biol. 21, 473–480 (2011)CrossRef Dalby, P.A.: Strategy and success for the directed evolution of enzymes. Curr. Opin. Struct. Biol. 21, 473–480 (2011)CrossRef
14.
go back to reference Labrou, N.E.: Random mutagenesis methods for in vitro directed enzyme evolution. Curr. Protein Pept. Sci. 11, 91–100 (2010)CrossRef Labrou, N.E.: Random mutagenesis methods for in vitro directed enzyme evolution. Curr. Protein Pept. Sci. 11, 91–100 (2010)CrossRef
15.
go back to reference Deshler, J.O.: A simple method for randomly mutating cloned DNA fragments by using chemical mutagens and the polymerase chain reaction. Genet. Anal. Tech. Appl. 9, 103–106 (1992)CrossRef Deshler, J.O.: A simple method for randomly mutating cloned DNA fragments by using chemical mutagens and the polymerase chain reaction. Genet. Anal. Tech. Appl. 9, 103–106 (1992)CrossRef
16.
go back to reference Greener, A., Callahan, M., Jerpseth, B.: An efficient random mutagenesis technique using an E. coli mutator strain. Methods Mol. Biol. 57, 375–385 (1996) Greener, A., Callahan, M., Jerpseth, B.: An efficient random mutagenesis technique using an E. coli mutator strain. Methods Mol. Biol. 57, 375–385 (1996)
17.
go back to reference Cadwell, R.C., Joyce, G.F.: Randomization of genes by PCR mutagenesis. PCR Methods Appl. 2, 28–33 (1992)CrossRef Cadwell, R.C., Joyce, G.F.: Randomization of genes by PCR mutagenesis. PCR Methods Appl. 2, 28–33 (1992)CrossRef
18.
go back to reference Patrick, W.M., Firth, A.E.: Strategies and computational tools for improving randomized protein libraries. Biomol. Eng. 22, 105–112 (2005)CrossRef Patrick, W.M., Firth, A.E.: Strategies and computational tools for improving randomized protein libraries. Biomol. Eng. 22, 105–112 (2005)CrossRef
19.
go back to reference Tindall, K.R., Kunkel, T.A.: Fidelity of DNA synthesis by the Thermus aquaticus DNA polymerase. Biochemistry 27, 6008–6013 (1988)CrossRef Tindall, K.R., Kunkel, T.A.: Fidelity of DNA synthesis by the Thermus aquaticus DNA polymerase. Biochemistry 27, 6008–6013 (1988)CrossRef
20.
go back to reference Minamoto, T., Wada, E., Shimizu, I.: A new method for random mutagenesis by error-prone polymerase chain reaction using heavy water. J. Biotechnol. 157, 71–74 (2012)CrossRef Minamoto, T., Wada, E., Shimizu, I.: A new method for random mutagenesis by error-prone polymerase chain reaction using heavy water. J. Biotechnol. 157, 71–74 (2012)CrossRef
21.
go back to reference Beckman, R.A., Mildvan, A.S., Loeb, L.A.: On the fidelity of DNA replication: manganese mutagenesis in vitro. Biochemistry 24, 5810–5817 (1985)CrossRef Beckman, R.A., Mildvan, A.S., Loeb, L.A.: On the fidelity of DNA replication: manganese mutagenesis in vitro. Biochemistry 24, 5810–5817 (1985)CrossRef
22.
go back to reference Chaput, J.C., Woodbury, N.W., Stearns, L.A., Williams, B.A.: Creating protein biocatalysts as tools for future industrial applications. Expert Opin. Biol. Ther. 8, 1087–1098 (2008)CrossRef Chaput, J.C., Woodbury, N.W., Stearns, L.A., Williams, B.A.: Creating protein biocatalysts as tools for future industrial applications. Expert Opin. Biol. Ther. 8, 1087–1098 (2008)CrossRef
23.
go back to reference Spee, J.H., de Vos, W.M., Kuipers, O.P.: Efficient random mutagenesis method with adjustable mutation frequency by use of PCR and dITP. Nucleic Acids Res. 21, 777–778 (1993)CrossRef Spee, J.H., de Vos, W.M., Kuipers, O.P.: Efficient random mutagenesis method with adjustable mutation frequency by use of PCR and dITP. Nucleic Acids Res. 21, 777–778 (1993)CrossRef
24.
go back to reference Xu, H., Petersen, E.I., Petersen, S.B., El-Gewely, M.R.: Random mutagenesis libraries: optimization and simplification by PCR. Biotechniques 27, 1102-4, 1106, 1108 (1999) Xu, H., Petersen, E.I., Petersen, S.B., El-Gewely, M.R.: Random mutagenesis libraries: optimization and simplification by PCR. Biotechniques 27, 1102-4, 1106, 1108 (1999)
25.
go back to reference Rasila, T.S., Pajunen, M.I., Savilahti, H.: Critical evaluation of random mutagenesis by error-prone polymerase chain reaction protocols, Escherichia coli mutator strain, and hydroxylamine treatment. Anal. Biochem. 388, 71–80 (2009)CrossRef Rasila, T.S., Pajunen, M.I., Savilahti, H.: Critical evaluation of random mutagenesis by error-prone polymerase chain reaction protocols, Escherichia coli mutator strain, and hydroxylamine treatment. Anal. Biochem. 388, 71–80 (2009)CrossRef
26.
go back to reference Biles, B.D., Connolly, B.A.: Low-fidelity Pyrococcus furiosus DNA polymerase mutants useful in error-prone PCR. Nucleic Acids Res. 32, e176 (2004) Biles, B.D., Connolly, B.A.: Low-fidelity Pyrococcus furiosus DNA polymerase mutants useful in error-prone PCR. Nucleic Acids Res. 32, e176 (2004)
27.
go back to reference Tee, K.L., Wong, T.S.: Polishing the craft of genetic diversity creation in directed evolution. Biotechnol. Adv. 31, 1707–1721 (2013)CrossRef Tee, K.L., Wong, T.S.: Polishing the craft of genetic diversity creation in directed evolution. Biotechnol. Adv. 31, 1707–1721 (2013)CrossRef
28.
go back to reference Le, Y., Chen, H., Zagursky, R., Wu, J.H., Shao, W.: Thermostable DNA ligase-mediated PCR production of circular plasmid (PPCP) and its application in directed evolution via in situ error-prone PCR. DNA Res. 20, 375–382 (2013)CrossRef Le, Y., Chen, H., Zagursky, R., Wu, J.H., Shao, W.: Thermostable DNA ligase-mediated PCR production of circular plasmid (PPCP) and its application in directed evolution via in situ error-prone PCR. DNA Res. 20, 375–382 (2013)CrossRef
29.
go back to reference Pai, J.C., Entzminger, K.C., Maynard, J.A.: Restriction enzyme-free construction of random gene mutagenesis libraries in Escherichia coli. Anal. Biochem. 421, 640–648 (2012)CrossRef Pai, J.C., Entzminger, K.C., Maynard, J.A.: Restriction enzyme-free construction of random gene mutagenesis libraries in Escherichia coli. Anal. Biochem. 421, 640–648 (2012)CrossRef
30.
go back to reference Liu, P., Hong, Y., Lin, Y., et al.: A frequency-controlled random mutagenesis method for GC-rich genes. Anal. Biochem. 388, 356–358 (2009)CrossRef Liu, P., Hong, Y., Lin, Y., et al.: A frequency-controlled random mutagenesis method for GC-rich genes. Anal. Biochem. 388, 356–358 (2009)CrossRef
31.
go back to reference Lai, Y.P., Huang, J., Wang, L.F., Li, J., Wu, Z.R.: A new approach to random mutagenesis in vitro. Biotechnol. Bioeng. 86, 622–627 (2004)CrossRef Lai, Y.P., Huang, J., Wang, L.F., Li, J., Wu, Z.R.: A new approach to random mutagenesis in vitro. Biotechnol. Bioeng. 86, 622–627 (2004)CrossRef
32.
go back to reference Cox, E.C.: Bacterial mutator genes and the control of spontaneous mutation. Ann. Rev. Genet. 10, 135–156 (1976)CrossRef Cox, E.C.: Bacterial mutator genes and the control of spontaneous mutation. Ann. Rev. Genet. 10, 135–156 (1976)CrossRef
33.
go back to reference Sliwa, P., Kluz, J., Korona, R.: Mutational load and the transition between diploidy and haploidy in experimental populations of the yeast Saccharomyces cerevisiae. Genetica 121, 285–293 (2004)CrossRef Sliwa, P., Kluz, J., Korona, R.: Mutational load and the transition between diploidy and haploidy in experimental populations of the yeast Saccharomyces cerevisiae. Genetica 121, 285–293 (2004)CrossRef
34.
go back to reference Mohan, U., Banerjee, U.C.: Molecular evolution of a defined DNA sequence with accumulation of mutations in a single round by a dual approach to random chemical mutagenesis (DuARCheM). ChemBioChem 9, 2238–2243 (2008)CrossRef Mohan, U., Banerjee, U.C.: Molecular evolution of a defined DNA sequence with accumulation of mutations in a single round by a dual approach to random chemical mutagenesis (DuARCheM). ChemBioChem 9, 2238–2243 (2008)CrossRef
35.
go back to reference Fire, A., Xu, S.Q.: Rolling replication of short DNA circles. Proc. Natl. Acad. Sci. USA 92, 4641–4645 (1995)CrossRef Fire, A., Xu, S.Q.: Rolling replication of short DNA circles. Proc. Natl. Acad. Sci. USA 92, 4641–4645 (1995)CrossRef
36.
go back to reference Fujii, R., Kitaoka, M., Hayashi, K.: One-step random mutagenesis by error-prone rolling circle amplification. Nucleic Acids Res. 32, e145 (2004) Fujii, R., Kitaoka, M., Hayashi, K.: One-step random mutagenesis by error-prone rolling circle amplification. Nucleic Acids Res. 32, e145 (2004)
37.
go back to reference Finney-Manchester, S.P., Maheshri, N.: Harnessing mutagenic homologous recombination for targeted mutagenesis in vivo by TaGTEAM. Nucleic Acids Res. 41, e99 (2013) Finney-Manchester, S.P., Maheshri, N.: Harnessing mutagenic homologous recombination for targeted mutagenesis in vivo by TaGTEAM. Nucleic Acids Res. 41, e99 (2013)
38.
go back to reference Murakami, H., Hohsaka, T., Sisido, M.: Random insertion and deletion of arbitrary number of bases for codon-based random mutation of DNAs. Nat. Biotechnol. 20, 76–81 (2002)CrossRef Murakami, H., Hohsaka, T., Sisido, M.: Random insertion and deletion of arbitrary number of bases for codon-based random mutation of DNAs. Nat. Biotechnol. 20, 76–81 (2002)CrossRef
39.
go back to reference Tee, K.L., Wong, T.S.: Polishing the craft of genetic diversity creation in directed evolution. Biotechnol. Adv. 31, 1707–1721 (2013)CrossRef Tee, K.L., Wong, T.S.: Polishing the craft of genetic diversity creation in directed evolution. Biotechnol. Adv. 31, 1707–1721 (2013)CrossRef
40.
go back to reference Kipnis, Y., Dellus-Gur, E., Tawfik, D.S.: TRINS: a method for gene modification by randomized tandem repeat insertions. Protein Eng. Des. Sel. 25, 437–444 (2012) Kipnis, Y., Dellus-Gur, E., Tawfik, D.S.: TRINS: a method for gene modification by randomized tandem repeat insertions. Protein Eng. Des. Sel. 25, 437–444 (2012)
41.
go back to reference Fujii, W., Kano, K., Sugiura, K., Naito, K.: Repeatable construction method for engineered zinc finger nuclease based on overlap extension PCR and TA-cloning. PLoS One. 8, e59801 (2013) Fujii, W., Kano, K., Sugiura, K., Naito, K.: Repeatable construction method for engineered zinc finger nuclease based on overlap extension PCR and TA-cloning. PLoS One. 8, e59801 (2013)
42.
go back to reference Matsumura, I., Rowe, L.A.: Whole plasmid mutagenic PCR for directed protein evolution. Biomol. Eng. 22, 73–79 (2005)CrossRef Matsumura, I., Rowe, L.A.: Whole plasmid mutagenic PCR for directed protein evolution. Biomol. Eng. 22, 73–79 (2005)CrossRef
43.
go back to reference Alcalde, M., Zumarraga, M., Polaina, J., Ballesteros, A., Plou, F.J.: Combinatorial saturation mutagenesis by in vivo overlap extension for the engineering of fungal laccases. Comb. Chem. High Throughput Screen. 9, 719–727 (2006)CrossRef Alcalde, M., Zumarraga, M., Polaina, J., Ballesteros, A., Plou, F.J.: Combinatorial saturation mutagenesis by in vivo overlap extension for the engineering of fungal laccases. Comb. Chem. High Throughput Screen. 9, 719–727 (2006)CrossRef
44.
go back to reference Gratz, A., Jose, J.: Protein domain library generation by overlap extension (PDLGO): a tool for enzyme engineering. Anal. Biochem. 378, 171–176 (2008)CrossRef Gratz, A., Jose, J.: Protein domain library generation by overlap extension (PDLGO): a tool for enzyme engineering. Anal. Biochem. 378, 171–176 (2008)CrossRef
45.
go back to reference Ruff, A.J., Dennig, A., Schwaneberg, U.: To get what we aim for–progress in diversity generation methods. FEBS J. 280, 2961–2978 (2013)CrossRef Ruff, A.J., Dennig, A., Schwaneberg, U.: To get what we aim for–progress in diversity generation methods. FEBS J. 280, 2961–2978 (2013)CrossRef
46.
go back to reference Tee, K.L., Wong, T.S.: Polishing the craft of genetic diversity creation in directed evolution. Biotechnol. Adv. 31, 1707–1721 (2013)CrossRef Tee, K.L., Wong, T.S.: Polishing the craft of genetic diversity creation in directed evolution. Biotechnol. Adv. 31, 1707–1721 (2013)CrossRef
47.
go back to reference Reidhaar-Olson, J.F., Sauer, R.T.: Combinatorial cassette mutagenesis as a probe of the informational content of protein sequences. Science 241, 53–57 (1988)CrossRef Reidhaar-Olson, J.F., Sauer, R.T.: Combinatorial cassette mutagenesis as a probe of the informational content of protein sequences. Science 241, 53–57 (1988)CrossRef
48.
go back to reference Delagrave, S., Goldman, E.R., Youvan, D.C.: Recursive ensemble mutagenesis. Protein Eng. 6, 327–331 (1993)CrossRef Delagrave, S., Goldman, E.R., Youvan, D.C.: Recursive ensemble mutagenesis. Protein Eng. 6, 327–331 (1993)CrossRef
49.
go back to reference Kegler-Ebo, D.M., Docktor, C.M., DiMaio, D.: Codon cassette mutagenesis: a general method to insert or replace individual codons by using universal mutagenic cassettes. Nucleic Acids Res. 22, 1593–1599 (1994)CrossRef Kegler-Ebo, D.M., Docktor, C.M., DiMaio, D.: Codon cassette mutagenesis: a general method to insert or replace individual codons by using universal mutagenic cassettes. Nucleic Acids Res. 22, 1593–1599 (1994)CrossRef
50.
go back to reference Wong, T.S., Tee, K.L., Hauer, B., Schwaneberg, U.: Sequence saturation mutagenesis (SeSaM): a novel method for directed evolution. Nucleic Acids Res. 32, e26 (2004) Wong, T.S., Tee, K.L., Hauer, B., Schwaneberg, U.: Sequence saturation mutagenesis (SeSaM): a novel method for directed evolution. Nucleic Acids Res. 32, e26 (2004)
51.
go back to reference Mundhada, H., Marienhagen, J., Scacioc, A., Schenk, A., Roccatano, D., Schwaneberg, U.: SeSaM-Tv-II generates a protein sequence space that is unobtainable by epPCR. ChemBioChem 12, 1595–1601 (2011)CrossRef Mundhada, H., Marienhagen, J., Scacioc, A., Schenk, A., Roccatano, D., Schwaneberg, U.: SeSaM-Tv-II generates a protein sequence space that is unobtainable by epPCR. ChemBioChem 12, 1595–1601 (2011)CrossRef
52.
go back to reference Wong, T.S., Roccatano, D., Loakes, D., et al.: Transversion-enriched sequence saturation mutagenesis (SeSaM-Tv+): a random mutagenesis method with consecutive nucleotide exchanges that complements the bias of error-prone PCR. Biotechnol. J. 3, 74–82 (2008)CrossRef Wong, T.S., Roccatano, D., Loakes, D., et al.: Transversion-enriched sequence saturation mutagenesis (SeSaM-Tv+): a random mutagenesis method with consecutive nucleotide exchanges that complements the bias of error-prone PCR. Biotechnol. J. 3, 74–82 (2008)CrossRef
53.
go back to reference Edelheit, O., Hanukoglu, A., Hanukoglu, I.: Simple and efficient site-directed mutagenesis using two single-primer reactions in parallel to generate mutants for protein structure-function studies. BMC. Biotechnol 9, 61 (2009) Edelheit, O., Hanukoglu, A., Hanukoglu, I.: Simple and efficient site-directed mutagenesis using two single-primer reactions in parallel to generate mutants for protein structure-function studies. BMC. Biotechnol 9, 61 (2009)
54.
go back to reference Tseng, W.C., Lin, J.W., Wei, T.Y., Fang, T.Y.: A novel megaprimed and ligase-free, PCR-based, site-directed mutagenesis method. Anal. Biochem. 375, 376–378 (2008)CrossRef Tseng, W.C., Lin, J.W., Wei, T.Y., Fang, T.Y.: A novel megaprimed and ligase-free, PCR-based, site-directed mutagenesis method. Anal. Biochem. 375, 376–378 (2008)CrossRef
55.
go back to reference Tseng, W.C., Lin, J.W., Hung, X.G., Fang, T.Y.: Simultaneous mutations up to six distal sites using a phosphorylation-free and ligase-free polymerase chain reaction-based mutagenesis. Anal. Biochem. 401, 315–317 (2010)CrossRef Tseng, W.C., Lin, J.W., Hung, X.G., Fang, T.Y.: Simultaneous mutations up to six distal sites using a phosphorylation-free and ligase-free polymerase chain reaction-based mutagenesis. Anal. Biochem. 401, 315–317 (2010)CrossRef
56.
go back to reference Chen, L., Wang, F., Wang, X., Liu, Y.G.: Robust one-tube Omega-PCR strategy accelerates precise sequence modification of plasmids for functional genomics. Plant Cell Physiol. 54, 634–642 (2013)CrossRef Chen, L., Wang, F., Wang, X., Liu, Y.G.: Robust one-tube Omega-PCR strategy accelerates precise sequence modification of plasmids for functional genomics. Plant Cell Physiol. 54, 634–642 (2013)CrossRef
57.
go back to reference Firnberg, E., Ostermeier, M.: PFunkel: efficient, expansive, user-defined mutagenesis. PLoS One. 7, e52031 (2012) Firnberg, E., Ostermeier, M.: PFunkel: efficient, expansive, user-defined mutagenesis. PLoS One. 7, e52031 (2012)
58.
go back to reference Dennig, A., Shivange, A.V., Marienhagen, J., Schwaneberg, U.: OmniChange: the sequence independent method for simultaneous site-saturation of five codons. PLoS One. 6, e26222 (2011) Dennig, A., Shivange, A.V., Marienhagen, J., Schwaneberg, U.: OmniChange: the sequence independent method for simultaneous site-saturation of five codons. PLoS One. 6, e26222 (2011)
59.
go back to reference Hidalgo, A., Schliessmann, A., Molina, R., Hermoso, J., Bornscheuer, U.T.: A one-pot, simple methodology for cassette randomisation and recombination for focused directed evolution. Protein Eng. Des. Sel. 21, 567–576 (2008)CrossRef Hidalgo, A., Schliessmann, A., Molina, R., Hermoso, J., Bornscheuer, U.T.: A one-pot, simple methodology for cassette randomisation and recombination for focused directed evolution. Protein Eng. Des. Sel. 21, 567–576 (2008)CrossRef
60.
go back to reference Gaytan, P., Contreras-Zambrano, C., Ortiz-Alvarado, M., Morales-Pablos, A., Yanez, J.: TrimerDimer: an oligonucleotide-based saturation mutagenesis approach that removes redundant and stop codons. Nucleic Acids Res. 37, e125 (2009) Gaytan, P., Contreras-Zambrano, C., Ortiz-Alvarado, M., Morales-Pablos, A., Yanez, J.: TrimerDimer: an oligonucleotide-based saturation mutagenesis approach that removes redundant and stop codons. Nucleic Acids Res. 37, e125 (2009)
61.
go back to reference Tang, L., Gao, H., Zhu, X., Wang, X., Zhou, M., Jiang, R.: Construction of “small-intelligent” focused mutagenesis libraries using well-designed combinatorial degenerate primers. Biotechniques 52, 149–158 (2012) Tang, L., Gao, H., Zhu, X., Wang, X., Zhou, M., Jiang, R.: Construction of “small-intelligent” focused mutagenesis libraries using well-designed combinatorial degenerate primers. Biotechniques 52, 149–158 (2012)
62.
go back to reference Patwardhan, R.P., Lee, C., Litvin, O., Young, D.L., Pe’er, D., Shendure, J.: High-resolution analysis of DNA regulatory elements by synthetic saturation mutagenesis. Nat. Biotechnol. 27, 1173–1175 (2009)CrossRef Patwardhan, R.P., Lee, C., Litvin, O., Young, D.L., Pe’er, D., Shendure, J.: High-resolution analysis of DNA regulatory elements by synthetic saturation mutagenesis. Nat. Biotechnol. 27, 1173–1175 (2009)CrossRef
63.
go back to reference Buer, B.C., Meagher, J.L., Stuckey, J.A., Marsh, E.N.: Structural basis for the enhanced stability of highly fluorinated proteins. Proc. Natl. Acad. Sci. USA 109, 4810–4815 (2012)CrossRef Buer, B.C., Meagher, J.L., Stuckey, J.A., Marsh, E.N.: Structural basis for the enhanced stability of highly fluorinated proteins. Proc. Natl. Acad. Sci. USA 109, 4810–4815 (2012)CrossRef
64.
go back to reference Shozen, N., Watanabe, T., Hohsaka, T.: Amber codon-mediated expanded saturation mutagenesis of proteins using a cell-free translation system. J. Biosci. Bioeng. 113, 704–709 (2012)CrossRef Shozen, N., Watanabe, T., Hohsaka, T.: Amber codon-mediated expanded saturation mutagenesis of proteins using a cell-free translation system. J. Biosci. Bioeng. 113, 704–709 (2012)CrossRef
65.
go back to reference Pirakitikulr, N., Ostrov, N., Peralta-Yahya, P., Cornish, V.W.: PCRless library mutagenesis via oligonucleotide recombination in yeast. Protein Sci. 19, 2336–2346 (2010)CrossRef Pirakitikulr, N., Ostrov, N., Peralta-Yahya, P., Cornish, V.W.: PCRless library mutagenesis via oligonucleotide recombination in yeast. Protein Sci. 19, 2336–2346 (2010)CrossRef
66.
go back to reference Wu, D., Guo, X., Lu, J., et al.: A rapid and efficient one-step site-directed deletion, insertion, and substitution mutagenesis protocol. Anal. Biochem. 434, 254–258 (2013)CrossRef Wu, D., Guo, X., Lu, J., et al.: A rapid and efficient one-step site-directed deletion, insertion, and substitution mutagenesis protocol. Anal. Biochem. 434, 254–258 (2013)CrossRef
67.
go back to reference Crameri, A., Raillard, S.A., Bermudez, E., Stemmer, W.P.: DNA shuffling of a family of genes from diverse species accelerates directed evolution. Nature 391, 288–291 (1998)CrossRef Crameri, A., Raillard, S.A., Bermudez, E., Stemmer, W.P.: DNA shuffling of a family of genes from diverse species accelerates directed evolution. Nature 391, 288–291 (1998)CrossRef
68.
go back to reference Joern, J.M., Meinhold, P., Arnold, F.H.: Analysis of shuffled gene libraries. J. Mol. Biol. 316, 643–656 (2002)CrossRef Joern, J.M., Meinhold, P., Arnold, F.H.: Analysis of shuffled gene libraries. J. Mol. Biol. 316, 643–656 (2002)CrossRef
69.
go back to reference Kikuchi, M., Ohnishi, K., Harayama, S.: Novel family shuffling methods for the in vitro evolution of enzymes. Gene 236, 159–167 (1999)CrossRef Kikuchi, M., Ohnishi, K., Harayama, S.: Novel family shuffling methods for the in vitro evolution of enzymes. Gene 236, 159–167 (1999)CrossRef
70.
go back to reference Kikuchi, M., Ohnishi, K., Harayama, S.: An effective family shuffling method using single-stranded DNA. Gene 243, 133–137 (2000)CrossRef Kikuchi, M., Ohnishi, K., Harayama, S.: An effective family shuffling method using single-stranded DNA. Gene 243, 133–137 (2000)CrossRef
71.
go back to reference Gibbs, M.D., Nevalainen, K.M., Bergquist, P.L.: Degenerate oligonucleotide gene shuffling (DOGS): a method for enhancing the frequency of recombination with family shuffling. Gene 271, 13–20 (2001)CrossRef Gibbs, M.D., Nevalainen, K.M., Bergquist, P.L.: Degenerate oligonucleotide gene shuffling (DOGS): a method for enhancing the frequency of recombination with family shuffling. Gene 271, 13–20 (2001)CrossRef
72.
go back to reference Shao, Z., Zhao, H., Giver, L., Arnold, F.H.: Random-priming in vitro recombination: an effective tool for directed evolution. Nucleic Acids Res. 26, 681–683 (1998)CrossRef Shao, Z., Zhao, H., Giver, L., Arnold, F.H.: Random-priming in vitro recombination: an effective tool for directed evolution. Nucleic Acids Res. 26, 681–683 (1998)CrossRef
73.
go back to reference Wang, Q., Wu, H., Wang, A., et al.: Prospecting metagenomic enzyme subfamily genes for DNA family shuffling by a novel PCR-based approach. J. Biol. Chem. 285, 41509–41516 (2010)CrossRef Wang, Q., Wu, H., Wang, A., et al.: Prospecting metagenomic enzyme subfamily genes for DNA family shuffling by a novel PCR-based approach. J. Biol. Chem. 285, 41509–41516 (2010)CrossRef
74.
go back to reference Zhao, H., Giver, L., Shao, Z., Affholter, J.A., Arnold, F.H.: Molecular evolution by staggered extension process (StEP) in vitro recombination. Nat. Biotechnol. 16, 258–261 (1998)CrossRef Zhao, H., Giver, L., Shao, Z., Affholter, J.A., Arnold, F.H.: Molecular evolution by staggered extension process (StEP) in vitro recombination. Nat. Biotechnol. 16, 258–261 (1998)CrossRef
75.
go back to reference Coco, W.M.: RACHITT: gene family shuffling by random chimeragenesis on transient templates. Methods Mol. Biol. 231, 111–127 (2003) Coco, W.M.: RACHITT: gene family shuffling by random chimeragenesis on transient templates. Methods Mol. Biol. 231, 111–127 (2003)
76.
go back to reference Ness, J.E., Kim, S., Gottman, A., et al.: Synthetic shuffling expands functional protein diversity by allowing amino acids to recombine independently. Nat. Biotechnol. 20, 1251–1255 (2002)CrossRef Ness, J.E., Kim, S., Gottman, A., et al.: Synthetic shuffling expands functional protein diversity by allowing amino acids to recombine independently. Nat. Biotechnol. 20, 1251–1255 (2002)CrossRef
77.
go back to reference Petri, R., Schmidt-Dannert, C.: Dealing with complexity: evolutionary engineering and genome shuffling. Curr. Opin. Biotechnol. 15, 298–304 (2004)CrossRef Petri, R., Schmidt-Dannert, C.: Dealing with complexity: evolutionary engineering and genome shuffling. Curr. Opin. Biotechnol. 15, 298–304 (2004)CrossRef
78.
go back to reference Abecassis, V., Pompon, D., Truan, G.: Producing chimeric genes by CLERY: in vitro and in vivo recombination. Methods Mol. Biol. 231, 165–173 (2003) Abecassis, V., Pompon, D., Truan, G.: Producing chimeric genes by CLERY: in vitro and in vivo recombination. Methods Mol. Biol. 231, 165–173 (2003)
79.
go back to reference Gonzalez-Perez, D., Molina-Espeja, P., Garcia-Ruiz, E., Alcalde, M.: Mutagenic organized recombination process by homologous in vivo grouping (MORPHING) for directed enzyme evolution. PLoS One. 9, e90919 (2014) Gonzalez-Perez, D., Molina-Espeja, P., Garcia-Ruiz, E., Alcalde, M.: Mutagenic organized recombination process by homologous in vivo grouping (MORPHING) for directed enzyme evolution. PLoS One. 9, e90919 (2014)
80.
go back to reference Esvelt, K.M., Carlson, J.C., Liu, D.R.: A system for the continuous directed evolution of biomolecules. Nature 472, 499–503 (2011)CrossRef Esvelt, K.M., Carlson, J.C., Liu, D.R.: A system for the continuous directed evolution of biomolecules. Nature 472, 499–503 (2011)CrossRef
81.
go back to reference Kolkman, J.A., Stemmer, W.P.: Directed evolution of proteins by exon shuffling. Nat. Biotechnol. 19, 423–428 (2001)CrossRef Kolkman, J.A., Stemmer, W.P.: Directed evolution of proteins by exon shuffling. Nat. Biotechnol. 19, 423–428 (2001)CrossRef
82.
go back to reference Ostermeier, M., Nixon, A.E., Benkovic, S.J.: Incremental truncation as a strategy in the engineering of novel biocatalysts. Bioorg. Med. Chem. 7, 2139–2144 (1999)CrossRef Ostermeier, M., Nixon, A.E., Benkovic, S.J.: Incremental truncation as a strategy in the engineering of novel biocatalysts. Bioorg. Med. Chem. 7, 2139–2144 (1999)CrossRef
83.
go back to reference Lutz, S., Ostermeier, M., Benkovic, S.J.: Rapid generation of incremental truncation libraries for protein engineering using alpha-phosphothioate nucleotides. Nucleic Acids Res. 29, E16 (2001) Lutz, S., Ostermeier, M., Benkovic, S.J.: Rapid generation of incremental truncation libraries for protein engineering using alpha-phosphothioate nucleotides. Nucleic Acids Res. 29, E16 (2001)
84.
go back to reference Lutz, S., Ostermeier, M., Moore, G.L., Maranas, C.D., Benkovic, S.J.: Creating multiple-crossover DNA libraries independent of sequence identity. Proc. Natl. Acad. Sci. USA 98, 11248–11253 (2001)CrossRef Lutz, S., Ostermeier, M., Moore, G.L., Maranas, C.D., Benkovic, S.J.: Creating multiple-crossover DNA libraries independent of sequence identity. Proc. Natl. Acad. Sci. USA 98, 11248–11253 (2001)CrossRef
85.
go back to reference Lee, S.H., Ryu, E.J., Kang, M.J., Wang, E., Piao, Z., Choi, Y.J., Jung, K.H., Jeon, J.Y.J., Shin, Y.C.: A new approach to directed gene evolution by recombined extension on truncated templates (RETT). J. Mol. Catal. B Enzym. 26, 119–129 (2003)CrossRef Lee, S.H., Ryu, E.J., Kang, M.J., Wang, E., Piao, Z., Choi, Y.J., Jung, K.H., Jeon, J.Y.J., Shin, Y.C.: A new approach to directed gene evolution by recombined extension on truncated templates (RETT). J. Mol. Catal. B Enzym. 26, 119–129 (2003)CrossRef
86.
go back to reference Sieber, V., Martinez, C.A., Arnold, F.H.: Libraries of hybrid proteins from distantly related sequences. Nat. Biotechnol. 19, 456–460 (2001)CrossRef Sieber, V., Martinez, C.A., Arnold, F.H.: Libraries of hybrid proteins from distantly related sequences. Nat. Biotechnol. 19, 456–460 (2001)CrossRef
87.
go back to reference Hiraga, K., Arnold, F.H.: General method for sequence-independent site-directed chimeragenesis. J. Mol. Biol. 330, 287–296 (2003)CrossRef Hiraga, K., Arnold, F.H.: General method for sequence-independent site-directed chimeragenesis. J. Mol. Biol. 330, 287–296 (2003)CrossRef
88.
go back to reference Coco, W.M., Encell, L.P., Levinson, W.E., et al.: Growth factor engineering by degenerate homoduplex gene family recombination. Nat. Biotechnol. 20, 1246–1250 (2002)CrossRef Coco, W.M., Encell, L.P., Levinson, W.E., et al.: Growth factor engineering by degenerate homoduplex gene family recombination. Nat. Biotechnol. 20, 1246–1250 (2002)CrossRef
89.
go back to reference Tsuji, T., Onimaru, M., Yanagawa, H.: Random multi-recombinant PCR for the construction of combinatorial protein libraries. Nucleic Acids Res. 29, E97 (2001) Tsuji, T., Onimaru, M., Yanagawa, H.: Random multi-recombinant PCR for the construction of combinatorial protein libraries. Nucleic Acids Res. 29, E97 (2001)
90.
go back to reference Villiers, B.R., Stein, V., Hollfelder, F.: USER friendly DNA recombination (USERec): a simple and flexible near homology-independent method for gene library construction. Protein Eng. Des. Sel. 23, 1–8 (2010)CrossRef Villiers, B.R., Stein, V., Hollfelder, F.: USER friendly DNA recombination (USERec): a simple and flexible near homology-independent method for gene library construction. Protein Eng. Des. Sel. 23, 1–8 (2010)CrossRef
91.
go back to reference Engler, C., Gruetzner, R., Kandzia, R., Marillonnet, S.: Golden gate shuffling: a one-pot DNA shuffling method based on type IIs restriction enzymes. PLoS One. 4, e5553 (2009) Engler, C., Gruetzner, R., Kandzia, R., Marillonnet, S.: Golden gate shuffling: a one-pot DNA shuffling method based on type IIs restriction enzymes. PLoS One. 4, e5553 (2009)
92.
go back to reference Marienhagen, J., Dennig, A., Schwaneberg, U.: Phosphorothioate-based DNA recombination: an enzyme-free method for the combinatorial assembly of multiple DNA fragments. Biotechniques 52 (2012) Marienhagen, J., Dennig, A., Schwaneberg, U.: Phosphorothioate-based DNA recombination: an enzyme-free method for the combinatorial assembly of multiple DNA fragments. Biotechniques 52 (2012)
93.
go back to reference Bikard, D., Julie-Galau, S., Cambray, G., Mazel, D.: The synthetic integron: an in vivo genetic shuffling device. Nucleic Acids Res. 38, e153 (2010) Bikard, D., Julie-Galau, S., Cambray, G., Mazel, D.: The synthetic integron: an in vivo genetic shuffling device. Nucleic Acids Res. 38, e153 (2010)
94.
go back to reference Kitamura, K., Kinoshita, Y., Narasaki, S., Nemoto, N., Husimi, Y., Nishigaki, K.: Construction of block-shuffled libraries of DNA for evolutionary protein engineering: Y-ligation-based block shuffling. Protein Eng. 15, 843–853 (2002)CrossRef Kitamura, K., Kinoshita, Y., Narasaki, S., Nemoto, N., Husimi, Y., Nishigaki, K.: Construction of block-shuffled libraries of DNA for evolutionary protein engineering: Y-ligation-based block shuffling. Protein Eng. 15, 843–853 (2002)CrossRef
95.
go back to reference Smith, G.P.: Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface. Science 228, 1315–1317 (1985)CrossRef Smith, G.P.: Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface. Science 228, 1315–1317 (1985)CrossRef
96.
go back to reference Ren, Z., Black, L.W.: Phage T4 SOC and HOC display of biologically active, full-length proteins on the viral capsid. Gene 215, 439–444 (1998)CrossRef Ren, Z., Black, L.W.: Phage T4 SOC and HOC display of biologically active, full-length proteins on the viral capsid. Gene 215, 439–444 (1998)CrossRef
97.
go back to reference Santini, C., Brennan, D., Mennuni, C., et al.: Efficient display of an HCV cDNA expression library as C-terminal fusion to the capsid protein D of bacteriophage lambda. J. Mol. Biol. 282, 125–135 (1998)CrossRef Santini, C., Brennan, D., Mennuni, C., et al.: Efficient display of an HCV cDNA expression library as C-terminal fusion to the capsid protein D of bacteriophage lambda. J. Mol. Biol. 282, 125–135 (1998)CrossRef
98.
go back to reference Possee, R.D.: Baculoviruses as expression vectors. Curr. Opin. Biotechnol. 8, 569–572 (1997)CrossRef Possee, R.D.: Baculoviruses as expression vectors. Curr. Opin. Biotechnol. 8, 569–572 (1997)CrossRef
99.
go back to reference Wernerus, H., Stahl, S.: Biotechnological applications for surface-engineered bacteria. Biotechnol. Appl. Biochem. 40, 209–228 (2004)CrossRef Wernerus, H., Stahl, S.: Biotechnological applications for surface-engineered bacteria. Biotechnol. Appl. Biochem. 40, 209–228 (2004)CrossRef
100.
go back to reference Daugherty, P.S.: Protein engineering with bacterial display. Curr. Opin. Struct. Biol. 17, 474–480 (2007)CrossRef Daugherty, P.S.: Protein engineering with bacterial display. Curr. Opin. Struct. Biol. 17, 474–480 (2007)CrossRef
101.
go back to reference Gai, S.A., Wittrup, K.D.: Yeast surface display for protein engineering and characterization. Curr. Opin. Struct. Biol. 17, 467–473 (2007)CrossRef Gai, S.A., Wittrup, K.D.: Yeast surface display for protein engineering and characterization. Curr. Opin. Struct. Biol. 17, 467–473 (2007)CrossRef
102.
go back to reference Makela, A.R., Oker-Blom, C.: Baculovirus display: a multifunctional technology for gene delivery and eukaryotic library development. Adv. Virus Res. 68, 91–112 (2006)CrossRef Makela, A.R., Oker-Blom, C.: Baculovirus display: a multifunctional technology for gene delivery and eukaryotic library development. Adv. Virus Res. 68, 91–112 (2006)CrossRef
103.
go back to reference Beerli, R.R., Bauer, M., Buser, R.B., et al.: Isolation of human monoclonal antibodies by mammalian cell display. Proc. Natl. Acad. Sci. USA 105, 14336–14341 (2008)CrossRef Beerli, R.R., Bauer, M., Buser, R.B., et al.: Isolation of human monoclonal antibodies by mammalian cell display. Proc. Natl. Acad. Sci. USA 105, 14336–14341 (2008)CrossRef
104.
go back to reference Shimizu, Y., Kuruma, Y., Ying, B.W., Umekage, S., Ueda, T.: Cell-free translation systems for protein engineering. FEBS J. 273, 4133–4140 (2006)CrossRef Shimizu, Y., Kuruma, Y., Ying, B.W., Umekage, S., Ueda, T.: Cell-free translation systems for protein engineering. FEBS J. 273, 4133–4140 (2006)CrossRef
105.
go back to reference May, O., Nguyen, P.T., Arnold, F.H.: Inverting enantioselectivity by directed evolution of hydantoinase for improved production of L-methionine. Nat. Biotechnol. 18, 317–320 (2000)CrossRef May, O., Nguyen, P.T., Arnold, F.H.: Inverting enantioselectivity by directed evolution of hydantoinase for improved production of L-methionine. Nat. Biotechnol. 18, 317–320 (2000)CrossRef
106.
go back to reference Giver, L., Gershenson, A., Freskgard, P.O., Arnold, F.H.: Directed evolution of a thermostable esterase. Proc. Natl. Acad. Sci. USA 95, 12809–12813 (1998)CrossRef Giver, L., Gershenson, A., Freskgard, P.O., Arnold, F.H.: Directed evolution of a thermostable esterase. Proc. Natl. Acad. Sci. USA 95, 12809–12813 (1998)CrossRef
107.
go back to reference Bevis, B.J., Glick, B.S.: Rapidly maturing variants of the Discosoma red fluorescent protein (DsRed). Nat. Biotechnol. 20, 83–87 (2002)CrossRef Bevis, B.J., Glick, B.S.: Rapidly maturing variants of the Discosoma red fluorescent protein (DsRed). Nat. Biotechnol. 20, 83–87 (2002)CrossRef
108.
go back to reference Campbell, R.E., Tour, O., Palmer, A.E., et al.: A monomeric red fluorescent protein. Proc. Natl. Acad. Sci. USA 99, 7877–7882 (2002)CrossRef Campbell, R.E., Tour, O., Palmer, A.E., et al.: A monomeric red fluorescent protein. Proc. Natl. Acad. Sci. USA 99, 7877–7882 (2002)CrossRef
109.
go back to reference Zhang, J.H., Dawes, G., Stemmer, W.P.: Directed evolution of a fucosidase from a galactosidase by DNA shuffling and screening. Proc. Natl. Acad. Sci. USA 94, 4504–4509 (1997)CrossRef Zhang, J.H., Dawes, G., Stemmer, W.P.: Directed evolution of a fucosidase from a galactosidase by DNA shuffling and screening. Proc. Natl. Acad. Sci. USA 94, 4504–4509 (1997)CrossRef
110.
go back to reference Ni, J., Sasaki, Y., Tokuyama, S., Sogabe, A., Tahara, Y.: Conversion of a typical catalase from Bacillus sp. TE124 to a catalase-peroxidase by directed evolution. J. Biosci. Bioeng 93, 31–36 (2002) Ni, J., Sasaki, Y., Tokuyama, S., Sogabe, A., Tahara, Y.: Conversion of a typical catalase from Bacillus sp. TE124 to a catalase-peroxidase by directed evolution. J. Biosci. Bioeng 93, 31–36 (2002)
111.
go back to reference Suenaga, H., Mitsuoka, M., Ura, Y., Watanabe, T., Furukawa, K.: Directed evolution of biphenyl dioxygenase: emergence of enhanced degradation capacity for benzene, toluene, and alkylbenzenes. J. Bacteriol. 183, 5441–5444 (2001)CrossRef Suenaga, H., Mitsuoka, M., Ura, Y., Watanabe, T., Furukawa, K.: Directed evolution of biphenyl dioxygenase: emergence of enhanced degradation capacity for benzene, toluene, and alkylbenzenes. J. Bacteriol. 183, 5441–5444 (2001)CrossRef
112.
go back to reference Raillard, S., Krebber, A., Chen, Y., et al.: Novel enzyme activities and functional plasticity revealed by recombining highly homologous enzymes. Chem. Biol. 8, 891–898 (2001)CrossRef Raillard, S., Krebber, A., Chen, Y., et al.: Novel enzyme activities and functional plasticity revealed by recombining highly homologous enzymes. Chem. Biol. 8, 891–898 (2001)CrossRef
113.
go back to reference Iffland, A., Tafelmeyer, P., Saudan, C., Johnsson, K.: Directed molecular evolution of cytochrome c peroxidase. Biochemistry 39, 10790–10798 (2000)CrossRef Iffland, A., Tafelmeyer, P., Saudan, C., Johnsson, K.: Directed molecular evolution of cytochrome c peroxidase. Biochemistry 39, 10790–10798 (2000)CrossRef
Metadata
Title
Expanding the Synthetic Protein Universe by Guided Evolutionary Concepts
Authors
Krishna Mohan Poluri
Khushboo Gulati
Copyright Year
2017
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-10-2732-1_2

Premium Partner