Skip to main content
Top
Published in: Acta Mechanica Sinica 6/2019

09-10-2019 | Research Paper

Experimental and numerical investigation of the influence of roughness and turbulence on LUT airfoil performance

Authors: Shoutu Li, Ye Li, Congxin Yang, Xiaobo Zheng, Qing Wang, Yin Wang, Deshun Li, Wenrui Hu

Published in: Acta Mechanica Sinica | Issue 6/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Vertical-axis wind turbines (VAWTs) have been widely used in urban environments, which contain dust and experience strong turbulence. However, airfoils for VAWTs in urban environments have received considerably less research attention than those for horizontal-axis wind turbines (HAWTs). In this study, the sensitivity of a new VAWT airfoil developed at the Lanzhou University of Technology (LUT) to roughness was investigated via a wind tunnel experiment. The results show that the LUT airfoil is less sensitive to roughness at a roughness height of < 0.35 mm. Moreover, the drag bucket of the LUT airfoil decreases with increasing roughness height. Furthermore, the loads on the LUT airfoil during dynamic stall were studied at different turbulence intensities using a numerical method at a tip-speed ratio of 2. Before the stall, the turbulence intensity did not considerably affect the normal or tangential force coefficients of the LUT airfoil. However, after the stall, the normal force coefficient varied obviously at low turbulence intensity. Moreover, as the turbulence intensity increased, the normal and tangential force coefficients decreased rapidly, particularly in the downwind region of the VAWT.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Battisti, L., Benini, E., Brighenti, A., Dell’Anna, S., Raciti Castelli, M.: Small wind turbine effectiveness in the urban environment. Renew. Energy 129, 102–113 (2018)CrossRef Battisti, L., Benini, E., Brighenti, A., Dell’Anna, S., Raciti Castelli, M.: Small wind turbine effectiveness in the urban environment. Renew. Energy 129, 102–113 (2018)CrossRef
2.
go back to reference Kc, A., Whale, J., Urmee, T.: Urban wind conditions and small wind turbines in the built environment: a review. Renew. Energy 131, 268–283 (2018)CrossRef Kc, A., Whale, J., Urmee, T.: Urban wind conditions and small wind turbines in the built environment: a review. Renew. Energy 131, 268–283 (2018)CrossRef
3.
go back to reference Choudhry, A., Leknys, R., Arjomandi, M., Kelso, R.: An insight into the dynamic stall lift characteristics. Exp. Therm. Fluid Sci. 58, 188–208 (2014)CrossRef Choudhry, A., Leknys, R., Arjomandi, M., Kelso, R.: An insight into the dynamic stall lift characteristics. Exp. Therm. Fluid Sci. 58, 188–208 (2014)CrossRef
4.
go back to reference Hand, B., Kelly, G., Cashman, A.: Numerical simulation of a vertical axis wind turbine airfoil experiencing dynamic stall at high Reynolds numbers. Comput. Fluids 149, 12–30 (2017)MathSciNetCrossRef Hand, B., Kelly, G., Cashman, A.: Numerical simulation of a vertical axis wind turbine airfoil experiencing dynamic stall at high Reynolds numbers. Comput. Fluids 149, 12–30 (2017)MathSciNetCrossRef
5.
go back to reference Wang, S., Ingham, D.B., Ma, L., Pourkashanian, M., Tao, Z.: Numerical investigations on dynamic stall of low Reynolds number flow around oscillating airfoils. Comput. Fluids 39, 1529–1541 (2010)CrossRef Wang, S., Ingham, D.B., Ma, L., Pourkashanian, M., Tao, Z.: Numerical investigations on dynamic stall of low Reynolds number flow around oscillating airfoils. Comput. Fluids 39, 1529–1541 (2010)CrossRef
6.
go back to reference Wernert, P., Geissler, W., Raffel, M., Kompenhans, J.: Experimental and numerical investigations of dynamic stall on a pitching airfoil. AIAA J. 34, 982–989 (1996)CrossRef Wernert, P., Geissler, W., Raffel, M., Kompenhans, J.: Experimental and numerical investigations of dynamic stall on a pitching airfoil. AIAA J. 34, 982–989 (1996)CrossRef
7.
go back to reference Marzabadi, F.R., Soltani, M.R.: Effect of leading-edge roughness on boundary layer transition of an oscillating airfoil. Sci. Iran 20, 508–515 (2013) Marzabadi, F.R., Soltani, M.R.: Effect of leading-edge roughness on boundary layer transition of an oscillating airfoil. Sci. Iran 20, 508–515 (2013)
8.
go back to reference Migliore, P.: Comparison of NACA 6-series and 4-digit airfoils for Darrieus wind turbines. J. Energy 7, 291–292 (1983)CrossRef Migliore, P.: Comparison of NACA 6-series and 4-digit airfoils for Darrieus wind turbines. J. Energy 7, 291–292 (1983)CrossRef
9.
go back to reference Ferreira, C.J.S., Bijl, H., van Bussel, G., van Kuik, G.: Simulating dynamic stall in a 2D VAWT: modeling strategy, verification and validation with particle image velocimetry data. J. Phys. Conf. Ser. 75, 012023 (2007)CrossRef Ferreira, C.J.S., Bijl, H., van Bussel, G., van Kuik, G.: Simulating dynamic stall in a 2D VAWT: modeling strategy, verification and validation with particle image velocimetry data. J. Phys. Conf. Ser. 75, 012023 (2007)CrossRef
10.
go back to reference Ali, S., Lee, S.-M., Jang, C.-M.: Effects of instantaneous tangential velocity on the aerodynamic performance of an H-Darrieus wind turbine. Energy Convers. Manag. 171, 1322–1338 (2018)CrossRef Ali, S., Lee, S.-M., Jang, C.-M.: Effects of instantaneous tangential velocity on the aerodynamic performance of an H-Darrieus wind turbine. Energy Convers. Manag. 171, 1322–1338 (2018)CrossRef
11.
go back to reference Islam, M., Ting, D.S.-K., Fartaj, A.: Desirable airfoil features for smaller-capacity straight-bladed VAWT. Wind Eng. 31, 165–196 (2007)CrossRef Islam, M., Ting, D.S.-K., Fartaj, A.: Desirable airfoil features for smaller-capacity straight-bladed VAWT. Wind Eng. 31, 165–196 (2007)CrossRef
12.
go back to reference Islam, M., Fartaj, A., Carriveau, R.: Design analysis of a small-capacity straight-bladed VAWT with an asymmetric airfoil. Int. J. Sustain. Energy 30, 179–192 (2011)CrossRef Islam, M., Fartaj, A., Carriveau, R.: Design analysis of a small-capacity straight-bladed VAWT with an asymmetric airfoil. Int. J. Sustain. Energy 30, 179–192 (2011)CrossRef
13.
go back to reference Howell, R., Qin, N., Edwards, J., Durrani, N.: Wind tunnel and numerical study of a small vertical axis wind turbine. Renew. Energy 35, 412–422 (2010)CrossRef Howell, R., Qin, N., Edwards, J., Durrani, N.: Wind tunnel and numerical study of a small vertical axis wind turbine. Renew. Energy 35, 412–422 (2010)CrossRef
14.
go back to reference Carrigan, T.J., Dennis, B.H., Han, Z.X., Wang, B.P.: Aerodynamic shape optimization of a vertical-axis wind turbine using differential evolution. ISRN Renew. Energy 2012, 1–16 (2012)CrossRef Carrigan, T.J., Dennis, B.H., Han, Z.X., Wang, B.P.: Aerodynamic shape optimization of a vertical-axis wind turbine using differential evolution. ISRN Renew. Energy 2012, 1–16 (2012)CrossRef
15.
go back to reference Subramanian, A., Yogesh, S.A., Sivanandan, H., Giri, A., Vasudevan, M., Mugundhan, V., Velamati, R.K.: Effect of airfoil and solidity on performance of small scale vertical axis wind turbine using three dimensional CFD model. Energy 133, 179–190 (2017)CrossRef Subramanian, A., Yogesh, S.A., Sivanandan, H., Giri, A., Vasudevan, M., Mugundhan, V., Velamati, R.K.: Effect of airfoil and solidity on performance of small scale vertical axis wind turbine using three dimensional CFD model. Energy 133, 179–190 (2017)CrossRef
16.
go back to reference Han, W., Kim, J., Kim, B.: Effects of contamination and erosion at the leading edge of blade tip airfoils on the annual energy production of wind turbines. Renew. Energy 115, 817–823 (2018)CrossRef Han, W., Kim, J., Kim, B.: Effects of contamination and erosion at the leading edge of blade tip airfoils on the annual energy production of wind turbines. Renew. Energy 115, 817–823 (2018)CrossRef
17.
go back to reference Priegue, L., Stoesser, T.: The influence of blade roughness on the performance of a vertical axis tidal turbine. Int. J. Mar. Energy 17, 136–146 (2017)CrossRef Priegue, L., Stoesser, T.: The influence of blade roughness on the performance of a vertical axis tidal turbine. Int. J. Mar. Energy 17, 136–146 (2017)CrossRef
18.
go back to reference Walker, J.M., Flack, K.A., Lust, E.E., Schultz, M.P., Luznik, L.: Experimental and numerical studies of blade roughness and fouling on marine current turbine performance. Renew. Energy 66, 257–267 (2014)CrossRef Walker, J.M., Flack, K.A., Lust, E.E., Schultz, M.P., Luznik, L.: Experimental and numerical studies of blade roughness and fouling on marine current turbine performance. Renew. Energy 66, 257–267 (2014)CrossRef
19.
go back to reference Kerho, M.F., Bragg, M.B.: Airfoil boundary-layer development and transition with large leading-edge roughness. AIAA J. 35, 75–84 (1997)CrossRef Kerho, M.F., Bragg, M.B.: Airfoil boundary-layer development and transition with large leading-edge roughness. AIAA J. 35, 75–84 (1997)CrossRef
20.
go back to reference Braslow, B.A.L., Knox, E.C., Field, L.: simplified method for determination of critical height of distributed roughness particles for boundary-layer transition at Mach numbers from 0 to 5. Technical Report Archive & Image Library (1958) Braslow, B.A.L., Knox, E.C., Field, L.: simplified method for determination of critical height of distributed roughness particles for boundary-layer transition at Mach numbers from 0 to 5. Technical Report Archive & Image Library (1958)
21.
go back to reference Soltani, M.R., Birjandi, A.H., Seddighi Moorani, M.: Effect of surface contamination on the performance of a section of a wind turbine blade. Sci. Iran 18, 349–357 (2011)CrossRef Soltani, M.R., Birjandi, A.H., Seddighi Moorani, M.: Effect of surface contamination on the performance of a section of a wind turbine blade. Sci. Iran 18, 349–357 (2011)CrossRef
22.
go back to reference Timmer, W.A., Schaffarczyk, A.P.: The effect of roughness at high Reynolds numbers on the performance of aerofoil DU 97-W-300Mod. Wind Energy 7, 295–307 (2004)CrossRef Timmer, W.A., Schaffarczyk, A.P.: The effect of roughness at high Reynolds numbers on the performance of aerofoil DU 97-W-300Mod. Wind Energy 7, 295–307 (2004)CrossRef
23.
go back to reference Zhang, X., Wang, G., Zhang, M., Liu, H., Li, W.: Numerical study of the aerodynamic performance of blunt trailing-edge airfoil considering the sensitive roughness height. Int. J. Hydrog. Energy 42, 18252–18262 (2017)CrossRef Zhang, X., Wang, G., Zhang, M., Liu, H., Li, W.: Numerical study of the aerodynamic performance of blunt trailing-edge airfoil considering the sensitive roughness height. Int. J. Hydrog. Energy 42, 18252–18262 (2017)CrossRef
24.
go back to reference Freudenreich, K., Kaiser, K., Schaffarczyk, A.P., Winkler, H., Stahl, B.: Reynolds number and roughness effects on thick airfoils for wind turbines. Wind Eng. 28, 529–546 (2005)CrossRef Freudenreich, K., Kaiser, K., Schaffarczyk, A.P., Winkler, H., Stahl, B.: Reynolds number and roughness effects on thick airfoils for wind turbines. Wind Eng. 28, 529–546 (2005)CrossRef
25.
go back to reference Rooij, R.P., Timmer, W.A.: Roughness sensitivity considerations for thick rotor blade airfoils. J. Sol. Energy Eng. 125, 468–478 (2003)CrossRef Rooij, R.P., Timmer, W.A.: Roughness sensitivity considerations for thick rotor blade airfoils. J. Sol. Energy Eng. 125, 468–478 (2003)CrossRef
26.
go back to reference Kim, Y., Xie, Z.-T.: Modelling the effect of freestream turbulence on dynamic stall of wind turbine blades. Comput. Fluids 129, 53–66 (2016)MathSciNetCrossRef Kim, Y., Xie, Z.-T.: Modelling the effect of freestream turbulence on dynamic stall of wind turbine blades. Comput. Fluids 129, 53–66 (2016)MathSciNetCrossRef
27.
go back to reference Devinant, P., Laverne, T., Hureau, J.: Experimental study of wind-turbine airfoil aerodynamics in high turbulence. J. Wind Eng. Ind. Aerodyn. 90, 689–707 (2002)CrossRef Devinant, P., Laverne, T., Hureau, J.: Experimental study of wind-turbine airfoil aerodynamics in high turbulence. J. Wind Eng. Ind. Aerodyn. 90, 689–707 (2002)CrossRef
28.
go back to reference Molina, A.C., Bartoli, G., De Troyer, T.: Wind tunnel testing of small vertical-axis wind turbines in turbulent flows. Procedia Eng. 199, 3176–3181 (2017)CrossRef Molina, A.C., Bartoli, G., De Troyer, T.: Wind tunnel testing of small vertical-axis wind turbines in turbulent flows. Procedia Eng. 199, 3176–3181 (2017)CrossRef
29.
go back to reference Ahmadi-Baloutaki, M., Carriveau, R., Ting, D.S.K.: Performance of a vertical axis wind turbine in grid generated turbulence. Sustain. Energy Technol. Assess. 11, 178–185 (2015) Ahmadi-Baloutaki, M., Carriveau, R., Ting, D.S.K.: Performance of a vertical axis wind turbine in grid generated turbulence. Sustain. Energy Technol. Assess. 11, 178–185 (2015)
30.
go back to reference Peng, H.Y., Lam, H.F.: Turbulence effects on the wake characteristics and aerodynamic performance of a straight-bladed vertical axis wind turbine by wind tunnel tests and large eddy simulations. Energy 109, 557–568 (2016)CrossRef Peng, H.Y., Lam, H.F.: Turbulence effects on the wake characteristics and aerodynamic performance of a straight-bladed vertical axis wind turbine by wind tunnel tests and large eddy simulations. Energy 109, 557–568 (2016)CrossRef
31.
go back to reference Siddiqui, M.S., Rasheed, A., Kvamsdal, T., Tabib, M.: Effect of turbulence intensity on the performance of an offshore vertical axis wind turbine. Energy Procedia 80, 312–320 (2015)CrossRef Siddiqui, M.S., Rasheed, A., Kvamsdal, T., Tabib, M.: Effect of turbulence intensity on the performance of an offshore vertical axis wind turbine. Energy Procedia 80, 312–320 (2015)CrossRef
32.
go back to reference Qiao, Z.D., Song, W.P., Gao, Y.W.: Design and experiment of the NPU-WA airfoil family for wind turbines. ACTA Aerodyn. Sin. 30, 260–265 (2012) Qiao, Z.D., Song, W.P., Gao, Y.W.: Design and experiment of the NPU-WA airfoil family for wind turbines. ACTA Aerodyn. Sin. 30, 260–265 (2012)
33.
go back to reference Meng, X., Hu, H., Yan, X., Liu, F., Luo, S.: Lift improvements using duty-cycled plasma actuation at low Reynolds numbers. Aerosp. Sci. Technol. 72, 123–133 (2018)CrossRef Meng, X., Hu, H., Yan, X., Liu, F., Luo, S.: Lift improvements using duty-cycled plasma actuation at low Reynolds numbers. Aerosp. Sci. Technol. 72, 123–133 (2018)CrossRef
34.
go back to reference Li, S., Li, Y., Yang, C., Zhang, X., Wang, Q., Li, D., Zhong, W., Wang, T.: Design and testing of a LUT airfoil for straight-bladed vertical axis wind turbines. Appl. Sci. 8, 2266 (2018)CrossRef Li, S., Li, Y., Yang, C., Zhang, X., Wang, Q., Li, D., Zhong, W., Wang, T.: Design and testing of a LUT airfoil for straight-bladed vertical axis wind turbines. Appl. Sci. 8, 2266 (2018)CrossRef
35.
go back to reference Somers, D.M.: Design and experimental results for the s814 airfoil, p. 272. National Renewable Energy Lab, Golden (1997) Somers, D.M.: Design and experimental results for the s814 airfoil, p. 272. National Renewable Energy Lab, Golden (1997)
36.
go back to reference Kong, L.: Fluid Mechanics. Higher Education Press, Beijing (2011) Kong, L.: Fluid Mechanics. Higher Education Press, Beijing (2011)
37.
go back to reference Islam, M.: Analysis of fixed-pitch straight-bladed VAWT with asymmetric airfoils. Dissertation, University of Windsor (2008) Islam, M.: Analysis of fixed-pitch straight-bladed VAWT with asymmetric airfoils. Dissertation, University of Windsor (2008)
38.
go back to reference Wang, S., Ingham, D.B., Ma, L., Pourkashanian, M., Tao, Z.: Turbulence modeling of deep dynamic stall at relatively low Reynolds number. J. Fluids Struct. 33, 191–209 (2012)CrossRef Wang, S., Ingham, D.B., Ma, L., Pourkashanian, M., Tao, Z.: Turbulence modeling of deep dynamic stall at relatively low Reynolds number. J. Fluids Struct. 33, 191–209 (2012)CrossRef
39.
go back to reference Somers, D.M.: Design and experimental results for the S825 airfoil period of performance : 1998–1999 design and experimental results for the S825 Airfoil. Technical Report NREL/SR-500-36346, National Renewable Energy Laboratory: Golden, CO, USA (2005) Somers, D.M.: Design and experimental results for the S825 airfoil period of performance : 1998–1999 design and experimental results for the S825 Airfoil. Technical Report NREL/SR-500-36346, National Renewable Energy Laboratory: Golden, CO, USA (2005)
Metadata
Title
Experimental and numerical investigation of the influence of roughness and turbulence on LUT airfoil performance
Authors
Shoutu Li
Ye Li
Congxin Yang
Xiaobo Zheng
Qing Wang
Yin Wang
Deshun Li
Wenrui Hu
Publication date
09-10-2019
Publisher
The Chinese Society of Theoretical and Applied Mechanics; Institute of Mechanics, Chinese Academy of Sciences
Published in
Acta Mechanica Sinica / Issue 6/2019
Print ISSN: 0567-7718
Electronic ISSN: 1614-3116
DOI
https://doi.org/10.1007/s10409-019-00898-3

Other articles of this Issue 6/2019

Acta Mechanica Sinica 6/2019 Go to the issue

Premium Partners