Skip to main content
Top
Published in: Mechanics of Composite Materials 3/2023

28-06-2023

Experimental Investigation of Foam-Filled Composite Double-Arrow Auxetic Structures in Impulse Loadings

Authors: J. Liu, W. Yang, J. Mei, R. Huang, Y. Ao, J. Liu, W. Huang

Published in: Mechanics of Composite Materials | Issue 3/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

A composite double-arrow auxetic structure was fabricated by using the hot mold pressing and bonding technologies, and a polyurethane foam was utilized to fill the voids of core to prepare a foam-reinforced auxetic structure. Projectile impact experiments were carried out to investigate the influence of the filling foam on the dynamic response, the failure mechanism and a negative Poisson’s ratio on the composite double-arrow auxetic structure. A high-speed recording system was used to gather data on the deformation profile and failure mechanism of the composite auxetic structure during the impact loading. The foams were found to significantly reduce the local crushing and overall bending/shear deformation of the sandwich structure. This synergistic effect of the core member and foam blocks greatly enhanced the impact resistant and energy absorption capacity of the composite auxetic structure. However, filling foam would reduce the negative Poisson’s ratio effect of the auxetic structure.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference K. E. Evans, M. A. Nkansah, and I. J. Hutchinson, “Molecular network design,” Nature, 353, No. 6340, 120-124 (1991).CrossRef K. E. Evans, M. A. Nkansah, and I. J. Hutchinson, “Molecular network design,” Nature, 353, No. 6340, 120-124 (1991).CrossRef
2.
go back to reference I. I. Argatov, R. Guinovart-Diaz, and F. J. Sabina, “On local indentation and impact compliance of isotropic auxetic materials from the continuum mechanics viewpoint,” Int. J. Eng. Sci., 54, 42-57 (2012).CrossRef I. I. Argatov, R. Guinovart-Diaz, and F. J. Sabina, “On local indentation and impact compliance of isotropic auxetic materials from the continuum mechanics viewpoint,” Int. J. Eng. Sci., 54, 42-57 (2012).CrossRef
3.
go back to reference W. Liu, N. Wang, T. Luo, and Z. Lin, “In-plane dynamic crushing of re-entrant auxetic cellular structure,” Mater. Design, 100, 84-91 (2016).CrossRef W. Liu, N. Wang, T. Luo, and Z. Lin, “In-plane dynamic crushing of re-entrant auxetic cellular structure,” Mater. Design, 100, 84-91 (2016).CrossRef
4.
go back to reference X. Wang, B. Wang, and X. Li, “Mechanical properties of 3D re-entrant auxetic cellular structures,” Int. J. Mech. Sci., 131, 396-407 (2017).CrossRef X. Wang, B. Wang, and X. Li, “Mechanical properties of 3D re-entrant auxetic cellular structures,” Int. J. Mech. Sci., 131, 396-407 (2017).CrossRef
5.
go back to reference D. Xiao, Z. Dong, L. Ying, W. Wu, and D. Fang, “Compression behavior of the graded metallic auxetic reentrant honeycomb: Experiment and finite element analysis,” Mat. Sci. Eng. A-Struct., 758, 163-171 (2019).CrossRef D. Xiao, Z. Dong, L. Ying, W. Wu, and D. Fang, “Compression behavior of the graded metallic auxetic reentrant honeycomb: Experiment and finite element analysis,” Mat. Sci. Eng. A-Struct., 758, 163-171 (2019).CrossRef
6.
go back to reference X. Zhao, Q. Gao, L. Wang, and Q. Yu, “Dynamic crushing of double-arrowed auxetic structure under impact loading,” Mater. Design, 160, 527-537 (2018).CrossRef X. Zhao, Q. Gao, L. Wang, and Q. Yu, “Dynamic crushing of double-arrowed auxetic structure under impact loading,” Mater. Design, 160, 527-537 (2018).CrossRef
7.
go back to reference A. Alderson, K. L. Alderson, D. Attard, K. E. Evans, R. Gatt, J. N. Grima, W. Miller, N. Ravirala, C. W. Smith, and K. Zied, “Elastic constants of 3-, 4- and 6-connected chiral and anti-chiral honeycombs subject to uniaxial in-plane loading,” Compos. Sci. Technol., 70, No. 7, 162-169 (2009). A. Alderson, K. L. Alderson, D. Attard, K. E. Evans, R. Gatt, J. N. Grima, W. Miller, N. Ravirala, C. W. Smith, and K. Zied, “Elastic constants of 3-, 4- and 6-connected chiral and anti-chiral honeycombs subject to uniaxial in-plane loading,” Compos. Sci. Technol., 70, No. 7, 162-169 (2009).
8.
go back to reference J. X. Qiao and C. Q. Chen, “Analyses on the in-plane impact resistance of auxetic double arrowhead honeycombs,” J. Appl. Mech., 82, No. 5, 051007 (2015). J. X. Qiao and C. Q. Chen, “Analyses on the in-plane impact resistance of auxetic double arrowhead honeycombs,” J. Appl. Mech., 82, No. 5, 051007 (2015).
9.
go back to reference Y. Xue, J. Mu, Y. Huang, L. Zhou, and Z. Shi, “Compressive mechanical properties of ex-situ auxetic composite-filled tubes,” J. Mater. Res. Technol., 14, 1644-1654 (2021).CrossRef Y. Xue, J. Mu, Y. Huang, L. Zhou, and Z. Shi, “Compressive mechanical properties of ex-situ auxetic composite-filled tubes,” J. Mater. Res. Technol., 14, 1644-1654 (2021).CrossRef
10.
go back to reference T. C. Lim, Mechanics of Metamaterials with Negative Parameters, M., Springer Nature (2020). T. C. Lim, Mechanics of Metamaterials with Negative Parameters, M., Springer Nature (2020).
11.
go back to reference K. E. Evans and A. Alderson, “Auxetic materials: functional materials and structures from lateral thinking,” Adv. Mater., 12, No. 9, 617-628 (2000).CrossRef K. E. Evans and A. Alderson, “Auxetic materials: functional materials and structures from lateral thinking,” Adv. Mater., 12, No. 9, 617-628 (2000).CrossRef
12.
go back to reference D. Qi, Q. Lu, C. He, Y. Li, W. Wu, and D. Xiao, “Impact energy absorption of functionally graded chiral honeycomb structures,” Extreme Mech. Let., 32, 100568 (2019).CrossRef D. Qi, Q. Lu, C. He, Y. Li, W. Wu, and D. Xiao, “Impact energy absorption of functionally graded chiral honeycomb structures,” Extreme Mech. Let., 32, 100568 (2019).CrossRef
13.
go back to reference L. L. Hu, Z. J. Wu, and M. H. Fu, “Mechanical behavior of anti-trichiral honeycombs under lateral crushing,” Int. J. Mech. Sci., 140, 537-546 (2018).CrossRef L. L. Hu, Z. J. Wu, and M. H. Fu, “Mechanical behavior of anti-trichiral honeycombs under lateral crushing,” Int. J. Mech. Sci., 140, 537-546 (2018).CrossRef
14.
go back to reference W. Liu, N. Wang, T. Luo, and Z. Lin, “In-plane dynamic crushing of re-entrant auxetic cellular structure,” Mater. Design., 100, 84-91 (2016).CrossRef W. Liu, N. Wang, T. Luo, and Z. Lin, “In-plane dynamic crushing of re-entrant auxetic cellular structure,” Mater. Design., 100, 84-91 (2016).CrossRef
15.
go back to reference B. Wang, J. Q. Hu, Y. Q. Li, Y. T. Yao, S. X. Wang, and L. Ma, “Mechanical properties and failure behavior of the sandwich structures with carbon fiber-reinforced X-type lattice truss core,” Compos. Struct., 185, 619-633 (2017).CrossRef B. Wang, J. Q. Hu, Y. Q. Li, Y. T. Yao, S. X. Wang, and L. Ma, “Mechanical properties and failure behavior of the sandwich structures with carbon fiber-reinforced X-type lattice truss core,” Compos. Struct., 185, 619-633 (2017).CrossRef
16.
go back to reference J. Q. Hu, S. W. Zhu, B. Wang, A. K. Liu, L. Ma, L. Z. Wu, and Z. G. Zhou, “Fabrication and compression properties of continuous carbon fiber reinforced polyether ether ketone thermoplastic composite sandwich structures with lattice cores,” J. Sandw. Struct. Mater., 23, No. 6, 2422-2442 (2021).CrossRef J. Q. Hu, S. W. Zhu, B. Wang, A. K. Liu, L. Ma, L. Z. Wu, and Z. G. Zhou, “Fabrication and compression properties of continuous carbon fiber reinforced polyether ether ketone thermoplastic composite sandwich structures with lattice cores,” J. Sandw. Struct. Mater., 23, No. 6, 2422-2442 (2021).CrossRef
17.
go back to reference J. Q. Hu, A. K. Liu, S. W. Zhu, H. Q. Zhang, B. Wang, H. Y. Zheng, and Z. G. Zhou, “Novel panel-core connection process and impact behaviors of CF/PEEK thermoplastic composite sandwich structures with truss cores,” Compos. Struct., 251, 112659 (2020).CrossRef J. Q. Hu, A. K. Liu, S. W. Zhu, H. Q. Zhang, B. Wang, H. Y. Zheng, and Z. G. Zhou, “Novel panel-core connection process and impact behaviors of CF/PEEK thermoplastic composite sandwich structures with truss cores,” Compos. Struct., 251, 112659 (2020).CrossRef
18.
go back to reference J. Mei, J.Y. Liu, and W. Huang, “Three-point bending behaviors of the foam-filled CFRP X-core sandwich panel: Experimental investigation and analytical modelling,” Compos. Struct., 284, 115206 (2022).CrossRef J. Mei, J.Y. Liu, and W. Huang, “Three-point bending behaviors of the foam-filled CFRP X-core sandwich panel: Experimental investigation and analytical modelling,” Compos. Struct., 284, 115206 (2022).CrossRef
19.
go back to reference J. L. Liu, J. Y. Liu, J. Mei, and W. Huang, “Investigation on manufacturing and mechanical behavior of all-composite sandwich structure with Y-shaped cores,” Compos. Sci. Tech., 159, 87-102 (2018).CrossRef J. L. Liu, J. Y. Liu, J. Mei, and W. Huang, “Investigation on manufacturing and mechanical behavior of all-composite sandwich structure with Y-shaped cores,” Compos. Sci. Tech., 159, 87-102 (2018).CrossRef
20.
go back to reference W. C. Yang, R. X. Huang, J. Y. Liu, J. X. Liu, and W. Huang, “Ballistic impact responses and failure mechanism of composite double-arrow auxetic structure,” Thin Wall Struct., 174, 109087 (2022).CrossRef W. C. Yang, R. X. Huang, J. Y. Liu, J. X. Liu, and W. Huang, “Ballistic impact responses and failure mechanism of composite double-arrow auxetic structure,” Thin Wall Struct., 174, 109087 (2022).CrossRef
21.
go back to reference C. Qi, A. Remennikov, L. Z. Pei, S. Yang, Z. H. Yu, and T. D. Ngo, “Impact and close-in blast response of auxetic honeycomb-cored sandwich panels: Experimental tests and numerical simulations,” Compos. Struct., 180, 161-178 (2017).CrossRef C. Qi, A. Remennikov, L. Z. Pei, S. Yang, Z. H. Yu, and T. D. Ngo, “Impact and close-in blast response of auxetic honeycomb-cored sandwich panels: Experimental tests and numerical simulations,” Compos. Struct., 180, 161-178 (2017).CrossRef
22.
go back to reference X. Lan, L. Meng, J. Zhao, and Z. Wang, “Mechanical properties and damage characterizations of 3D double-arrowhead auxetic structure with high-relative-density realized via selective laser melting,” Eur. J. Mech. A-Solid., 90, 104386 (2021).CrossRef X. Lan, L. Meng, J. Zhao, and Z. Wang, “Mechanical properties and damage characterizations of 3D double-arrowhead auxetic structure with high-relative-density realized via selective laser melting,” Eur. J. Mech. A-Solid., 90, 104386 (2021).CrossRef
23.
go back to reference M. Najafi, H. Ahmadi, and G. Liaghat, “Experimental investigation on energy absorption of auxetic structures,” Mater. Today: Proceedings, 34, No. 4792, 256-261 (2020). M. Najafi, H. Ahmadi, and G. Liaghat, “Experimental investigation on energy absorption of auxetic structures,” Mater. Today: Proceedings, 34, No. 4792, 256-261 (2020).
24.
go back to reference Y. Gao, Z. G. Zhou, H. Hu, and J. Xiong, “New concept of carbon fiber reinforced composite 3D auxetic lattice structures based on stretching-dominated cells,” Mech. Mater., 152, 103661 (2021).CrossRef Y. Gao, Z. G. Zhou, H. Hu, and J. Xiong, “New concept of carbon fiber reinforced composite 3D auxetic lattice structures based on stretching-dominated cells,” Mech. Mater., 152, 103661 (2021).CrossRef
25.
go back to reference Y. Gao, X. Wei, X. Han, Z. Zhou, and J. Xiong, “Novel 3D auxetic lattice structures developed based on the rotating rigid mechanism,” Int. J. Solids Struct., 233, 111232 (2021).CrossRef Y. Gao, X. Wei, X. Han, Z. Zhou, and J. Xiong, “Novel 3D auxetic lattice structures developed based on the rotating rigid mechanism,” Int. J. Solids Struct., 233, 111232 (2021).CrossRef
26.
go back to reference Z. Zhou, J. Zhou, and H. L. Fan, “Plastic analyses of thin-walled steel honeycombs with re-entrant deformation style,” Mat. Sci. Eng. A-Struct., 688, 123-133 (2017).CrossRef Z. Zhou, J. Zhou, and H. L. Fan, “Plastic analyses of thin-walled steel honeycombs with re-entrant deformation style,” Mat. Sci. Eng. A-Struct., 688, 123-133 (2017).CrossRef
27.
go back to reference L. Gibson and M. Ashby, Cellular Solids: Structure and Properties (Cambridge Solid State Science Series), Cambridge University Press (1997).CrossRef L. Gibson and M. Ashby, Cellular Solids: Structure and Properties (Cambridge Solid State Science Series), Cambridge University Press (1997).CrossRef
28.
go back to reference F. Yang, H. L. Fan, and S. A. Meguid, “Effect of foam-filling on collapse mode transition of thin-walled circular columns under axial compression: Analytical, numerical and experimental studies,” Int. J. Mech. Sci., 150, 665-676 (2019).CrossRef F. Yang, H. L. Fan, and S. A. Meguid, “Effect of foam-filling on collapse mode transition of thin-walled circular columns under axial compression: Analytical, numerical and experimental studies,” Int. J. Mech. Sci., 150, 665-676 (2019).CrossRef
29.
go back to reference H. Wang, S. Li, Y. Liu, P. Wang, F. Jin, and H. L. Fan, “Foam-filling techniques to enhance mechanical behaviors of woven lattice truss sandwich panels,” J. Build. Eng., 40, 102383 (2021).CrossRef H. Wang, S. Li, Y. Liu, P. Wang, F. Jin, and H. L. Fan, “Foam-filling techniques to enhance mechanical behaviors of woven lattice truss sandwich panels,” J. Build. Eng., 40, 102383 (2021).CrossRef
30.
go back to reference J. Yang, L. Ma, R. Schmidt, G. Qi, K. Schröder, J. Xiong, and L. Wu, “Hybrid lightweight composite pyramidal truss sandwich panels with high damping and stiffness efficiency,” Compos. Struct., 148, 86-96 (2016).CrossRef J. Yang, L. Ma, R. Schmidt, G. Qi, K. Schröder, J. Xiong, and L. Wu, “Hybrid lightweight composite pyramidal truss sandwich panels with high damping and stiffness efficiency,” Compos. Struct., 148, 86-96 (2016).CrossRef
31.
go back to reference Z. Li, W. Chen, and H. Hao, “Functionally graded truncated square pyramid folded structures with foam filler under dynamic crushing,” Compos. Part B, 177, 107410 (2019).CrossRef Z. Li, W. Chen, and H. Hao, “Functionally graded truncated square pyramid folded structures with foam filler under dynamic crushing,” Compos. Part B, 177, 107410 (2019).CrossRef
32.
go back to reference Y. Du, T. Keller, C. Song, L. Wu, and J. Xiong, “Origami-inspired carbon fiber-reinforced composite sandwich materials - Fabrication and mechanical behavior,” Compos. Sci. Technol., 205, 108667 (2021).CrossRef Y. Du, T. Keller, C. Song, L. Wu, and J. Xiong, “Origami-inspired carbon fiber-reinforced composite sandwich materials - Fabrication and mechanical behavior,” Compos. Sci. Technol., 205, 108667 (2021).CrossRef
33.
go back to reference H. Wang, W. Wang, P. Wang, F. Jin, and H. Fan, “Foam-filled lightweight braided-textile reinforced and nested tubular structures for energy absorption applications,” Compos. Part A, 149, 106569 (2021).CrossRef H. Wang, W. Wang, P. Wang, F. Jin, and H. Fan, “Foam-filled lightweight braided-textile reinforced and nested tubular structures for energy absorption applications,” Compos. Part A, 149, 106569 (2021).CrossRef
34.
go back to reference T. A. Sebaey, D. K. Rajak, and H. Mehboob, “Internally stiffened foam-filled carbon fiber reinforced composite tubes under impact loading for energy absorption applications,” Compos. Struct., 255, 112910 (2021).CrossRef T. A. Sebaey, D. K. Rajak, and H. Mehboob, “Internally stiffened foam-filled carbon fiber reinforced composite tubes under impact loading for energy absorption applications,” Compos. Struct., 255, 112910 (2021).CrossRef
35.
go back to reference H. Zhou, K. Jia, X. Wang, M. Xiong, and Y. Wang, “Experimental and numerical investigation of low velocity impact response of foam concrete filled auxetic honeycombs,” Thin Wall. Struct., 154, 106898 (2020).CrossRef H. Zhou, K. Jia, X. Wang, M. Xiong, and Y. Wang, “Experimental and numerical investigation of low velocity impact response of foam concrete filled auxetic honeycombs,” Thin Wall. Struct., 154, 106898 (2020).CrossRef
36.
go back to reference D. D. Radford, N. A. Fleck, and V. S. Deshpande, “The response of clamped sandwich beams subjected to shock loading,” Int. J. Impact. Eng., 32, No. 6, 968-987 (2004).CrossRef D. D. Radford, N. A. Fleck, and V. S. Deshpande, “The response of clamped sandwich beams subjected to shock loading,” Int. J. Impact. Eng., 32, No. 6, 968-987 (2004).CrossRef
Metadata
Title
Experimental Investigation of Foam-Filled Composite Double-Arrow Auxetic Structures in Impulse Loadings
Authors
J. Liu
W. Yang
J. Mei
R. Huang
Y. Ao
J. Liu
W. Huang
Publication date
28-06-2023
Publisher
Springer US
Published in
Mechanics of Composite Materials / Issue 3/2023
Print ISSN: 0191-5665
Electronic ISSN: 1573-8922
DOI
https://doi.org/10.1007/s11029-023-10114-w

Other articles of this Issue 3/2023

Mechanics of Composite Materials 3/2023 Go to the issue

Premium Partners