Skip to main content
Top
Published in: Mechanics of Composite Materials 3/2023

01-07-2023

Generalization of a Nonlinear Maxwell-Type Viscoelastoplastic Model and Simulation of Creep and Recovery Curves

Author: A. V. Khokhlov

Published in: Mechanics of Composite Materials | Issue 3/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

A generalization of the physically nonlinear Maxwell-type constitutive equation with two material functions for non-aging rheonomic materials, whose general properties and area of application have been studied analytically in previous articles, was suggested. To extend the set of basic rheological phenomena simulated, a third strain component expressed as the Boltzmann–Volterra linear integral operator governed by an arbitrary creep function was added. For generality and convenience of managing the constitutive equation and its fitting to various materials and lists of effects simulated, a weight factor (degree of nonlinearity) was introduced into the constitutive relation, which enabled to combine the primary physically nonlinear Maxwell-type model with the linear viscoelasticity equation in arbitrary proportion to construct a hybrid model and to regulate the prominence of different phenomena described by the two constitutive equations. A general expression for creep and recovery curves produced by the constitutive equation proposed was derived and analyzed. The general properties of creep and recovery curves were studied assuming three material functions are arbitrary. New properties were established, which enabled the generalized model to adjust the form of creep and recovery curves and to simulate additional effects (in comparison with the primary Maxwell-type model) observed in creep and recovery tests of various materials at different stress levels.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
4.
go back to reference A. V. Khokhlov, “Long-term strength curves generated by the nonlinear Maxwell-type model for viscoelastoplastic materials and the linear damage rule under step loading,” J. Samara State Tech. Univ., Ser. Phys. & Math. Sci., 20, No. 3, 524-543 (2016). doi: https://doi.org/10.14498/vsgtu1512 A. V. Khokhlov, “Long-term strength curves generated by the nonlinear Maxwell-type model for viscoelastoplastic materials and the linear damage rule under step loading,” J. Samara State Tech. Univ., Ser. Phys. & Math. Sci., 20, No. 3, 524-543 (2016). doi: https://​doi.​org/​10.​14498/​vsgtu1512
5.
go back to reference A. V. Khokhlov, “The nonlinear Maxwell-type model for viscoelastoplastic materials: simulation of temperature influence on creep, relaxation and strain-stress curves,” J. Samara State Tech. Univ., Ser. Phys. & Math. Sci., 21, No. 1, 160-179 (2017). doi:https://doi.org/10.14498/vsgtu1524 A. V. Khokhlov, “The nonlinear Maxwell-type model for viscoelastoplastic materials: simulation of temperature influence on creep, relaxation and strain-stress curves,” J. Samara State Tech. Univ., Ser. Phys. & Math. Sci., 21, No. 1, 160-179 (2017). doi:https://​doi.​org/​10.​14498/​vsgtu1524
7.
go back to reference A. V. Khokhlov, “Applicability indicators and identification techniques for a nonlinear Maxwell-type elasto-viscoplastic model using multi-step creep curves,” Vestn. Mosk. Gos. Tekh. Univ. im. N. E. Baumana, Estestv. Nauki [Herald of the Bauman Moscow State Tech. Univ., Nat. Sci.] No. 6, 92-112 (2018). doi: https://doi.org/10.18698/1812-3368-2018-6-92-112 A. V. Khokhlov, “Applicability indicators and identification techniques for a nonlinear Maxwell-type elasto-viscoplastic model using multi-step creep curves,” Vestn. Mosk. Gos. Tekh. Univ. im. N. E. Baumana, Estestv. Nauki [Herald of the Bauman Moscow State Tech. Univ., Nat. Sci.] No. 6, 92-112 (2018). doi: https://​doi.​org/​10.​18698/​1812-3368-2018-6-92-112
9.
go back to reference A. V. Khokhlov, “Possibility to describe the alternating and nonmonotonic time dependence of Poisson’s ratio during creep using a nonlinear Maxwell-type viscoelastoplasticity model,” Russ. Metallurgy (Metally), No.10, 956-963 (2019). doi:https://doi.org/10.1134/S0036029519100136 A. V. Khokhlov, “Possibility to describe the alternating and nonmonotonic time dependence of Poisson’s ratio during creep using a nonlinear Maxwell-type viscoelastoplasticity model,” Russ. Metallurgy (Metally), No.10, 956-963 (2019). doi:https://​doi.​org/​10.​1134/​S003602951910013​6
11.
go back to reference Yu. N. Rabotnov, Creep of Structural Elements [in Russian], M., Nauka (1966). Yu. N. Rabotnov, Creep of Structural Elements [in Russian], M., Nauka (1966).
12.
go back to reference I. I. Bugakov, Creep of Polymeric Materials [in Russian], M., Nauka (1973). I. I. Bugakov, Creep of Polymeric Materials [in Russian], M., Nauka (1973).
13.
go back to reference N. N. Malinin, Calculations for the Creep of Elements of Machine-Building Structures [in Russian], M., Mashinostroenie (1981). N. N. Malinin, Calculations for the Creep of Elements of Machine-Building Structures [in Russian], M., Mashinostroenie (1981).
14.
go back to reference D. A. Gokhfeld and O. S. Sadakov, Plasticity and Creep of Structural Elements Under Repeated Loading [in Russian], M., Mashinostroenie (1984). D. A. Gokhfeld and O. S. Sadakov, Plasticity and Creep of Structural Elements Under Repeated Loading [in Russian], M., Mashinostroenie (1984).
15.
go back to reference A. F. Nikitenko, Creep and Long-Term Strength of Metallic Materials [in Russian], Novosibirsk, NGASU (1997). A. F. Nikitenko, Creep and Long-Term Strength of Metallic Materials [in Russian], Novosibirsk, NGASU (1997).
16.
go back to reference J. Betten, Creep Mechanics, Berlin, Heidelberg, Springer-Verlag (2008). J. Betten, Creep Mechanics, Berlin, Heidelberg, Springer-Verlag (2008).
17.
go back to reference A. M. Lokoshchenko, Creep and Long-Term Strength of Metals [in Russian], M., Fizmatlit (2016). A. M. Lokoshchenko, Creep and Long-Term Strength of Metals [in Russian], M., Fizmatlit (2016).
18.
19.
go back to reference J. S. Bergstrom, Mechanics of Solid Polymers. Theory and Computational Modeling, Elsevier, William Andrew (2015). J. S. Bergstrom, Mechanics of Solid Polymers. Theory and Computational Modeling, Elsevier, William Andrew (2015).
20.
go back to reference G. V. Vinogradov and A. Ya. Malkin, Rheology of Polymers [in Russian], M., Khimiya (1977). G. V. Vinogradov and A. Ya. Malkin, Rheology of Polymers [in Russian], M., Khimiya (1977).
21.
go back to reference R. G. Larson, Constitutive Equations for Polymer Melts and Solutions, Butterworth, Boston (1988). R. G. Larson, Constitutive Equations for Polymer Melts and Solutions, Butterworth, Boston (1988).
22.
23.
go back to reference A. Y. Malkin and A. I. Isayev, Rheology: Conceptions, Methods, Applications (2nd Ed.), Toronto, Chem. Tec. Publishing (2012). A. Y. Malkin and A. I. Isayev, Rheology: Conceptions, Methods, Applications (2nd Ed.), Toronto, Chem. Tec. Publishing (2012).
24.
go back to reference H. F. Brinson and L. C. Brinson, Polymer Engineering Science and Viscoelasticity, Springer Science and Business Media (2008). H. F. Brinson and L. C. Brinson, Polymer Engineering Science and Viscoelasticity, Springer Science and Business Media (2008).
25.
go back to reference A. E. Kalinnikov and A. V. Vakhrushev, “On the creep of materials with different resistance to tension and compression at variable stresses,” Mech. Compos. Mater., No. 3, 400-405 (1982). A. E. Kalinnikov and A. V. Vakhrushev, “On the creep of materials with different resistance to tension and compression at variable stresses,” Mech. Compos. Mater., No. 3, 400-405 (1982).
26.
go back to reference A. Fatemi and L. Yang, “Cumulative fatigue damage and life prediction theories: A survey of the state of the art for homogeneous materials,” Int. J. Fatigue, 20, No. 1, 9-34 (1998).CrossRef A. Fatemi and L. Yang, “Cumulative fatigue damage and life prediction theories: A survey of the state of the art for homogeneous materials,” Int. J. Fatigue, 20, No. 1, 9-34 (1998).CrossRef
27.
go back to reference A. Launay, M. H. Maitournam, Y. Marco, I. Raoult, and F. Szmytka, “Cyclic behavior of short glass fiber reinforced polyamide: Experimental study and constitutive equations,” Int. J. Plasticity, 27, 1267-1293 (2011).CrossRef A. Launay, M. H. Maitournam, Y. Marco, I. Raoult, and F. Szmytka, “Cyclic behavior of short glass fiber reinforced polyamide: Experimental study and constitutive equations,” Int. J. Plasticity, 27, 1267-1293 (2011).CrossRef
28.
go back to reference M. K. Darabi, R. K. A. Al-Rub, E. A. Masad, C.-W. Huang, and D. N. Little, “A modified viscoplastic model to predict the permanent strain of asphaltic materials under cyclic-compression loading at high temperatures,” Int. J. Plasticity, 35, 100-134 (2012).CrossRef M. K. Darabi, R. K. A. Al-Rub, E. A. Masad, C.-W. Huang, and D. N. Little, “A modified viscoplastic model to predict the permanent strain of asphaltic materials under cyclic-compression loading at high temperatures,” Int. J. Plasticity, 35, 100-134 (2012).CrossRef
29.
go back to reference H. Takagi, M. Dao, and M. Fujiwara, “Prediction of the constitutive equation for uniaxial creep of a power-law material through instrumented microindentation testing and modeling,” Materials Transactions, 55, No. 2, 275-284 (2014).CrossRef H. Takagi, M. Dao, and M. Fujiwara, “Prediction of the constitutive equation for uniaxial creep of a power-law material through instrumented microindentation testing and modeling,” Materials Transactions, 55, No. 2, 275-284 (2014).CrossRef
30.
go back to reference N. Q. Chinh and P. Szommer, “Mathematical description of indentation creep and its application for the determination of strain rate sensitivity,” Mater. Sci. and Eng., A, 611, 333-336 (2014). N. Q. Chinh and P. Szommer, “Mathematical description of indentation creep and its application for the determination of strain rate sensitivity,” Mater. Sci. and Eng., A, 611, 333-336 (2014).
31.
go back to reference D. S. Petukhov and I. E. Keller, “Dual problems of plane creeping flows of a power-law incompressible medium,” Vestn. Samara Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki, 20, No. 3, 496-507 (2016). D. S. Petukhov and I. E. Keller, “Dual problems of plane creeping flows of a power-law incompressible medium,” Vestn. Samara Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki, 20, No. 3, 496-507 (2016).
32.
go back to reference O. A. Kaibyshev, Superplasticity of Industrial Alloys [in Russian], M., Metallurgia (1984). O. A. Kaibyshev, Superplasticity of Industrial Alloys [in Russian], M., Metallurgia (1984).
33.
go back to reference T. G. Nieh, J. Wadsworth, and O. D. Sherby, Superplasticity in Metals and Ceramics, Cambridge Univ. Press (1997).CrossRef T. G. Nieh, J. Wadsworth, and O. D. Sherby, Superplasticity in Metals and Ceramics, Cambridge Univ. Press (1997).CrossRef
34.
go back to reference K. A. Padmanabhan, R. A. Vasin, and F. U. Enikeev, Superplastic Flow: Phenomenology and Mechanics, Berlin, Heidelberg, Springer-Verlag (2001).CrossRef K. A. Padmanabhan, R. A. Vasin, and F. U. Enikeev, Superplastic Flow: Phenomenology and Mechanics, Berlin, Heidelberg, Springer-Verlag (2001).CrossRef
35.
go back to reference V. M. Segal, I. J. Beyerlein, C. N., Tome, V. N. Chuvil’deev, and V. I. Kopylov, Fundamentals and Engineering of Severe Plastic Deformation, N.Y., Nova Science Pub. Inc. (2010). V. M. Segal, I. J. Beyerlein, C. N., Tome, V. N. Chuvil’deev, and V. I. Kopylov, Fundamentals and Engineering of Severe Plastic Deformation, N.Y., Nova Science Pub. Inc. (2010).
36.
go back to reference A. P. Zhilayev and A. I. Pshenichnyuk, Superplasticity and Grain Boundaries in Ultrafine-Grained Materials, Cambridge Intern. Sci. Publ. (2010). A. P. Zhilayev and A. I. Pshenichnyuk, Superplasticity and Grain Boundaries in Ultrafine-Grained Materials, Cambridge Intern. Sci. Publ. (2010).
37.
go back to reference Y. Cao, “Determination of the creep exponent of a power-law creep solid using indentation tests,” Mech. Time Dependent Mater., 11, 159-172 (2007).CrossRef Y. Cao, “Determination of the creep exponent of a power-law creep solid using indentation tests,” Mech. Time Dependent Mater., 11, 159-172 (2007).CrossRef
38.
go back to reference M. Megahed, A. R. S. Ponter, and C. J. Morrison, “An experimental and theoretical investigation into the creep properties of a simple structure of 316 stainless steel,” Int. J. Mech. Sci., 26, No. 3, 149-164 (1984).CrossRef M. Megahed, A. R. S. Ponter, and C. J. Morrison, “An experimental and theoretical investigation into the creep properties of a simple structure of 316 stainless steel,” Int. J. Mech. Sci., 26, No. 3, 149-164 (1984).CrossRef
39.
go back to reference F. U. Enikeev, “Experimental evaluation of the velocity sensitivity of a superplastic material with a highly inhomogeneous stress-strain state,” Zavodskaya Lab., Mater. Diagn., 73, No. 10, 44-50 (2007). F. U. Enikeev, “Experimental evaluation of the velocity sensitivity of a superplastic material with a highly inhomogeneous stress-strain state,” Zavodskaya Lab., Mater. Diagn., 73, No. 10, 44-50 (2007).
40.
go back to reference A. V. Mikhaylovskaya, A. A. Kishchik, A. D. Kotov, et al., “Precipitation behavior and high strain rate superplasticity in a novel fine-grained aluminum based alloy,” Mater. Sci. Eng. A, 760, 37-46 (2019).CrossRef A. V. Mikhaylovskaya, A. A. Kishchik, A. D. Kotov, et al., “Precipitation behavior and high strain rate superplasticity in a novel fine-grained aluminum based alloy,” Mater. Sci. Eng. A, 760, 37-46 (2019).CrossRef
41.
go back to reference M. E. Eglit, A. E. Yakubenko, and Yu.S. Zaiko, “Mathematical modeling of slope flows taking into account the non-Newtonian properties of a moving medium,” Trudy V. A. Steklov Matemat. Inst. RAS, 300, 229-239 (2018). M. E. Eglit, A. E. Yakubenko, and Yu.S. Zaiko, “Mathematical modeling of slope flows taking into account the non-Newtonian properties of a moving medium,” Trudy V. A. Steklov Matemat. Inst. RAS, 300, 229-239 (2018).
42.
go back to reference V. P. Radchenko and D. V. Shapievsky, “Mathematical model of creep of a micro-inhomogeneous nonlinear elastic material,” PMTF, 49, No. 3, 157-163 (2008). V. P. Radchenko and D. V. Shapievsky, “Mathematical model of creep of a micro-inhomogeneous nonlinear elastic material,” PMTF, 49, No. 3, 157-163 (2008).
43.
go back to reference K. Naumenko, H. Altenbach, and Y. Gorash, “creep analysis with a stress range dependent constitutive model.,” Arch. Appl. Mech., 79, 619-630 (2009).CrossRef K. Naumenko, H. Altenbach, and Y. Gorash, “creep analysis with a stress range dependent constitutive model.,” Arch. Appl. Mech., 79, 619-630 (2009).CrossRef
44.
go back to reference L. Y. Lu, G. L. Lin, and M. H. Shih, “An experimental study on a generalized Maxwell model for nonlinear viscoelastic dampers used in seismic isolation.,” Eng. Struct., 34, No. 1, 111-123 (2012).CrossRef L. Y. Lu, G. L. Lin, and M. H. Shih, “An experimental study on a generalized Maxwell model for nonlinear viscoelastic dampers used in seismic isolation.,” Eng. Struct., 34, No. 1, 111-123 (2012).CrossRef
47.
go back to reference V. A. Gorodtsov and A. I. Leonov, “On kinematics, nonequilibrium thermodynamics and rheological relations in the nonlinear theory of viscoelasticity,” PMM, 32, No. 1, 70-94 (1968). V. A. Gorodtsov and A. I. Leonov, “On kinematics, nonequilibrium thermodynamics and rheological relations in the nonlinear theory of viscoelasticity,” PMM, 32, No. 1, 70-94 (1968).
48.
go back to reference A. I. Leonov, E. Ch. Lipkina, E. D. Paskhin, and A. N. Prokunin, “Theoretical and experimental investigations of shearing in elastic polymer liquids,” Rheol. Acta, 15, No. 7/8, 411-426 (1976).CrossRef A. I. Leonov, E. Ch. Lipkina, E. D. Paskhin, and A. N. Prokunin, “Theoretical and experimental investigations of shearing in elastic polymer liquids,” Rheol. Acta, 15, No. 7/8, 411-426 (1976).CrossRef
49.
go back to reference V. A. Palmov, “Rheological models in nonlinear mechanics of deformable bodies,” Adv. in Mech., 3, No. 3, 75-115 (1980). V. A. Palmov, “Rheological models in nonlinear mechanics of deformable bodies,” Adv. in Mech., 3, No. 3, 75-115 (1980).
50.
go back to reference A. N. Prokunin, “On nonlinear constitutive relations of Maxwellian type for describing the motion of polymer liquids,” PMM, 48, No. 6, 957-965 (1984). A. N. Prokunin, “On nonlinear constitutive relations of Maxwellian type for describing the motion of polymer liquids,” PMM, 48, No. 6, 957-965 (1984).
51.
go back to reference A. I. Leonov and A. N. Prokunin, Nonlinear Phenomena in Flows of Viscoelastic Polymer Fluids, London, Chapman and Hall (1994).CrossRef A. I. Leonov and A. N. Prokunin, Nonlinear Phenomena in Flows of Viscoelastic Polymer Fluids, London, Chapman and Hall (1994).CrossRef
52.
go back to reference A. I. Leonov, “Constitutive equations for viscoelastic liquids: Formulation, analysis and comparison with data,” Rheology Series, 8, 519-575 (1999).CrossRef A. I. Leonov, “Constitutive equations for viscoelastic liquids: Formulation, analysis and comparison with data,” Rheology Series, 8, 519-575 (1999).CrossRef
53.
Metadata
Title
Generalization of a Nonlinear Maxwell-Type Viscoelastoplastic Model and Simulation of Creep and Recovery Curves
Author
A. V. Khokhlov
Publication date
01-07-2023
Publisher
Springer US
Published in
Mechanics of Composite Materials / Issue 3/2023
Print ISSN: 0191-5665
Electronic ISSN: 1573-8922
DOI
https://doi.org/10.1007/s11029-023-10107-9

Other articles of this Issue 3/2023

Mechanics of Composite Materials 3/2023 Go to the issue

Premium Partners