Skip to main content
Top
Published in: Mechanics of Composite Materials 3/2023

28-06-2023

A Comparative Study of the Estimated Bending Strength of Sandwich Panels by an Artificial Neural Network and an Adaptive Neuro-Fuzzy Inference System

Authors: M. Nazerian, B. S. Deghatkar, E. Vatankhah

Published in: Mechanics of Composite Materials | Issue 3/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The effects of cattail/poplar straw weight ratio, sandwich panel thickness, and the number of kraft paper layers at the core of sandwich panels on the modulus of rupture (MOR) of the panels were predicted using an artificial neural network (ANN) and an adaptive neuro-fuzzy inference system (ANFIS). The prediction accuracy of the MOR based on experimental data, in terms of the mean absolute percentage error, was smaller than 1.4 and 1.1%, with coefficients of determination 0.94 and 0.995 for the ANN and ANFIS models, respectively. These models can easily predict the bending strength of lignocellulosic-based sandwich panels with a high precision in the manufacturing process.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference S. Hou, S. Zhao, L. Ren, X. Han, and Q. Li, “Crashworthiness optimization of corrugated sandwich panels,” Mater. Des., 51, 1071-1084 (2013).CrossRef S. Hou, S. Zhao, L. Ren, X. Han, and Q. Li, “Crashworthiness optimization of corrugated sandwich panels,” Mater. Des., 51, 1071-1084 (2013).CrossRef
2.
go back to reference Z. N.Azwa, B. F.Yousif, A. C. Manalo, and W. Karunasena, “A review on the degradability of polymeric composites based on natural fibres,” Mater. Des., 47, 424-42 (2013).CrossRef Z. N.Azwa, B. F.Yousif, A. C. Manalo, and W. Karunasena, “A review on the degradability of polymeric composites based on natural fibres,” Mater. Des., 47, 424-42 (2013).CrossRef
3.
go back to reference S. Tiryaki, S. Ozşahin, and I. Yıldırım, “Comparison of artificial neural network and multiple linear regression models to predict optimum bonding strength of heat treated woods,” Int. J. Adhes. Adhes., 55, 29-36 (2014).CrossRef S. Tiryaki, S. Ozşahin, and I. Yıldırım, “Comparison of artificial neural network and multiple linear regression models to predict optimum bonding strength of heat treated woods,” Int. J. Adhes. Adhes., 55, 29-36 (2014).CrossRef
4.
go back to reference S. Tiryaki and A. Aydın, “An artificial neural network model for predicting compression strength of heat treated woods and comparison with a multiple linear regression model,” Constr. Build. Mater., 62, 102-108 (2014).CrossRef S. Tiryaki and A. Aydın, “An artificial neural network model for predicting compression strength of heat treated woods and comparison with a multiple linear regression model,” Constr. Build. Mater., 62, 102-108 (2014).CrossRef
5.
go back to reference F. G. Fernandez, P. Palacios, L. G. Esteban, A. G. Iruela, B. G. Rodrigo, and E. Menasalvas, “Prediction of MOR and MOE of structural plywood board using an artificial neural network and comparison with a multivariate regression model,” Compos. Part B., 43, No. 8, 3528-3533. F. G. Fernandez, P. Palacios, L. G. Esteban, A. G. Iruela, B. G. Rodrigo, and E. Menasalvas, “Prediction of MOR and MOE of structural plywood board using an artificial neural network and comparison with a multivariate regression model,” Compos. Part B., 43, No. 8, 3528-3533.
6.
go back to reference R. Kurt, “Determination of the most appropriate statistical method for estimating the production values of medium density fiberboard,” BioResources., 14, No. 3, 6186-6202 (2019).CrossRef R. Kurt, “Determination of the most appropriate statistical method for estimating the production values of medium density fiberboard,” BioResources., 14, No. 3, 6186-6202 (2019).CrossRef
7.
go back to reference K. Watanabe, H. Korai, H. Matsushita H, and T. Hayashi,” Predicting internal bond strength of particleboard under outdoor exposure based on climate data: comparison of multiple linear regression and artificial neural network,” J. Wood Sci., 61, 151-158 (2015). K. Watanabe, H. Korai, H. Matsushita H, and T. Hayashi,” Predicting internal bond strength of particleboard under outdoor exposure based on climate data: comparison of multiple linear regression and artificial neural network,” J. Wood Sci., 61, 151-158 (2015).
8.
go back to reference S. Tiryaki, U. Aras, H. Kalaycioglu, E. Erişir, and A. Aydin, “Predictive models for modulus of rupture and modulus of elasticity of particleboard manufactured in different pressing conditions,” High Temp. Mater. Process., 36, No. 6, 1-12 (2016). S. Tiryaki, U. Aras, H. Kalaycioglu, E. Erişir, and A. Aydin, “Predictive models for modulus of rupture and modulus of elasticity of particleboard manufactured in different pressing conditions,” High Temp. Mater. Process., 36, No. 6, 1-12 (2016).
9.
go back to reference S. Bardak, T. Bardak, H. Peker, E. Sözen, and Y. Çabuk, “Predicting effects of selected impregnation processes on the observed bending strength of wood, with use of data mining models”. Bioresources, 16, No. 3, 4891-4904 (2021).CrossRef S. Bardak, T. Bardak, H. Peker, E. Sözen, and Y. Çabuk, “Predicting effects of selected impregnation processes on the observed bending strength of wood, with use of data mining models”. Bioresources, 16, No. 3, 4891-4904 (2021).CrossRef
10.
go back to reference S. Bardak, “Predicting the impacts of various factors on failure load of screw joints for particleboard using artificial neural networks”. BioResources, 13, No. 2, 3868-3879 (2018).CrossRef S. Bardak, “Predicting the impacts of various factors on failure load of screw joints for particleboard using artificial neural networks”. BioResources, 13, No. 2, 3868-3879 (2018).CrossRef
11.
go back to reference S. Bardak, S. Tiryaki, T. Bardak, and A. Aydin, “Predictive performance of artificial neural network and multiple linear regression models in predicting adhesive bonding strength of wood”. Strength Mater., 48, No.6, 811-824 (2016).CrossRef S. Bardak, S. Tiryaki, T. Bardak, and A. Aydin, “Predictive performance of artificial neural network and multiple linear regression models in predicting adhesive bonding strength of wood”. Strength Mater., 48, No.6, 811-824 (2016).CrossRef
12.
go back to reference M. Hosoz, H. M. Ertunc, and H. Bulgurcu, “An adaptive neuro-fuzzyinference system model for predicting the performance of a refrigeration system with a cooling tower,” Expert Syst.Appl., 38, No. 11, 14148-55(2011). M. Hosoz, H. M. Ertunc, and H. Bulgurcu, “An adaptive neuro-fuzzyinference system model for predicting the performance of a refrigeration system with a cooling tower,” Expert Syst.Appl., 38, No. 11, 14148-55(2011).
13.
go back to reference J. S. R. Jang. ANFIS: adaptive-network-based fuzzy inference system. Systems, man and cybernetics. IEEE Transaction. 23, 665-85 (1999). J. S. R. Jang. ANFIS: adaptive-network-based fuzzy inference system. Systems, man and cybernetics. IEEE Transaction. 23, 665-85 (1999).
14.
go back to reference C.D. Lewis. International and business forecasting methods. London:Butterworths; 1982. C.D. Lewis. International and business forecasting methods. London:Butterworths; 1982.
15.
go back to reference A. Canakci, S. Ozsahin, and T. Varol T, “Modeling the influence of a process control agent on the properties of metal matrix composite powders using artificial neural networks,” Powder Technol., 228, 26-35 (2012). A. Canakci, S. Ozsahin, and T. Varol T, “Modeling the influence of a process control agent on the properties of metal matrix composite powders using artificial neural networks,” Powder Technol., 228, 26-35 (2012).
16.
go back to reference A. A. Tofigh, M. R. Rahimipour, M. O. Shabani, and P. Davami, “Application of the combined neuro-computing, fuzzy logic and swarm intelligence for optimization of compocast nanocomposites,” J. Compos. Mater., 49, 1653-1663 (2015).CrossRef A. A. Tofigh, M. R. Rahimipour, M. O. Shabani, and P. Davami, “Application of the combined neuro-computing, fuzzy logic and swarm intelligence for optimization of compocast nanocomposites,” J. Compos. Mater., 49, 1653-1663 (2015).CrossRef
17.
go back to reference M. Shamsipour, Z. Pahlevani, M. O. Shabani, and A. Mazahery,“Optimization of the EMS process parameters in compocasting of high-wear-resistant Al-nano-TiC composites,” Appl. Phys. A., 122, 1 (2016).CrossRef M. Shamsipour, Z. Pahlevani, M. O. Shabani, and A. Mazahery,“Optimization of the EMS process parameters in compocasting of high-wear-resistant Al-nano-TiC composites,” Appl. Phys. A., 122, 1 (2016).CrossRef
18.
go back to reference M. Ostad Shabani, M. Shamsipour, A. Mazahery, and Z. Pahlevani, “Performance of ANFIS coupled with PSO in manufacturing superior wear resistant aluminum matrix nano composites,” Trans. Indian Inst. Met., 71, 2095-2103 (2018). M. Ostad Shabani, M. Shamsipour, A. Mazahery, and Z. Pahlevani, “Performance of ANFIS coupled with PSO in manufacturing superior wear resistant aluminum matrix nano composites,” Trans. Indian Inst. Met., 71, 2095-2103 (2018).
19.
go back to reference S. Zielinska, and E. Kepczynska, “Neural modeling of plant tissue cultures: a review,” BioTechnologia, 94, No. 3, 253-268 (2013).CrossRef S. Zielinska, and E. Kepczynska, “Neural modeling of plant tissue cultures: a review,” BioTechnologia, 94, No. 3, 253-268 (2013).CrossRef
20.
go back to reference J. Gago, L. Martinez-Nunez, and M. Landin, “Artificial neural networks as an alternative to the traditional statistical methodology in plant research,” J. Plant Physiol., 167, 23-27 (2010).CrossRef J. Gago, L. Martinez-Nunez, and M. Landin, “Artificial neural networks as an alternative to the traditional statistical methodology in plant research,” J. Plant Physiol., 167, 23-27 (2010).CrossRef
21.
go back to reference A. Ruangmee and C. Sangwichien,“ Statistical optimization for alkali pretreatment conditions of narrow-leaf cattail by response surface methodology,” Songklanakarin J. Sci. Technol., 35, No. 4, 443-450 (2013). A. Ruangmee and C. Sangwichien,“ Statistical optimization for alkali pretreatment conditions of narrow-leaf cattail by response surface methodology,” Songklanakarin J. Sci. Technol., 35, No. 4, 443-450 (2013).
22.
go back to reference N. S. V. Gupta, Akash, K. V. S. Rao, and D. S. Arunkumar, “Fabrication and evaluation of mechanical properties of alkaline treated sisal/hemp fiber reinforced hybrid composite,” IOP Conf. Series on Mater. Sci. Eng., 149, 012093 (2016). N. S. V. Gupta, Akash, K. V. S. Rao, and D. S. Arunkumar, “Fabrication and evaluation of mechanical properties of alkaline treated sisal/hemp fiber reinforced hybrid composite,” IOP Conf. Series on Mater. Sci. Eng., 149, 012093 (2016).
23.
go back to reference L. Cai, D. Zhang, S. Zhou S, and W. Xu, “Investigation on mechanical properties and equivalent model of aluminum honeycomb sandwich panels,” J. Mater. Eng. Perform., 27, 6585-6596 (2018). L. Cai, D. Zhang, S. Zhou S, and W. Xu, “Investigation on mechanical properties and equivalent model of aluminum honeycomb sandwich panels,” J. Mater. Eng. Perform., 27, 6585-6596 (2018).
24.
go back to reference S. Mudassir, D. V. R. Shankar, and M. M. Hussain,“ Flexural behavior of sandwich composite panels under 4-point loading,” Int. J. Mater. Sci., 11, 47-55 (2016). S. Mudassir, D. V. R. Shankar, and M. M. Hussain,“ Flexural behavior of sandwich composite panels under 4-point loading,” Int. J. Mater. Sci., 11, 47-55 (2016).
Metadata
Title
A Comparative Study of the Estimated Bending Strength of Sandwich Panels by an Artificial Neural Network and an Adaptive Neuro-Fuzzy Inference System
Authors
M. Nazerian
B. S. Deghatkar
E. Vatankhah
Publication date
28-06-2023
Publisher
Springer US
Published in
Mechanics of Composite Materials / Issue 3/2023
Print ISSN: 0191-5665
Electronic ISSN: 1573-8922
DOI
https://doi.org/10.1007/s11029-023-10118-6

Other articles of this Issue 3/2023

Mechanics of Composite Materials 3/2023 Go to the issue

Premium Partners