Skip to main content
Erschienen in: Strength of Materials 6/2016

09.02.2017

Predictive Performance of Artificial Neural Network and Multiple Linear Regression Models in Predicting Adhesive Bonding Strength of Wood

verfasst von: S. Bardak, S. Tiryaki, T. Bardak, A. Aydin

Erschienen in: Strength of Materials | Ausgabe 6/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The purpose of this study was to develop artificial neural network (ANN) and multiple linear regression (MLR) models that are capable of predicting the bonding strength of wood based on moisture content, open assembly time and closed assembly time of the joints prior to pressing process. For this purpose, the experimental studies were conducted and the models based on the experimental results were set up. As a result of the experiments conducted, it was observed that bonding strength first increased and then decreased with increasing the wood moisture content and adhesive open assembly time. In addition, the increased closed assembly time caused a decrease in bonding strength of wood. The ANN results were compared with the results obtained from the MLR model to evaluate the models’ predictive performance. It was found that the ANN model with the R 2 value of 97.7% and the mean absolute percentage error of 3.587% in test phase exhibits higher prediction accuracy than the MLR model. The comparison results confirm the feasibility of ANN model in terms of predictive performance. Consequently, it can be said that ANN is an effective tool in predicting wood bonding strength, and quite useful instead of costly and time-consuming experimental investigations.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat P. Hass, O. Kläusler, S. Schlegel, and P. Niemz, “Effects of mechanical and chemical surface preparation on adhesively bonded wooden joints,” Int. J. Adhes. Adhes., 51, 95–102 (2014).CrossRef P. Hass, O. Kläusler, S. Schlegel, and P. Niemz, “Effects of mechanical and chemical surface preparation on adhesively bonded wooden joints,” Int. J. Adhes. Adhes., 51, 95–102 (2014).CrossRef
2.
Zurück zum Zitat I. Horman, S. Hajdarević, S. Martinović, and N. Vukas, “Stiffness and strength analysis of corner joint,” Tech. Technol. Educ. Ma., 5, 48–53 (2010). I. Horman, S. Hajdarević, S. Martinović, and N. Vukas, “Stiffness and strength analysis of corner joint,” Tech. Technol. Educ. Ma., 5, 48–53 (2010).
3.
Zurück zum Zitat A. Sonmez, M. Budakci, and M. Bayram, “Effect of wood moisture content on adhesion of varnish coatings,” Sci. Res. Essays, 4, No. 12, 1432–1437 (2009). A. Sonmez, M. Budakci, and M. Bayram, “Effect of wood moisture content on adhesion of varnish coatings,” Sci. Res. Essays, 4, No. 12, 1432–1437 (2009).
4.
Zurück zum Zitat C. B. Vick, Adhesive Bonding of Wood Materials, in: Wood Handbook: Wood as an Engineering Material, Ch. 9, FPL-GTR-113, Madison, WI (1999), pp. 9.1–9.24. C. B. Vick, Adhesive Bonding of Wood Materials, in: Wood Handbook: Wood as an Engineering Material, Ch. 9, FPL-GTR-113, Madison, WI (1999), pp. 9.1–9.24.
5.
Zurück zum Zitat M. L. Selbo, Adhesive Bonding of Wood, Technical Bulletin No. 1512, USDA, Washington, DC (1975). M. L. Selbo, Adhesive Bonding of Wood, Technical Bulletin No. 1512, USDA, Washington, DC (1975).
6.
Zurück zum Zitat D. Minelga and V. Norvydas, “Properties of halogensilane modified poly(vinyl acetate) dispersion,” Mater. Sci. (Medþiagotyra), 11, No. 2, 146–149 (2005). D. Minelga and V. Norvydas, “Properties of halogensilane modified poly(vinyl acetate) dispersion,” Mater. Sci. (Medþiagotyra), 11, No. 2, 146–149 (2005).
7.
Zurück zum Zitat D. F. Cook, C. T. Ragsdale, and R. L. Major, “Combining a neural network with a genetic algorithm for process parameter optimization,” Eng. Appl. Artif. Intel., 13, No. 4, 391–396 (2000).CrossRef D. F. Cook, C. T. Ragsdale, and R. L. Major, “Combining a neural network with a genetic algorithm for process parameter optimization,” Eng. Appl. Artif. Intel., 13, No. 4, 391–396 (2000).CrossRef
8.
Zurück zum Zitat F. G. Fernandez, P. de Palacios, L. G. Esteban, et al., “Prediction of MOR and MOE of structural plywood board using an artificial neural network and comparison with a multivariate regression model,” Compos. Part B – Eng., 43, No. 8, 3528–3533 (2012).CrossRef F. G. Fernandez, P. de Palacios, L. G. Esteban, et al., “Prediction of MOR and MOE of structural plywood board using an artificial neural network and comparison with a multivariate regression model,” Compos. Part B – Eng., 43, No. 8, 3528–3533 (2012).CrossRef
9.
Zurück zum Zitat B. Khalilmoghadam, M. Afyuni, K. C. Abbaspour, et al., “Estimation of surface shear strength in Zagros region of Iran – A comparison of artificial neural networks and multiple-linear regression models,” Geoderma, 153, 29–36 (2009).CrossRef B. Khalilmoghadam, M. Afyuni, K. C. Abbaspour, et al., “Estimation of surface shear strength in Zagros region of Iran – A comparison of artificial neural networks and multiple-linear regression models,” Geoderma, 153, 29–36 (2009).CrossRef
10.
Zurück zum Zitat L. G. Esteban, F. G. Fernandez, and P. de Palacios, “Prediction of plywood bonding quality using an artificial neural network,” Holzforschung, 65, 209–214 (2011).CrossRef L. G. Esteban, F. G. Fernandez, and P. de Palacios, “Prediction of plywood bonding quality using an artificial neural network,” Holzforschung, 65, 209–214 (2011).CrossRef
11.
Zurück zum Zitat U. Atici, “Prediction of the strength of mineral admixture concrete using multivariable regression analysis nd an artificial neural network,” Expert Syst. Appl., 38, 9609– 9618 (2011).CrossRef U. Atici, “Prediction of the strength of mineral admixture concrete using multivariable regression analysis nd an artificial neural network,” Expert Syst. Appl., 38, 9609– 9618 (2011).CrossRef
12.
Zurück zum Zitat T. A. Choudhury, N. Hosseinzadeh, and C. C. Berndt, “Improving the generalization ability of an artificial neural network in predicting in-flight particle characteristics of an atmospheric plasma spray process,” J. Therm. Spray Technol., 21, No. 5, 935–949 (2012).CrossRef T. A. Choudhury, N. Hosseinzadeh, and C. C. Berndt, “Improving the generalization ability of an artificial neural network in predicting in-flight particle characteristics of an atmospheric plasma spray process,” J. Therm. Spray Technol., 21, No. 5, 935–949 (2012).CrossRef
13.
Zurück zum Zitat G. Aydin, I. Karakurt, and C. Hamzacebi, “Artificial neural network and regression models for performance prediction of abrasive waterjet in rock cutting,” Int. J. Adv. Manuf. Tech., 75, 1321–1330 (2014).CrossRef G. Aydin, I. Karakurt, and C. Hamzacebi, “Artificial neural network and regression models for performance prediction of abrasive waterjet in rock cutting,” Int. J. Adv. Manuf. Tech., 75, 1321–1330 (2014).CrossRef
14.
Zurück zum Zitat V. A. Boguslaev, A. G. Sakhno, V. K. Yatsenko, and N. V. Gonchar, “Fatigue strength prediction of KhN73MBTYu-VD alloy compressor disks,” Strength Mater., 31, No. 4, 424–428 (1999).CrossRef V. A. Boguslaev, A. G. Sakhno, V. K. Yatsenko, and N. V. Gonchar, “Fatigue strength prediction of KhN73MBTYu-VD alloy compressor disks,” Strength Mater., 31, No. 4, 424–428 (1999).CrossRef
15.
Zurück zum Zitat M. M. F. Zain, and S. M. Abd, “Multiple regression model for compressive strength prediction of high performance concrete,” J. Appl. Sci., 9, No. 1, 155–160 (2009).CrossRef M. M. F. Zain, and S. M. Abd, “Multiple regression model for compressive strength prediction of high performance concrete,” J. Appl. Sci., 9, No. 1, 155–160 (2009).CrossRef
16.
Zurück zum Zitat B. B. Adhikari, and H. Mutsuyoshi, “Prediction of shear strength of steel fiber RC beams using neural networks,” Constr. Build. Mater., 20, 801–811 (2006).CrossRef B. B. Adhikari, and H. Mutsuyoshi, “Prediction of shear strength of steel fiber RC beams using neural networks,” Constr. Build. Mater., 20, 801–811 (2006).CrossRef
17.
Zurück zum Zitat V. K. Singh, D. Singh, and T. N. Singh, “Prediction of strength properties of some schistose rocks from petrographic properties using artificial neural networks,” Int. J. Rock Mech. Min., 38, 269–284 (2001).CrossRef V. K. Singh, D. Singh, and T. N. Singh, “Prediction of strength properties of some schistose rocks from petrographic properties using artificial neural networks,” Int. J. Rock Mech. Min., 38, 269–284 (2001).CrossRef
18.
Zurück zum Zitat A. T. Seyhan, G. Tayfur, M. Karakurt, and M. Tanoglu, “Artificial neural network (ANN) prediction of compressive strength of VARTM processed polymer composites,” Comp. Mater. Sci., 34, 99–105 (2005).CrossRef A. T. Seyhan, G. Tayfur, M. Karakurt, and M. Tanoglu, “Artificial neural network (ANN) prediction of compressive strength of VARTM processed polymer composites,” Comp. Mater. Sci., 34, 99–105 (2005).CrossRef
19.
Zurück zum Zitat L. G. Esteban, F. G. Fernandez, and P. de Palacios, “MOE prediction in Abies pinsapo Boiss. timber: Application of an artificial neural network using non-destructive testing,” Comput. Struct., 87, 1360–1365 (2009).CrossRef L. G. Esteban, F. G. Fernandez, and P. de Palacios, “MOE prediction in Abies pinsapo Boiss. timber: Application of an artificial neural network using non-destructive testing,” Comput. Struct., 87, 1360–1365 (2009).CrossRef
20.
Zurück zum Zitat F. Eslah, A. A. Enayati, M. Tajvidi, and M. M. Faezipour, “Regression models for the prediction of poplar particleboard properties based on urea formaldehyde resin content and board density,” J. Agric. Sci. Technol., 14, 1321–1329 (2012). F. Eslah, A. A. Enayati, M. Tajvidi, and M. M. Faezipour, “Regression models for the prediction of poplar particleboard properties based on urea formaldehyde resin content and board density,” J. Agric. Sci. Technol., 14, 1321–1329 (2012).
21.
Zurück zum Zitat S. Tiryaki and A. Aydin, “An artificial neural network model for predicting compression strength of heat treated woods and comparison with a multiple linear regression model,” Constr. Build. Mater., 62, 102–108 (2014).CrossRef S. Tiryaki and A. Aydin, “An artificial neural network model for predicting compression strength of heat treated woods and comparison with a multiple linear regression model,” Constr. Build. Mater., 62, 102–108 (2014).CrossRef
22.
Zurück zum Zitat S. Tiryaki, S. Ozsahin, and I. Yildirim, “Comparison of artificial neural network and multiple linear regression models to predict optimum bonding strength of heat treated woods,” Int. J. Adhes. Adhes., 55, 29–36 (2014).CrossRef S. Tiryaki, S. Ozsahin, and I. Yildirim, “Comparison of artificial neural network and multiple linear regression models to predict optimum bonding strength of heat treated woods,” Int. J. Adhes. Adhes., 55, 29–36 (2014).CrossRef
23.
Zurück zum Zitat K. Watanabe, H. Korai, Y. Matsushita, and T. Hayashi, “Predicting internal bond strength of particleboard under outdoor exposure based on climate data: comparison of multiple linear regression and artificial neural network,” J. Wood Sci., 61, 151–158 (2015).CrossRef K. Watanabe, H. Korai, Y. Matsushita, and T. Hayashi, “Predicting internal bond strength of particleboard under outdoor exposure based on climate data: comparison of multiple linear regression and artificial neural network,” J. Wood Sci., 61, 151–158 (2015).CrossRef
24.
Zurück zum Zitat BS EN 205: 1991. Test Methods for Wood Adhesives for Non-Structural Applications. Determination of Tensile Bonding Strength of Lap Joints, BSI, London (1991). BS EN 205: 1991. Test Methods for Wood Adhesives for Non-Structural Applications. Determination of Tensile Bonding Strength of Lap Joints, BSI, London (1991).
25.
Zurück zum Zitat H. Tabari, A. Sabziparvar, and M. Ahmadi, “Comparison of artificial neural network and multivariate linear regression methods for estimation of daily soil temperature in an arid region,” Meteorol. Atmos. Phys., 110, 135–142 (2011).CrossRef H. Tabari, A. Sabziparvar, and M. Ahmadi, “Comparison of artificial neural network and multivariate linear regression methods for estimation of daily soil temperature in an arid region,” Meteorol. Atmos. Phys., 110, 135–142 (2011).CrossRef
26.
Zurück zum Zitat S. Kalayci, SPSS Practical Multivariate Statistical Techniques, Asil Publishing Distribution, Ankara (2010). S. Kalayci, SPSS Practical Multivariate Statistical Techniques, Asil Publishing Distribution, Ankara (2010).
27.
Zurück zum Zitat S. Haykin, Neural Networks: A Comprehensive Foundation, Macmillan, New York (1994). S. Haykin, Neural Networks: A Comprehensive Foundation, Macmillan, New York (1994).
28.
Zurück zum Zitat J. Li, Y. K. Jia, N. Y. Shen, et al., “Effect of grinding conditions of a TC4 titanium alloy on its residual surface stresses,” Strength Mater., 47, No. 1, 2–11 (2015).CrossRef J. Li, Y. K. Jia, N. Y. Shen, et al., “Effect of grinding conditions of a TC4 titanium alloy on its residual surface stresses,” Strength Mater., 47, No. 1, 2–11 (2015).CrossRef
29.
Zurück zum Zitat V. T. Troshchenko, L. A. Khamaza, V. A. Apostolyuk, and Yu. N. Babich, “Strain– life curves of steels and methods for determining the curve parameters. Part 2. Methods based on the use of artificial neural networks,” Strength Mater., 43, No. 1, 1–14 (2011). V. T. Troshchenko, L. A. Khamaza, V. A. Apostolyuk, and Yu. N. Babich, “Strain– life curves of steels and methods for determining the curve parameters. Part 2. Methods based on the use of artificial neural networks,” Strength Mater., 43, No. 1, 1–14 (2011).
30.
Zurück zum Zitat S. Tiryaki and C. Hamzaçebi, “Predicting modulus of rupture (MOR) and modulus of elasticity (MOE) of heat treated woods by artificial neural networks,” Measurement, 49, 266–274 (2014).CrossRef S. Tiryaki and C. Hamzaçebi, “Predicting modulus of rupture (MOR) and modulus of elasticity (MOE) of heat treated woods by artificial neural networks,” Measurement, 49, 266–274 (2014).CrossRef
31.
Zurück zum Zitat T. Varol, A. Canakci, and S. Ozsahin, “Prediction of the influence of processing parameters on synthesis of Al2024-B4C composite powders in a planetary mill using an artificial neural network,” Sci. Eng. Compos. Mater., 21, No. 3, 411–420 (2014).CrossRef T. Varol, A. Canakci, and S. Ozsahin, “Prediction of the influence of processing parameters on synthesis of Al2024-B4C composite powders in a planetary mill using an artificial neural network,” Sci. Eng. Compos. Mater., 21, No. 3, 411–420 (2014).CrossRef
32.
Zurück zum Zitat G. Cybenko, “Approximation by superposition of a sigmoidal function,” Math. Control Signal, 2, 303–314 (1989).CrossRef G. Cybenko, “Approximation by superposition of a sigmoidal function,” Math. Control Signal, 2, 303–314 (1989).CrossRef
33.
Zurück zum Zitat K. Hornik, M. Stinchcombe, and H. White, “Multilayer feedforward networks are universal approximators,” Neural Networks, 2, 359–366 (1989).CrossRef K. Hornik, M. Stinchcombe, and H. White, “Multilayer feedforward networks are universal approximators,” Neural Networks, 2, 359–366 (1989).CrossRef
34.
Zurück zum Zitat C. Hamzaçebi, D. Akay, and F. Kutay, “Comparison of direct and iterative artificial neural network forecast approaches in multi-periodic time series forecasting,” Expert Syst. Appl., 36, 3839–3844 (2009).CrossRef C. Hamzaçebi, D. Akay, and F. Kutay, “Comparison of direct and iterative artificial neural network forecast approaches in multi-periodic time series forecasting,” Expert Syst. Appl., 36, 3839–3844 (2009).CrossRef
35.
Zurück zum Zitat I. Kaastra and M. Boyd, “Designing a neural network for forecasting financial and economic time series,” Neurocomputing, 10, 215–236 (1996).CrossRef I. Kaastra and M. Boyd, “Designing a neural network for forecasting financial and economic time series,” Neurocomputing, 10, 215–236 (1996).CrossRef
36.
Zurück zum Zitat H. R. Maier, A. Jain, G. C. Dandy, and K. P. Sudheer, “Methods used for the development of neural networks for the prediction of water resource variables in river systems: current status and future directions,” Environ. Model. Softw., 25, 891–909 (2010).CrossRef H. R. Maier, A. Jain, G. C. Dandy, and K. P. Sudheer, “Methods used for the development of neural networks for the prediction of water resource variables in river systems: current status and future directions,” Environ. Model. Softw., 25, 891–909 (2010).CrossRef
37.
Zurück zum Zitat R. Baratti, B. Cannas, A. Fanni, et al., “River flow forecast for reservoir management through neural networks,” Neurocomputing, 55, No. 3, 421–437 (2003). R. Baratti, B. Cannas, A. Fanni, et al., “River flow forecast for reservoir management through neural networks,” Neurocomputing, 55, No. 3, 421–437 (2003).
38.
Zurück zum Zitat A. J. Panshin and C. de Zeeuw, Textbook of Wood Technology, McGraw-Hill, New York (1980). A. J. Panshin and C. de Zeeuw, Textbook of Wood Technology, McGraw-Hill, New York (1980).
39.
Zurück zum Zitat E. Güntekin, and T. Y. Aydin, “Effects of moisture content on some mechanical properties of Turkish Red pine (Pinus brutia Ten.),”in: Proc. of the International Caucasian Forestry Symposium (Oct. 24–26, 2013, Artvin, Turkey), pp. 878–883. E. Güntekin, and T. Y. Aydin, “Effects of moisture content on some mechanical properties of Turkish Red pine (Pinus brutia Ten.),”in: Proc. of the International Caucasian Forestry Symposium (Oct. 24–26, 2013, Artvin, Turkey), pp. 878–883.
40.
Zurück zum Zitat M. Nocetti, M. Brunetti, and M. Bacher, “Effect of moisture content on the flexural properties and dynamic modulus of elasticity of dimension chestnut timber,” Eur. J. Wood Prod., 73, 51–60 (2015).CrossRef M. Nocetti, M. Brunetti, and M. Bacher, “Effect of moisture content on the flexural properties and dynamic modulus of elasticity of dimension chestnut timber,” Eur. J. Wood Prod., 73, 51–60 (2015).CrossRef
41.
Zurück zum Zitat C. D. Lewis, International and Business Forecasting Methods, Butterworths, London (1982). C. D. Lewis, International and Business Forecasting Methods, Butterworths, London (1982).
42.
Zurück zum Zitat P. Williams and K. Norris (Eds.), Near-Infrared Technology: in the Agricultural and Food Industries, 2nd edn, American Association of Cereal Chemists, St. Paul, MN (2001), p. 143. P. Williams and K. Norris (Eds.), Near-Infrared Technology: in the Agricultural and Food Industries, 2nd edn, American Association of Cereal Chemists, St. Paul, MN (2001), p. 143.
43.
Zurück zum Zitat J. H. Cheng and D. W. Sun, “Recent applications of spectroscopic and hyperspectral imaging techniques with chemometric analysis for rapid inspection of microbial spoilage in muscle foods,” Compr. Rev. Food Sci. F., 14, 478–490 (2015).CrossRef J. H. Cheng and D. W. Sun, “Recent applications of spectroscopic and hyperspectral imaging techniques with chemometric analysis for rapid inspection of microbial spoilage in muscle foods,” Compr. Rev. Food Sci. F., 14, 478–490 (2015).CrossRef
44.
Zurück zum Zitat A. T. C. Goh and W. G. Zhang, “An improvement to MLR model for predicting liquefaction induced lateral spread using multivariate adaptive regression splines,” Eng. Geol., 170, 1–10 (2014).CrossRef A. T. C. Goh and W. G. Zhang, “An improvement to MLR model for predicting liquefaction induced lateral spread using multivariate adaptive regression splines,” Eng. Geol., 170, 1–10 (2014).CrossRef
45.
Zurück zum Zitat G. K. Uyanik and N. Güler, “A study on multiple linear regression analysis,” Proc. Soc. Behav. Sci., 106, 234–240 (2013).CrossRef G. K. Uyanik and N. Güler, “A study on multiple linear regression analysis,” Proc. Soc. Behav. Sci., 106, 234–240 (2013).CrossRef
Metadaten
Titel
Predictive Performance of Artificial Neural Network and Multiple Linear Regression Models in Predicting Adhesive Bonding Strength of Wood
verfasst von
S. Bardak
S. Tiryaki
T. Bardak
A. Aydin
Publikationsdatum
09.02.2017
Verlag
Springer US
Erschienen in
Strength of Materials / Ausgabe 6/2016
Print ISSN: 0039-2316
Elektronische ISSN: 1573-9325
DOI
https://doi.org/10.1007/s11223-017-9828-x

Weitere Artikel der Ausgabe 6/2016

Strength of Materials 6/2016 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.